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Abstract. Functional genomics is a typical scientific discovery do-
main characterized by a very large number of attributes (genes) rela-
tive to the number of examples (observations). The danger ofdata
overfitting is crucial in such domains. This work presents anap-
proach which can help in avoiding data overfitting in supervised
inductive learning of short rules that are appropriate for human in-
terpretation. The approach is based on the subgroup discovery rule
learning framework, enhanced by methods of restricting thehypoth-
esis search space by exploiting the relevancy of features that enter the
rule construction process as well as their combinations that form the
rules. A multi-class functional genomics problem of classifying four-
teen cancer types based on more than 16000 gene expression values
is used to illustrate the methodology.

1 Introduction

Recent research in the construction of high dimensional classifiers
as well as in combining different classifiers has enabled that good
prediction quality can be obtained also for gene expressiondomains
which are characterized by unproportionally many attributes com-
pared to the number of available examples [3, 7, 11]. The obtained
results are promising for the applications of functional genomics in
the tasks like disease diagnosis, disease forecasting, or therapeutic
decision making. But the constructed classifiers are not appropriate
for human interpretation [1]. Construction of understandable and ex-
plainable models, also known as descriptive induction, is important
for scientific discovery as well as for the generation of actionable
knowledge. It is possible to extract the most informative features or
attributes from complex classifiers (in [11] the attributeswith this
property are called disease markers) but logical connections among
these features or attributes are missing which disables theconstruc-
tion and expert interpretation of models describing the target class. In
contrast, short rules—despite being potentially less accurate than the
complex classifiers—are much more appropriate for scientific dis-
covery tasks in which the interpretability of induced models is of
ultimate importance.

The problem with the induction of low dimensional non-redundant
classifiers is that they are very sensitive to training set overfitting, an
effect which denotes that a classifier has significantly lower predic-
tion quality on unseen test sets than on the training set [12]. Although
maximal prediction accuracy is not the main goal of scientific dis-
covery and descriptive induction tasks, high generalization error or
large difference in prediction quality for the training andthe test set
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are a reliable sign that the induction of a classifier was not success-
ful in finding really relevant relations between attribute values and
the classes. This is the main reason of our interest in avoiding data
overfitting. Selection of an appropriate hypothesis language as well
as the reduction of the hypothesis search space are known methods
for avoiding overfitting [2, 8, 12].

In this work an approach is presented which, although it can not
guarantee that overfitting will not happen, may help in avoiding over-
fitting in inductive learning of simple rules which are appropriate for
human interpretation. For illustrations and experiments agene ex-
pression domain with more than 16000 attributes is used. Theap-
proach is based on methods for reducing the hypothesis search space
so that the reduction is done by the elimination of those rulecom-
ponents (features) and those of their combinations (rules)suspected
to be a result of statistically irrelevant artifacts. The problem with
this approach is that with a strongly reduced hypothesis space it may
be difficult to induce rules that cover all/many examples from the
training set. However, the proposed subgroup discovery approach
provides a much better framework for the application of the sug-
gested methodology of feature and rule relevancy than the standard
separate-and-conquer rule learning [4].

In Section 2 of this paper the subgroup discovery methodology is
described, while feature relevancy and rule relevancy are presented
in Sections 3 and 4, respectively. Section 5 presents the experiments
using the proposed methodology on a gene expression domain.

2 Rule learning for subgroup discovery

Subgroup discovery is a form of supervised inductive learning of sub-
group descriptions for the target class in a two class domain. The de-
scriptions have the form of rules built as logical conjunctions of fea-
tures. Features are logical conditions that have values true or false,
depending on the values of attributes which describe the examples in
the problem domain. Subgroup discovery rule learning is therefore a
form of two-class propositional inductive rule learning. Multi-class
problems can be solved as a series of two-class learning problems,
so that each class is once selected as the target class while examples
of all other classes are treated as non-target class examples.

In this work, subgroup discovery is performed by the SD algo-
rithm,4 a relatively simple iterative beam search rule learning algo-
rithm [5]. The input to SD consists of a set of examplesE (E =

P ∪N , P is the set of target class examples,N the set of non-target
class examples) and a set of featuresF constructed for the given

4 The approach has been implemented in the on-line Data MiningServer
(DMS), publicly available athttp://dms.irb.hr. DMS and its con-
stituting subgroup discovery algorithm SD can be tested on user submitted
domains with up to 250 examples and 50 attributes.



example set. For discrete (categorical) attributes, features have the
form Attribute = value or Attribute 6= value, while for contin-
uous (numerical) attributes they have the formAttribute > value
or Attribute ≤ value. The output of the SD algorithm is a set of
rules with optimal covering properties on the given exampleset. As
in classification rule learning, an induced rule (subgroup description)
has the form of a (backwards) implication:Class← Cond. In terms
of rule learning, the property of interest for subgroup discovery is the
target class (Class) that appears in the rule consequent, and the rule
antecedent (Cond) is a conjunction of features (attribute-value pairs)
selected from the features describing the training instances.

A rule with ideal covering properties is true for all target class ex-
amples and not true for all non-target class examples. Target class
examples covered by a rule are also calledtrue positives, TP,while
non-target class examples covered by the rule are calledfalse pos-
itives, FP. All remaining non-target class examples not covered by
the rule are calledtrue negatives, TN. An ideal rules hasTP = P
andTN = N . In the proposed subgroup discovery approach [5], the
following rule quality measureqg is used in heuristic search of rules:

|TP |
|F P |+g

, whereg is a user definedgeneralization parameter. High
quality rules will cover many target class examples and a lownumber
of non-target examples. The number of tolerated negative examples,
relative to the number of covered target class cases, is determined by
parameterg.

The flexibility of subgroup discovery is due to its search of rules
that satisfy groups of examples of the target class, not necessary ex-
cluding all of the non-target examples. Sizes of subgroups are not
defined in advance but the algorithm tends to make them as large
as possible. Due to this flexibility the algorithm is able to incorpo-
rate different rule relevancy methods with the goal to prevent the
construction of target class subgroup descriptions which do not have
sufficient supportive evidence for being significantly different from
non-target samples. An equally important part of the methodology
for avoiding overfitting is that each feature that enters thesubgroup
discovery algorithm should itself be a relevant target class descriptor.

3 Relevancy of features

The relevancy of features is determined by a combination of meth-
ods for restricting the hypothesis search space and for eliminating
features with low covering properties. The later methods based on
absolute and relative relevancy (Section 3.2) are universally applica-
ble to any domain and their use is suggested in all feature based in-
ductive learning tasks. The restrictions of the hypothesissearch space
are related to the form of rules and to the properties of the domain.
Section 3.1 presents an effective approach that can strongly reduce
the number of features and its application is suggested for descrip-
tive induction tasks in gene expression domains.

The features are restricted to simple forms only, as defined in the
previous section, because their complex forms may enable that, de-
spite testing feature covering properties, features with insufficient
supportive evidence may enter the rule construction process. For
example, for discrete attributes the simple features have the form
Ai = a orAi 6= a. No complex logical forms like (Ai = a∧Aj = b)
or (Ai = a∨Aj = b) are acceptable. The first form is not needed as
all potential conjunctions are tested by the beam search procedure of
the subgroup discovery algorithm. The second form is dangerous be-
cause, for example, the featureAi = a may be relevant while the fea-
tureAj = b may be irrelevant. Their combinationAi = a ∨Aj = b
may be even more relevant thanAi = a itself, which may cause
that conditionAj = b may be included into the finally constructed

rules while its inclusion is not justified by its covering properties on
the training set. Notice that if both conditionsAi = a andAj = b
are relevant, it does not mean that by restricting the form ofused
features some important logical combinations of features will be ig-
nored. In the subgroup discovery approach both features canbuild
separate subgroup descriptions and—if they are relevant—they both
have a chance to appear in the final set of induced rules.

3.1 Domain specific restrictions for functional
genomics domains

Gene expression scanners measure signal intensity as continuous val-
ues which form an appropriate input for data analysis. The problem
is that for continuous valued attributes there can be potentially many
boundary values separating the classes, resulting in many different
features for a single attribute. Another possibility is to use presence
call (signal specificity) values computed from measured signal in-
tensity values by the Affymetrix GENECHIP software. The presence
call has discrete valuesA (absent),P (present), andM (marginal).
TheM value can be interpreted as a’do not know state’, while for
valuesA andP it holds that featureAttribute = A is identical to
Attribute 6= P . Consequently, for every attribute there are only two
distinct featuresAttribute = A andAttribute = P generated for
each attribute.

The presented subgroup discovery algorithm as well as the filter-
ing based on feature and rule relevancy are applicable both when us-
ing the signal intensity or the presence call attribute values. Typically
signal intensity values are used [10] because they impose less restric-
tions on the classifier construction process and because theresults do
not depend on the GENECHIP software presence call computation.
For descriptive induction tasks we prefer the later approach based on
presence call values. The reason is that features presentedby condi-
tions likeAi is true (Ai is present) orAj is false (Aj is absent) are
very natural for human interpretation. Although present GENECHIP
software presence call computation is perhaps not ideal, some expert
evaluation results demonstrate that it can enable induction of very
interesting rules both because of the ease of their interpretation and
because of their predictive quality.

A more important reason for using presence call values is that the
approach can help in avoiding overfitting, as the feature space is very
strongly restricted: instead of many features per attribute we have
only two. Also, as the measured gene expression values are not com-
pletely reliable (which is reflected by the fact that for the same sam-
ple measured values may change from one measurement to another),
some robustness of constructed rules is welcome. To some extent,
this can be achieved by treating the marginal presence call attribute
valueM as a ’do not know state’. The value can neither be used to
support the relevancy of a feature or a rule, nor it can be usedfor pre-
diction purposes. In this way it additionally restricts thehypothesis
search space.

The domain specific restrictions presented in this section are char-
acteristic for the functional genomics machine learning problems but
similar approaches can be defined also for other domains and their
use is recommended.

3.2 Absolute and relative feature relevancy

In order for a feature to be acceptable as a building block of rules rep-
resenting some genuine dependencies between classes and attribute
values, the feature itself must have at least some quality which is
measured by its covering properties on the available training set.



Definition 1: absolute irrelevancy
A feature that has either|TP | < min tp or |TN | < min tn is ab-
solutely irrelevant, formin tp andmin tn being user defined con-
stants.

A feature with |TP | < min tp is true for a small number of
target class examples and a feature with|TN | < min tn is false for
a small number of non-target class examples. It is assumed that such
small numbers may be the result of statistical chance so thatit seems
reasonable not to use features with either of these properties in the
rule construction process. If a feature has|TP | = 0 or |TN | = 0 it
is totally irrelevant because it is absolutely of no use in building rules
that distinguish one example class from the other.

By conjunctive connection of features, the generated rule will have
|TP | equal or smaller than the smallest|TP | value of the features
forming a conjunctive subgroup description. In contrast, the |TN |
value of a rule will be at least as large as the largest|TN | of the used
features. This is the reason whymin tp is typically selected higher
thanmin tn and it can be as large as the minimal estimated number
of examples that must be covered by any acceptably good subgroup
for the domain. The problem with absolute irrelevancy is that both
min tp andmin tn are user defined constraints and that any value,
regardless how low it is, can not guarantee that a feature is actually
relevant. The optimal values for these constants may significantly
change from one application to another. A practical suggestion is to
start with their small values and after that to experiment with larger
values. The optimal point is just before significant decrease of the
covering properties of induced rules can be noticed. A good start-
ing values for gene expression domains aremin tp = |P |/2 and
min tn =

√

|N | which have been used in all the experiments re-
ported in Section 5.

While the aim of using absolute relevancy is to ensure minimal
quality that must be satisfied by every feature, relative relevancy aims
to ensure that only the best among the available features canenter the
rule construction process.
Definition 2: relative irrelevancy
A featuref is irrelevant if there exists another featurefrel such that
true positives off are a subset of true positives offrel and true
negatives off are a subset of true negatives offrel.

If for a featuref there exists another featurefrel with the property
that if in any rulef is substituted byfrel, the rule quality measured
by the number of correct classifications|TP | and |TN | does not
decrease, then it means thatfrel can be always used instead off ,
and that we actually do not needf . The definition of relative irrele-
vancy is very important because it does not depend on user defined
constants and its usage is suggested for all machine learning appli-
cations [9]. Interesting and important relations between absolute and
relative feature relevancy for real and randomly generateddomains
are described in Section 5.

If all features generated for an attribute are detected as relatively
or absolutely irrelevant then it means that the complete attribute is
actually irrelevant for the domain. This property means that feature
relevancy can be used also as a preprocessing filter for attribute based
learners.

4 Relevancy of rules

As in the case of feature relevancy, relevancy of rules may beboth
domain related and general.

Domain related relevancy typically means that some combinations
of features are unacceptable, or which is more often, that some fea-
tures are preferred as rule building blocks. The subgroup discovery

algorithm enables the inclusion of various forms of expert knowledge
or preferences into the rule construction process. In gene expression
domains there is not a lot of available expert knowledge and the only
applied strategy, also suggested for other descriptive induction tasks,
is to limit the maximal complexity of rules. This complexityis deter-
mined by the number of features used in any rule and it can be easily
bounded by the maximal number of iterations in the main loop of the
subgroup discovery algorithm. This approach is suggested because it
also restricts the hypothesis search space.

The domain unrelated rule relevancy consists of two main parts.
The first is related to the form of induced rules. As mentionedear-
lier, the subgroup discovery algorithm constructs only rules in the
form of conjunctions of features. Disjunctions are not allowed be-
cause they can enable that some parts of the rule are actuallyirrele-
vant even when the complete rule seems relevant. The reasoning is
the same as for features. The restriction does not disable the detection
of some relevant dependencies because different relevant disjunctive
parts may still be detected as distinct subgroups.

The second part of conditions for general rule relevancy is based
on rule covering properties. It can be compared with absolute and
relative relevancy of features. Absolute rule relevancy isensured by
absolute relevancy of features that are used in the rule construction
process. As conjunctions of features may reduce the number of tar-
get class examples covered by the rule to fall below an acceptable
level, an additional absolute condition based on minimal rule support
level is used. As the support level is defined by the relation|TP |/|E|
this condition ensures minimal covering of target class examples that
must be satisfied by any rule. The good news is that this condition
must be satisfied also by any subrule of a rule that must satisfy this
condition. Consequently, this condition can be incorporated in the
subgroup discovery algorithm to prevent any combination offeatures
below the given support level to enter the beam. The minimal ac-
ceptable support level is a user defined constant, whose default value
|P |/2|E| was used in the described experiments.

The quality measure to be maximized in the beam search for best
rules qg =

|TP |
|F P |+g

serves as the relative rule relevancy criterion.
In ensures that rules covering many target class examples and no or
a few of non-target class examples are preferred to those covering
a small number of target class examples and many non-target class
ones. The problem with this quality measure is that, in contrast to
the relative relevancy of features, relative rule relevancy is condi-
tional because it depends on a user selected generalizationparameter
g. Typically the user must experiment with different values of the
parameter.5

5 Experiments with overfitting in a gene expression
database

The gene expression domain, described in [11, 6] and used in our ex-
periments, is a typical scientific discovery domain characterised by
very many attributes compared to the number of available examples.
It is a domain with 14 different cancer classes and 144 training ex-
amples in total. Eleven classes have 8 examples each, two classes
have 16 examples and only one has 24 examples. The examples are
described by 16063 attributes presenting gene expression values. As
mentioned in Section 3.1 in all experiments we used only the pres-
ence call valuesA, P , andM . The domain can be downloaded from
http://www-genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi . There is
also an independent test set with 54 examples.

5 Suggestedg values in the SD algorithm in the Data Mining Server are in the
range between 0.1 and 100, for analyzing data sets of up to 250examples.



The experiments were performed separately for each cancer class
so that a two-class learning problem was formulated where the se-
lected cancer class was the target class and the examples of all other
classes formed non-target class examples. In this way the domain
was transformed into 14 inductive learning problems, each with the
total of 144 training examples and with between 8 and 24 target class
examples. For each of these tasks a complete procedure consisting of
feature construction, elimination of irrelevant features, and induction
of subgroup descriptions in the form of rules was repeated. Finally,
using the SD subgroup discovery algorithm [5], for each class a sin-
gle rule with maximalqg value has been selected, forqg =

|TP |
|F P |+g

being the heuristic of the SD algorithm, andg being equal 5 in all ex-
periments presented in this work. The rules for all 14 tasks consisted
of 2–4 features. The induced rules were tested on the independent
example set. The results are presented in Table 1.

Table 1. Covering properties on the training and on the independent test
set for rules induced for 14 classes. Sensitivity is|TP |/|P |, specificity is

|TN |/|N |, while precision is defined as|TP |/(|TP | + |FP |).

Cancer Training set Test set
Sens. Spec. Prec. Sens. Spec. Prec.

breast 5/8 136/136 100% 0/4 49/50 0%
prostate 7/8 136/136 100% 0/6 45/48 0%
lung 7/8 136/136 100% 1/4 47/50 25%
colorectal 7/8 136/136 100% 4/4 49/50 80%
lymphoma 16/16 128/128 100% 5/6 48/48 100%
bladder 7/8 136/136 100% 0/3 49/51 0%
melanoma 5/8 136/136 100% 0/2 50/52 0%
uterusadeno 7/8 136/136 100% 1/2 49/52 25%
leukemia 23/24 120/120 100% 4/6 47/48 80%
renal 7/8 136/136 100% 0/3 48/51 0%
pancreas 7/8 136/136 100% 0/3 45/51 0%
ovary 7/8 136/136 100% 0/4 47/50 0%
mesothelioma 7/8 136/136 100% 3/3 51/51 100%
CNS 16/16 128/128 100% 3/4 50/50 100%

The table presents measured covering properties both on thetrain-
ing set and on the test set. Although the obtained covering values on
the training sets are very good, the measured prediction quality on
the test sets is for many classes very low, significantly lower than
those reported in [11]. For 7 out of 14 classes the measured precision
on the test sets is 0%. But from the table an interesting and important
relationship between prediction results on the test set andthe num-
ber of target class examples in the training set can be noticed. There
are very large differences among the results on the test setsfor var-
ious classes (diseases) and the precision higher than 50% has been
obtained for only 5 out of 14 classes. There are only three classes
(lymphoma, leukemia, and CNS) with more than 8 training cases and
all of them are among those with high precision on the test set, while
for only two out of eleven classes with 8 training cases (colorectal
and mesothelioma) high precision was achieved. The classification
properties of rules induced for classes with 16 and 24 targetclass
examples (lymphoma, leukemia and CNS) are comparable to those
reported in [11], while the results on eight small example sets with 8
target examples were poor.

An obvious conclusion is that the use of the subgroup discovery
algorithm is not appropriate for problems with a very small num-
ber of examples because overfitting can not be avoided in spite of
the heuristics used in the SD algorithm and the additional domain-
specific techniques used to restrict the hypothesis search space. But
for larger training sets the subgroup discovery methodology enabled
effective construction of relevant knowledge. The result,illustrated
in Figure 1, demonstrates that mean values of rule sensitivity and

precision are significantly higher for three tasks with 16 and 24 tar-
get class examples than for eleven tasks with only 8 target class ex-
amples. The mean values for the specificity are also higher but they
were over 95% already for small target class sets. The induced rules
for lymphoma, leukemia and CNS were evaluated by a domain expert
and most of features used in them were recognized as known disease
markers for the target class cancers [6]. Expert evaluation, which is
out of scope of this work, proved the relevancy of induced rules. Both
good prediction results on an independent test set as well asexpert
interpretation of induced rules prove the effectiveness ofdescribed
methods for avoiding overfitting in scientific discovery tasks. Mostly
bad results for tasks with only 8 target class examples demonstrate
that the methods can not be successful in all situations, especially
those with a very small number of examples.

Figure 1. Mean values of sensitivity, specificity, and precision measured
on the independent test set versus the number of target classcases in the

training set.

Figure 2 presents the summary of results obtained by different ex-
periments in eliminating irrelevant features. The experiments started
with three domains with 16 and 24 target class examples for which
successful induction of descriptive rules was possible. For these tasks
both concepts of absolute and relative relevancy were very effective
in reducing the number of features. About 60% of all featureswere
detected as absolutely irrelevant while relative irrelevancy was even
more effective as it managed to eliminate up to 75% of all the fea-
tures. Their combination resulted in the elimination of 75%to 85%
of all the features. These results are presented in the leftmost part of
Figure 2. The set of all features in these experiments is generated so
that for each attribute two features are constructed (Att = A and
Att = P ) but so that totally irrelevant features (with|TP | = 0 or
|TN | = 0) are eliminated.

Next, another domain with 16063 completely randomly gener-
ated attribute values was constructed. The same experiments were
repeated as for the real gene expression domain. The resultsof ex-
periments (repeated with 5 different randomly generated attribute
sets) were significantly different: there have been only about 40%
of absolutely irrelevant features and practically no relatively irrele-
vant features. The average results are presented in the second part of
Figure 2. Comparing the results for the real and for the randomly gen-
erated domain, especially large differences can be noticedin the per-
formance of relative relevancy. It is the consequence of thefact that
in the real domain there are some features that are really relevant.
They cover many target class examples and a few non target class
examples and in this way they make many other features relatively
irrelevant. The results prove the importance of relative relevancy for



domains in which strong and relevant dependencies between classes
and attribute values exist.

The experiments with feature relevancy continued with two do-
mains with 32126 attributes. The first was completely randomwhile
the second was the combination of two previous domains with 16063
attributes, one of them being the real and the other the randomly gen-
erated. The results for the first domain are presented in the third part
of Figure 2. The results were expected in the sense that they repeated
the results for the domain with 16063 random attributes. It means
that both absolute and relative relevancy do not become moreeffec-
tive when the number of random attributes increases. In thisrespect
the results for the second domain presented in the rightmostpart of
Figure 2 are more important. After the elimination of absolutely irrel-
evant features the number of features is equal to the sum of features
that remained in the independent domains with 16063 attributes. In
contrast, relative relevancy was much more effective. Besides elimi-
nating many features from the real attribute part it was now possible
to eliminate also a significant part (more than 50%) of features con-
structed from randomly generated attributes.

From the previous analysis it is obvious that the elimination of
features is the most effective for real domains. The same result was
confirmed in experiments with domains with only 8 target class ex-
amples. In contrast, the approach is not effective for randomly gen-
erated domains. But it is important that for domains which are com-
binations of real and random attributes the methodology is effective.
So it was possible that for three tasks with 16 and 24 target class
examples there remained less features when there were 32126at-
tributes, including 16063 randomly generated, than when there were
only 16063 random attributes. This proves that the presented method-
ology, especially relative irrelevancy, can be very usefulin reducing

Figure 2. Mean numbers of features for three domains (lymphoma,
leukemia, and CNS) after the elimination of totally irrelevant attributes

(total), after the elimination of absolutely irrelevant features (absolute), and
after the elimination of absolutely and relatively irrelevant features (absolute
+ relative). These three values are shown for the following training sets: real

training set with 16063 attributes of gene expression activity values, a
randomly generated set with 16063 attributes, a randomly generated set with
32126 attributes, and a set which is a combination of 16063 real and 16063

random attributes. The set ofall features is generated so that for each
attribute two features are constructed (Att = A andAtt = P ).

the hypothesis search space by eliminating non-significantdependen-
cies between attribute values and classes. This property isimportant
because it may be assumed that among 16063 real attributes there
are many of them which are also completely irrelevant with respect
to the target class.

Conclusions

The work confirms the known fact that restrictions of the hypothesis
search space may help in avoiding overfitting of the trainingset. We
have implemented both domain dependent restrictions by using dis-
crete instead of continuous attribute values, and domain independent
restrictions by the elimination of irrelevant features andrules. Inter-
pretation of marginal gene values as a ’do not know state’ helps also
in reducing the feature space but more importantly it ensures robust-
ness of the induced rules. Subgroup discovery proved to be a useful
framework for the implementation of different relevancy conditions
and an appropriate tool for descriptive induction.

Although we have tried to strictly realize the concept of restricted
hypothesis space with the intention to prevent data overfitting, the re-
sults show that data overfitting in inductive learning of short rules can
not be completely avoided, especially for domains and target classes
with a very small number of samples. The very good news is thatthe
obtained prediction quality of the induced rules grows veryfast with
the size of the training set. The results demonstrate that inthe domain
with more than 16000 attributes already for target classes with 16 or
24 examples and the total number of 144 examples it was possible to
detect potentially new and relevant knowledge in form of dependen-
cies between gene expression values and disease classes. This result
may be interesting also for other scientific discovery applications.
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