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Abstract.
main characterized by a very large number of attributesgglerela-
tive to the number of examples (observations). The dangelats
overfitting is crucial in such domains. This work presentsagn
proach which can help in avoiding data overfitting in supeedi
inductive learning of short rules that are appropriate famhn in-
terpretation. The approach is based on the subgroup discovie
learning framework, enhanced by methods of restrictindhghmth-
esis search space by exploiting the relevancy of featuatetiter the
rule construction process as well as their combinationsftine the
rules. A multi-class functional genomics problem of clagsg four-
teen cancer types based on more than 16000 gene expressies va
is used to illustrate the methodology.

1 Introduction

Recent research in the construction of high dimensionasdiars
as well as in combining different classifiers has enabled gbad

prediction quality can be obtained also for gene expressionains
which are characterized by unproportionally many attesutom-
pared to the number of available examples [3, 7, 11]. Theimdxda
results are promising for the applications of functionah@mics in

the tasks like disease diagnosis, disease forecastinheoapeutic
decision making. But the constructed classifiers are notogpjate

for human interpretation [1]. Construction of understdridand ex-
plainable models, also known as descriptive inductiongigdrtant
for scientific discovery as well as for the generation of awble
knowledge. It is possible to extract the most informativatdees or
attributes from complex classifiers (in [11] the attributeigh this

property are called disease markers) but logical connmestmnong
these features or attributes are missing which disablesahstruc-
tion and expert interpretation of models describing thggtelass. In
contrast, short rules—despite being potentially lessateuhan the
complex classifiers—are much more appropriate for scierntif-

covery tasks in which the interpretability of induced meadid of

ultimate importance.

The problem with the induction of low dimensional non-redant
classifiers is that they are very sensitive to training setfitting, an
effect which denotes that a classifier has significantly topredic-
tion quality on unseen test sets than on the training set f#jough
maximal prediction accuracy is not the main goal of scientiis-
covery and descriptive induction tasks, high generaltiragérror or
large difference in prediction quality for the training atie test set
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Functional genomics is a typical scientific discovery do-

are a reliable sign that the induction of a classifier was notess-
ful in finding really relevant relations between attributdues and
the classes. This is the main reason of our interest in awpidata
overfitting. Selection of an appropriate hypothesis lagguas well
as the reduction of the hypothesis search space are knowrodset
for avoiding overfitting [2, 8, 12].

In this work an approach is presented which, although it a&n n
guarantee that overfitting will not happen, may help in avmjever-
fitting in inductive learning of simple rules which are appriate for
human interpretation. For illustrations and experimentgene ex-
pression domain with more than 16000 attributes is used.daphe
proach is based on methods for reducing the hypothesisisspace
so that the reduction is done by the elimination of those col@-
ponents (features) and those of their combinations (rsiespected
to be a result of statistically irrelevant artifacts. Thelgem with
this approach is that with a strongly reduced hypothesisesjtanay
be difficult to induce rules that cover all/many examplesrfrthe
training set. However, the proposed subgroup discoveryoagh
provides a much better framework for the application of thg-s
gested methodology of feature and rule relevancy than Hrelatd
separate-and-conquer rule learning [4].

In Section 2 of this paper the subgroup discovery methogoleg
described, while feature relevancy and rule relevancy exsemted
in Sections 3 and 4, respectively. Section 5 presents theriexents
using the proposed methodology on a gene expression domain.

2 Rule learning for subgroup discovery

Subgroup discovery is a form of supervised inductive leayiof sub-
group descriptions for the target class in a two class donidia de-
scriptions have the form of rules built as logical conjuont of fea-
tures. Features are logical conditions that have valuesdrdalse,
depending on the values of attributes which describe theapbes in
the problem domain. Subgroup discovery rule learning iectioee a
form of two-class propositional inductive rule learningulti-class
problems can be solved as a series of two-class learnindepnsb
so that each class is once selected as the target class wénitples
of all other classes are treated as non-target class example

In this work, subgroup discovery is performed by the SD algo-
rithm,* a relatively simple iterative beam search rule learning-alg
rithm [5]. The input to SD consists of a set of exampledE =
P U N, P is the set of target class exampl@sthe set of non-target
class examples) and a set of featuréconstructed for the given

4 The approach has been implemented in the on-line Data MiSienyer
(DMS), publicly available ahtt p: //dms. i rb. hr. DMS and its con-
stituting subgroup discovery algorithm SD can be testedsem submitted
domains with up to 250 examples and 50 attributes.



example set. For discrete (categorical) attributes, feathave the
form Attribute = value or Attribute # value, while for contin-
uous (numerical) attributes they have the faAtiribute > value

or Attribute < value. The output of the SD algorithm is a set of
rules with optimal covering properties on the given exangge As
in classification rule learning, an induced rule (subgroegodiption)
has the form of a (backwards) implicatiafiiass < Cond. Interms
of rule learning, the property of interest for subgroup digey is the

target class(lass) that appears in the rule consequent, and the rul
antecedent(ond) is a conjunction of features (attribute-value pairs)

selected from the features describing the training ingsinc

A rule with ideal covering properties is true for all targétss ex-
amples and not true for all non-target class examples. Tatgses
examples covered by a rule are also caliee positives, TRyhile
non-target class examples covered by the rule are ctdled pos-

rules while its inclusion is not justified by its covering pesties on
the training set. Notice that if both conditions = a andA; = b

are relevant, it does not mean that by restricting the fornuszfd
features some important logical combinations of featuridisbe ig-

nored. In the subgroup discovery approach both featuredadach
separate subgroup descriptions and—if they are relevdry-+oth
have a chance to appear in the final set of induced rules.

3.1 Domain specific restrictions for functional

genomics domains

Gene expression scanners measure signal intensity agwousi val-
ues which form an appropriate input for data analysis. Tloblpm
is that for continuous valued attributes there can be patnmany
boundary values separating the classes, resulting in miffieyeaht

itives, FP. All remaining non-target class examples not covered byfeatures for a single attribute. Another possibility is &2 presence

the rule are calledrue negatives, TNAn ideal rules ha§’'P = P

call (signal specificity) values computed from measureaaign-

andT'N = N. In the proposed subgroup discovery approach [5], thetensity values by the Affymetrix GENECHIP software. Thegeece

following rule quality measure, is used in heuristic search of rules:
‘FE—PLW whereg is a user definedeneralization parameteHigh
quality rules will cover many target class examples and alomber
of non-target examples. The number of tolerated negatiaengles,
relative to the number of covered target class cases, isnieied by
parameteg.

The flexibility of subgroup discovery is due to its searchues
that satisfy groups of examples of the target class, notssacg ex-
cluding all of the non-target examples. Sizes of subgroupsnat

call has discrete valued (absent),P (present), and// (marginal).
The M value can be interpreted asdo not know state’while for
valuesA and P it holds that featuredt¢tribute = A is identical to
Attribute # P. Consequently, for every attribute there are only two
distinct featuresAttribute = A and Attribute = P generated for
each attribute.

The presented subgroup discovery algorithm as well as tiee-fil
ing based on feature and rule relevancy are applicable bloémws-
ing the signal intensity or the presence call attribute@slTypically

defined in advance but the algorithm tends to make them as largsignal intensity values are used [10] because they impssedstric-

as possible. Due to this flexibility the algorithm is able nedrpo-
rate different rule relevancy methods with the goal to pnévtee
construction of target class subgroup descriptions whichat have
sufficient supportive evidence for being significantly eiéint from
non-target samples. An equally important part of the mettamgy
for avoiding overfitting is that each feature that entersshiegroup
discovery algorithm should itself be a relevant targetstescriptor.

3 Relevancy of features

The relevancy of features is determined by a combination ethm
ods for restricting the hypothesis search space and foiireiing
features with low covering properties. The later methodsetaon
absolute and relative relevancy (Section 3.2) are unillgrapplica-
ble to any domain and their use is suggested in all featuredoias
ductive learning tasks. The restrictions of the hypothes#&sch space
are related to the form of rules and to the properties of theaio.
Section 3.1 presents an effective approach that can syroeduce
the number of features and its application is suggesteddscrip-
tive induction tasks in gene expression domains.

The features are restricted to simple forms only, as defin¢dd
previous section, because their complex forms may enahtedb-
spite testing feature covering properties, features wigufficient
supportive evidence may enter the rule construction psocesr
example, for discrete attributes the simple features hhgefdarm
A, = aorA; # a.Nocomplex logical forms like4d; = anA; = b)

tions on the classifier construction process and becauseghks do
not depend on the GENECHIP software presence call compntati
For descriptive induction tasks we prefer the later apgrdssed on
presence call values. The reason is that features predentashdi-
tions like A; is true (4; is present) or4; is false (4, is absent) are
very natural for human interpretation. Although presentNEEHIP
software presence call computation is perhaps not idemle sxpert
evaluation results demonstrate that it can enable induaifovery
interesting rules both because of the ease of their intexjiwa and
because of their predictive quality.

A more important reason for using presence call values ishiea
approach can help in avoiding overfitting, as the featureesavery
strongly restricted: instead of many features per atteilwé have
only two. Also, as the measured gene expression values tceme
pletely reliable (which is reflected by the fact that for tlaene sam-
ple measured values may change from one measurement t@gnoth
some robustness of constructed rules is welcome. To soreatext
this can be achieved by treating the marginal presence ttabiude
value M as a 'do not know state’. The value can neither be used to
support the relevancy of a feature or a rule, nor it can be fsqate-
diction purposes. In this way it additionally restricts timgpothesis
search space.

The domain specific restrictions presented in this sectierthar-
acteristic for the functional genomics machine learnirgbpgms but
similar approaches can be defined also for other domainshesid t
use is recommended.

or (A; = aV A; = b) are acceptable. The first form is not needed as

all potential conjunctions are tested by the beam searatefdroe of
the subgroup discovery algorithm. The second form is dangehbe-
cause, for example, the featue = a may be relevant while the fea-
ture A; = b may be irrelevant. Their combinatiof; =aV A; =b
may be even more relevant thaty = « itself, which may cause
that conditionA; = b may be included into the finally constructed

3.2 Absolute and relative feature relevancy

In order for a feature to be acceptable as a building blocklesrrep-
resenting some genuine dependencies between classedriandeat
values, the feature itself must have at least some qualiighwis
measured by its covering properties on the available trginét.



Definition 1: absolute irrelevancy

A feature that has eithdfl’P| < min_tp or [T N| < min_tn is ab-
solutely irrelevant, formin_tp and min_tn being user defined con-
stants.

A feature with|T'P| < min_tp is true for a small number of
target class examples and a feature WIttN | < min_tn is false for
a small number of non-target class examples. It is assunagdich
small numbers may be the result of statistical chance sattbegms
reasonable not to use features with either of these pregadrtithe
rule construction process. If a feature H&$| = 0 or [TN| = 0it
is totally irrelevant because it is absolutely of no use iitding rules
that distinguish one example class from the other.

By conjunctive connection of features, the generated rilldave
|T'P| equal or smaller than the smalldgtP| value of the features
forming a conjunctive subgroup description. In contrasg [T" V|
value of a rule will be at least as large as the lar¢fE${| of the used
features. This is the reason whyin_tp is typically selected higher

algorithm enables the inclusion of various forms of expadwledge
or preferences into the rule construction process. In grpeession
domains there is not a lot of available expert knowledge hadhly
applied strategy, also suggested for other descriptiveciah tasks,
is to limit the maximal complexity of rules. This complexis/deter-
mined by the number of features used in any rule and it candilyea
bounded by the maximal number of iterations in the main Iddp®
subgroup discovery algorithm. This approach is suggesteduse it
also restricts the hypothesis search space.

The domain unrelated rule relevancy consists of two maitspar
The first is related to the form of induced rules. As mentiorad
lier, the subgroup discovery algorithm constructs onlyesuin the
form of conjunctions of features. Disjunctions are not\aéd be-
cause they can enable that some parts of the rule are aciueléy
vant even when the complete rule seems relevant. The re@sini
the same as for features. The restriction does not disabietiection
of some relevant dependencies because different releigmnhctive

thanmin_tn and it can be as large as the minimal estimated numbeparts may still be detected as distinct subgroups.

of examples that must be covered by any acceptably good aubgr

for the domain. The problem with absolute irrelevancy ig thath

The second part of conditions for general rule relevancyased
on rule covering properties. It can be compared with abscdud

min_tp andmin_tn are user defined constraints and that any value relative relevancy of features. Absolute rule relevanogrisured by

regardless how low it is, can not guarantee that a featuretis by
relevant. The optimal values for these constants may Sognifiy
change from one application to another. A practical suggess to
start with their small values and after that to experimernih\arger
values. The optimal point is just before significant deceeafsthe
covering properties of induced rules can be noticed. A gdad-s
ing values for gene expression domains arén_tp = |P|/2 and

absolute relevancy of features that are used in the rulercmtion
process. As conjunctions of features may reduce the nuniliar-o
get class examples covered by the rule to fall below an aabkpt
level, an additional absolute condition based on minimial support
level is used. As the support level is defined by the reldiaR| /| E|
this condition ensures minimal covering of target classrplas that
must be satisfied by any rule. The good news is that this dondit

min_tn = +/|N| which have been used in all the experiments re-must be satisfied also by any subrule of a rule that must gatitsf

ported in Section 5.

condition. Consequently, this condition can be incorpan the

While the aim of using absolute relevancy is to ensure mihima subgroup discovery algorithm to prevent any combinatioieafures

quality that must be satisfied by every feature, relativevaahcy aims
to ensure that only the best among the available featuresrtanthe
rule construction process.

Definition 2: relative irrelevancy

A featuref is irrelevant if there exists another featufe.; such that
true positives off are a subset of true positives @¢f.; and true
negatives off are a subset of true negatives 6£;.

If for a featuref there exists another featufe.; with the property
that if in any rulef is substituted byf...;, the rule quality measured
by the number of correct classificatiofiEP| and |T'N| does not
decrease, then it means thit; can be always used instead ff
and that we actually do not negd The definition of relative irrele-
vancy is very important because it does not depend on useredefi
constants and its usage is suggested for all machine |epapipli-
cations [9]. Interesting and important relations betwedssolute and
relative feature relevancy for real and randomly generdtadains
are described in Section 5.

If all features generated for an attribute are detected lagvaly
or absolutely irrelevant then it means that the completébate is
actually irrelevant for the domain. This property meang feature
relevancy can be used also as a preprocessing filter fdna#ribased
learners.

4 Relevancy of rules

As in the case of feature relevancy, relevancy of rules maldbe
domain related and general.

Domain related relevancy typically means that some contibins
of features are unacceptable, or which is more often, thatdea-
tures are preferred as rule building blocks. The subgrospodery

below the given support level to enter the beam. The minimal a
ceptable support level is a user defined constant, whosaltiefdue
|P|/2|E| was used in the described experiments.

The quality measure to be maximized in the beam search for bes
rulesq, = mipr serves as the relative rule relevancy criterion.
In ensures that rules covering many target class examptea@or
a few of non-target class examples are preferred to thoserioov
a small number of target class examples and many non-taaget ¢
ones. The problem with this quality measure is that, in @sttto
the relative relevancy of features, relative rule releyaisccondi-
tional because it depends on a user selected generalipatiameter
g. Typically the user must experiment with different valudshe
parameter.

5 Experiments with overfitting in a gene expression
database

The gene expression domain, described in [11, 6] and usad iex®
periments, is a typical scientific discovery domain chamased by
very many attributes compared to the number of availablenples.
It is a domain with 14 different cancer classes and 144 mgieix-
amples in total. Eleven classes have 8 examples each, twsesla

have 16 examples and only one has 24 examples. The exameles ar

described by 16063 attributes presenting gene expresaloas: As
mentioned in Section 3.1 in all experiments we used only tks-p
ence call valuest, P, andM . The domain can be downloaded from
http://www-genome.wi.mit.edu/cgi-bin/cancer/datasei . There is
also an independent test set with 54 examples.

5 Suggested values in the SD algorithm in the Data Mining Server are in the
range between 0.1 and 100, for analyzing data sets of up text@ples.



The experiments were performed separately for each catess ¢
so that a two-class learning problem was formulated whezeséh
lected cancer class was the target class and the examplieibiea
classes formed non-target class examples. In this way theido
was transformed into 14 inductive learning problems, eaith the
total of 144 training examples and with between 8 and 24 tatges
examples. For each of these tasks a complete procedursitogsif
feature construction, elimination of irrelevant featyi@sd induction
of subgroup descriptions in the form of rules was repeatetlly,
using the SD subgroup discovery algorithm [5], for each<hasin-
gle rule with maximak, value has been selected, for = 751t
being the heuristic of the SD algorithm, antbeing equal 5 in ah ex-
periments presented in this work. The rules for all 14 tasksisted
of 2—4 features. The induced rules were tested on the indepén
example set. The results are presented in Table 1.

Table 1. Covering properties on the training and on the independsstt t
set for rules induced for 14 classes. SensitivityZis?| /| P|, specificity is
|TN|/|N|, while precision is defined 48" P|/(|TP| + |F P|).

Cancer Training set Test set

Sens. Spec. Prec. Sens.  Spec. Prec.
breast 5/8 136/136  100% 0/4 49/50 0%
prostate 7/8 136/136  100% 0/6 45/48 0%
lung 718 136/136  100% 1/4 47/50  25%
colorectal 7/8 136/136  100% 4/4 49/50  80%
lymphoma 16/16  128/128 100% 5/6 48/48  100%
bladder 7/8 136/136  100% 0/3 49/51 0%
melanoma 5/8 136/136  100% 0/2 50/52 0%
uterusadeno 7/8 136/136  100% 1/2 49/52  25%
leukemia 23/24 120/120 100% 4/6 47/48  80%
renal 718 136/136  100% 0/3 48/51 0%
pancreas 718 136/136  100% 0/3 45/51 0%
ovary 718 136/136  100% 0/4 47/50 0%
mesothelioma 7/8 136/136  100% 3/3 51/51 100%
CNS 16/16  128/128 100% 3/4 50/50 100%

The table presents measured covering properties both drathe
ing set and on the test set. Although the obtained coverihgesan
the training sets are very good, the measured predictiolityjaa
the test sets is for many classes very low, significantly tothan
those reported in [11]. For 7 out of 14 classes the measussision
on the test sets is 0%. But from the table an interesting apditant
relationship between prediction results on the test setlamehum-
ber of target class examples in the training set can be mbtideere
are very large differences among the results on the tesfaetar-
ious classes (diseases) and the precision higher than 58%eles
obtained for only 5 out of 14 classes. There are only thresselm
(lymphoma, leukemia, and CNS) with more than 8 training sasel
all of them are among those with high precision on the tesirggte
for only two out of eleven classes with 8 training cases (cudtal
and mesothelioma) high precision was achieved. The cleatdn
properties of rules induced for classes with 16 and 24 tarigets

precision are significantly higher for three tasks with 16 a4 tar-
get class examples than for eleven tasks with only 8 targssax-
amples. The mean values for the specificity are also highethby
were over 95% already for small target class sets. The intiudes
for lymphoma, leukemia and CNS were evaluated by a domaiarexp
and most of features used in them were recognized as knowastis
markers for the target class cancers [6]. Expert evaluatitmich is
out of scope of this work, proved the relevancy of inducedsuBoth
good prediction results on an independent test set as wekzest
interpretation of induced rules prove the effectivenesdesfcribed
methods for avoiding overfitting in scientific discoverykasMostly
bad results for tasks with only 8 target class examples dstraie
that the methods can not be successful in all situationscéalfy
those with a very small number of examples.

O 8 examples W16 or 24 examples

1l

specificity precision

100% +

80% -

60% -

40% -

20% -

0%
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Figure 1. Mean values of sensitivity, specificity, and precision nuees
on the independent test set versus the number of targetazass in the
training set.

Figure 2 presents the summary of results obtained by differe
periments in eliminating irrelevant features. The experits started
with three domains with 16 and 24 target class examples fachwh
successful induction of descriptive rules was possibleth&se tasks
both concepts of absolute and relative relevancy were \féggtee
in reducing the number of features. About 60% of all featuvese
detected as absolutely irrelevant while relative irreleyawas even
more effective as it managed to eliminate up to 75% of all #ee f
tures. Their combination resulted in the elimination of 7&/85%
of all the features. These results are presented in thedsftpart of
Figure 2. The set of all features in these experiments isrgége: so
that for each attribute two features are constructétt (= A and
Att = P) but so that totally irrelevant features (witi'P| = 0 or
|TN| = 0) are eliminated.

Next, another domain with 16063 completely randomly gener-
ated attribute values was constructed. The same expesmere
repeated as for the real gene expression domain. The re$dis

examples (lymphoma, leukemia and CNS) are comparable s&tho periments (repeated with 5 different randomly generatédbate

reported in [11], while the results on eight small exampls géth 8
target examples were poor.

An obvious conclusion is that the use of the subgroup diggove
algorithm is not appropriate for problems with a very smalhm
ber of examples because overfitting can not be avoided ie spit
the heuristics used in the SD algorithm and the additionataio-
specific techniques used to restrict the hypothesis seaattesBut
for larger training sets the subgroup discovery methodoktpbled
effective construction of relevant knowledge. The resliitstrated
in Figure 1, demonstrates that mean values of rule sengitwvid

sets) were significantly different: there have been onlyual#®%

of absolutely irrelevant features and practically no reddy irrele-
vant features. The average results are presented in thedspad of
Figure 2. Comparing the results for the real and for the rariggen-
erated domain, especially large differences can be notictz per-
formance of relative relevancy. It is the consequence ofabethat

in the real domain there are some features that are readyae.
They cover many target class examples and a few non target cla
examples and in this way they make many other featuresvelhati
irrelevant. The results prove the importance of relativevancy for



domains in which strong and relevant dependencies betwasses
and attribute values exist.

The experiments with feature relevancy continued with twe d
mains with 32126 attributes. The first was completely randdrite
the second was the combination of two previous domains véili63
attributes, one of them being the real and the other the ralydgen-
erated. The results for the first domain are presented irhttebpart
of Figure 2. The results were expected in the sense that épeated
the results for the domain with 16063 random attributes. éans
that both absolute and relative relevancy do not become eftee-
tive when the number of random attributes increases. Inrésigect
the results for the second domain presented in the rightparsiof
Figure 2 are more important. After the elimination of abseljirrel-
evant features the number of features is equal to the sunatfrées
that remained in the independent domains with 16063 at&ibun
contrast, relative relevancy was much more effective. deselimi-
nating many features from the real attribute part it was nogsiple
to eliminate also a significant part (more than 50%) of fesgwon-
structed from randomly generated attributes.

From the previous analysis it is obvious that the eliminatid
features is the most effective for real domains. The samétress
confirmed in experiments with domains with only 8 target slax-
amples. In contrast, the approach is not effective for ramggen-
erated domains. But it is important that for domains whiah@m-
binations of real and random attributes the methodologjféstve.
So it was possible that for three tasks with 16 and 24 targetscl
examples there remained less features when there were 22126
tributes, including 16063 randomly generated, than wheretivere
only 16063 random attributes. This proves that the predam&thod-
ology, especially relative irrelevancy, can be very usafukducing

60000 - Dtotal
50000 - B absolute
40000 -
O absolute+relative
30000 -
20000 -
10000 -
0
16063 real 16063 32126 16063 real
attributes random random + 16063
random

Figure 2. Mean numbers of features for three domains (lymphoma,
leukemia, and CNS) after the elimination of totally irrelev attributes
(total), after the elimination of absolutely irrelevanaferes (absolute), and
after the elimination of absolutely and relatively irredevt features (absolute
+ relative). These three values are shown for the followiaging sets: real
training set with 16063 attributes of gene expression igtialues, a
randomly generated set with 16063 attributes, a randomigmgéed set with
32126 attributes, and a set which is a combination of 160&Bared 16063

random attributes. The set afl features is generated so that for each
attribute two features are constructetit{ = A and Att = P).

the hypothesis search space by eliminating non-signifabepénden-
cies between attribute values and classes. This proparmpisrtant
because it may be assumed that among 16063 real attribates th
are many of them which are also completely irrelevant widpest
to the target class.

Conclusions

The work confirms the known fact that restrictions of the Hipsis
search space may help in avoiding overfitting of the trairsieg We
have implemented both domain dependent restrictions mgudis-
crete instead of continuous attribute values, and domaiependent
restrictions by the elimination of irrelevant features anlks. Inter-
pretation of marginal gene values as a 'do not know stat@shalso
in reducing the feature space but more importantly it ersstobust-
ness of the induced rules. Subgroup discovery proved to tsefalu
framework for the implementation of different relevancyndigions
and an appropriate tool for descriptive induction.

Although we have tried to strictly realize the concept otrieted
hypothesis space with the intention to prevent data oveditthe re-
sults show that data overfitting in inductive learning ofrsinales can
not be completely avoided, especially for domains and tangsses
with a very small number of samples. The very good news isttieat
obtained prediction quality of the induced rules grows \fast with
the size of the training set. The results demonstrate thiheidomain
with more than 16000 attributes already for target classts16 or
24 examples and the total number of 144 examples it was pessib
detect potentially new and relevant knowledge in form ofetefen-
cies between gene expression values and disease clasiseesrift
may be interesting also for other scientific discovery agpions.
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