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Abstract.

We present in this work a new algorithm for document hieraadh
clustering and automatic generation of portals sites. fiudel is in-
spired from the self-assembling behavior observed in retahahere
ants progressively get attached to an existing support andes-
sively to other attached ants. The artificial ants that weestaafined
will similarly build a tree. Each ant represents one documeéhe
way ants move and build this tree depends on the similaritydren

2 Biological model

The numerous abilities of ants have inspired researcherméoe
than ten years regarding designing new clustering algosthlrhe
model which has been studied the most is the way ants sorttsbje
in their nest [4][10][8][12]. These ants based algorithrmeyrimherit
from real ants interesting properties, such as the loadiadl opti-
mization of the partitioning, the absence of need of a piiitfiar-

the documents. We have tested our model on sets of web pages éRation on an initial partitioning or number of classes, fialiam,

tracted from internet and we have successfully comparedesuits
to those obtained by the AHC (Ascending Hierarchical Chistg.

1 Introduction

The context of this work is the automatic construction oftalsites
for the Web. A portal site can be viewed as a hierarchicaitpart

ing of a set of documents which aims at recursively repratytie
following property: at each node (or category), the sulegaties are
similar to their mother, but they are as much dissimilar tcheath-

ers. One of the major problems to solve in this area is thenzatio

definition of this hierarchy of documents which, in actuasteyns,
must be given by a human expert [3][7][15][11]. If one work&hw
an important number of documents, or if one wishes to let te-c
puter autonomously do all the work, then standard apprcaahe
useless.

We propose a new approach which builds a tree-structured
titioning of the data that checks the recursive property titoaad
above. This method simulates a new biological model: the avag
build structures by assembling their bodies together. Arad from
a point and progressively become connected to this poidtregur-
sively to these firstly connected ants, etc. They can movaeliMing
structure to find the best place where to be connected in rébdittd
way. This behavior can be adapted to build a tree from thetddia
clustered.

The rest of this paper is organized as follows: section 2ritess
the ants biological behavior. Section 3 describes the eelaip-
proaches found in the literature, and how we have modelado
havior in the AntTree algorithm. In section 4, we have présgn
a comparative study between AntTree and Ascending Hieigaich
Clustering (AHC) on several texts databases. We show al¢loisn
section how AntTree may efficiently generate portal sitesti®n 5
concludes on this work and presents the extensions currenter
study.
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In this paper, we deal with a new model that can be observed in
several ants species and that we briefly describe here[|9}tigse
insects may become fixed to one another to build live strastwith
different functions. Ants may thus build "chains of ants’drder to
fill a gap between two points, or build a nest by closing theesdg
of a leaf, or form "drops of ants”, a function which is not yeelv
understood. The general principles that rule these belsasi@ the
following: ants start from an initial point (called the supf). They
begin to connect themselves to this support and then preigedsto
previously connected ants. When an ant is connected, inbes@
part of the structure and other ants may move over this argrorect
themselves to it. The structure grows over time accordirigedocal
actions performed by the ants that move over the structufsdo
a location where they can connect. These ants are influenctaeb
local shape of the structure but also by a visual attractwiifStance,
the point to reach). Ants which are in the middle of the sttt

pacannot easily disconnect themselves but if they do, thets pédithe

structure may fall down. A phenomenon of structure decayss a
apparent.

3 The AntTree algorithm
3.1 Main principles and related work

From those elements, we define the outlines of our computeemo
which simulates this behavior for tree building. Thantsai, ..., an
represent each of the data (documents for instancé), ..., d,, of
the database. These ants are initially placed on the supich is
denoted byuo. Then, we successively simulate one action for each
ant. An ant can be in two states: it can be free (i.e. discdedgc
and may thus move over the structure in order to find a placeavhe
it can connect, or it can be connected to the structure withay
possibility of moving apart from to disconnect. In this wpda ant
may become connected to only one other ant. Eaclaacan have
one outgoing link and severals incoming links limited to aimaim
value (proportional to the numbers of data), this ensures dhts
will build a tree.ao also have several incoming links limited to a
maximum value. Ants locally perceive the structure: a mgwamt

a; located over an ani,.s, which is itself connected to the struc-
ture, perceives a neighborhodd,.s, which is limited toa,.s, to the



(mother) ant to whichu,.s is connected, and to the (daughter) antsl. If no antis connected yet to the supp@stThenconnecta; to ao
which are connected 0,.5. a; can perceive the similarities between 2. Else
the datal; it is representing and the data represented by amg, gf.

X S ; (@) leta™ be the ant connected tg which is the most similar to
According to these similarities, may either get connected 9.,

or move to one of the ants ilV,,,. Once all ants are connected to i ]
the structure, then our algorithm stops. The resulting ¢eeebe in- (b) If Sim(ai,a™) > Tsim(a;) Thenmovea; towarda™ /* a; is
terpreted as a partitioning of the data. The propertieswatvish similar enough ta* */

to obtain for data clustering in the context of portal sitdding are (c) Else

the following: each sub-tre& represents one category compound
of all ants in this sub-tree. Let be the ant which is at the root of
T. We would like that 1) is as the best representative of this cate-
gory (ants placed below are as much similar ta as possible), 2)
the "daughters” ants af which represent sub-categoriesawoére as
dissimilar to each others as possible (well separated atdgaries).
This property should be recursive and possibly checked hegsvin
the hierarchical structure.

This model distinguishes itself from previously studied-based Figure 2. Support case
algorithms like those using pheromones for instance: hete @do
not communicate via an external support but are themseheesuip-
port. One must notice however that tree building with ants &la
ready been tackled in the literature. On the one hand, weiometfite
work done on genetic programming with artificial ants [13¢ahe
ACO approach [2]. Ants build trees by assigning probabtit(i.e.
pheromones) to symbols. On the other hand, the ACO appraggh hy  |etq,,,. denote the ant on whict; is located, and let,, denote a
also been used in the specific context of phylogenetic trddibg randomly selected neighbor of..,

[1]. Ants use pheromones to determine the order of the sysrthel 2 |f Sim (s, apos) > Tsim(a:) Then
will be used to build an unrooted tree. However, these twoetsod
are not centered on the data clustering problem and havemmon

i. If Sim(ai,a™) < Thissim(a:) Then/* a; is dissimilar enough
toa™ * connecta; to the support (or, if no incoming link
available oo, decreasésim(a;) and moven; towarda™ )

ii. Elsedecreasdsim(a;) and increasépissim(a:) /* a; is more
tolerant */

conditions (similarity or dissimilarity), then it is madeone tolerant
in order to increase its chances to move or to become corthecte
the future (see line 2(c)ii).

(@) Leta™ be the neighbor ant ef,,.s which is the most similar to

points with the self-assembly behavior that we are sinmdgatiVe i
also mention the work done in real robotics where populaticself (b) 1 Sim(as,a™) < Toissim(a;) ThenConnecta; to ayos (o, if No
assembling robots may build complex structures [5]. incoming link is available om,,s, randomly moven,; toward
ak)
3.2 A stochastic and distributed algorithm () Elsedecreaselbissim(a:), increaselsm(ai) and movea; to-
) Wardak

- o 3. Elserandomly mover; towardax
1. Initially, all ants are placed on the support and theirilsirity and

dissimilarity thresholds are respectively initializedcading to
the properties defined in section 3.3

. Whilethere exists a non connected antDo

If a; is located on the suppart Th&upport case

ElseAnt case

. End While

Figure 3. Ant case

aswN

When the simulated ant is located on a connectedzgdit (see
figure 3), then a similar behavior is implemented. Firsi; iis similar
enough toa,.s, then it can be considered for the creation of a new

Figure 1. Main algorithm of AntTree subcategory (see line 2 figure 3). However, this creatioy takes
place provided that; is dissimilar enough ta™* (see line 2(b)).
This ensures that if a sub-category is created, it will bateal to
its "mother” category and it will be as dissimilar as pd3i& to its

Thebmﬁun .alg?”tTm |shrepr(tasented n flgu(rj(_a tl Al! ir;l;;: the“sisters’” categories. Ifz; cannot be connected, then itis made more
same benavioral ruies where two cases are distingusheen tolerant and it is randomly moved to any neighbor positioouad
simulated ant; is located on the support, and whenis located on apos (Se€ line 2(c))

pos .

a connected ant.

When the simulated ant; is connected on the support (see fig-
ure 2), the first case to be considered is when no other antnis co 3.3 Self-adaptive thresholds
nected to the support (the tree is limited to the suppelt a; is
directly connected to the support (see line 1 in figure 2)t Ieast  We have observed that the values of the two thresholds may var
one ant is already connected to the support, thers moved to-  from one database to the other, and that the automatic cetigput
ward the most similar ani™ if it is sufficiently similar to it (see  mentioned previously may not always correctly adapt thaeesh-
line 2(b)). Else, ifa; is dissimilar enough to the other connected antsolds to the data. We have thus tested two methods to selt-Huze
(see line 2(c)i), then it is allowed to connect to the suppamnt thus  thresholds, the first method is global and consists in lgttire ants
to create a new subcategory). Finallyaiffulfills none of these two  modify the same thresholds values common to all ants, anddtie



ond method is local and is such that each ant adapts its owateri
thresholds.

In the global method, the thresholds dig,, = 0.99* T'sim—init
andTpissim = 0.01 + Thissim—init. EAch time an ant fails the
similarity test related to the connection, th&g;,, is decreased and

consists of web pages with general topics (55 about c++ esug2
about the Danone food company, 86 about IEEE, 90 about cireina
about the Le Monde newspaper, 63 about the sfr phone compahy,
about medicine category from Google’s directory). The cdasses
of data are of course not given to the algorithms. They ard usthe

Tpissim iNCreased, in order to make all ants more tolerant. The valfinal evaluation of the obtained partitioning.

uesTsim—init aNdTDissim—init CAN be initialized respectively to 1
and 0. We have observed that initializing those values sy

The evaluation of the results is performed with the numbeius-
tersC, with the purity P, of clusters (percentage of correctly clus-

t0 SiMmean—sup ANASiMmmean—iny INCreases the convergence rate tered data in a given cluster), and with a classificationreftto(pro-

of this algorithm, whereSimmean—sup and Simmean—iny as the
mean of similarities which are above (respectively beldve) mean
similarities between all of the data.

In the local method, the thresholds are computed as prdyious

mentioned but are local to each ant(T'sim andTpissim NOW be-
comesTsim (a;) andTpissim (as)). a; adapts its thresholds accord-
ing to the results of its actions. This algorithm may thugdretdapt
the thresholds to the local distribution of the data (otdlieor in-
stance). The experimental results confirms this analyzahave ob-
tain competitive performances (quality, computation dic@mpared
to standard methods.

3.4

First, for our algorithm, we have tried to find the best siygtéor
initial data sorting (this sort is performed @(n in n) and does not
increase the complexity of the algorithms).The initidliaa step of
the algorithm influences the results, especially becaiesért ants
will be connected to the support. Initially, data was chosea ran-
dom way (without sorting). The second time, data had beetedor
according to increasing order of the average similarityveen each
others. In this way, the first connected ants are those whietha
less similar to all the others and therefore close to theister, and
far away from the others. With a decreasing order, the firtt tm
connect are the most similar to the others. Thus an ant bielpng
a different cluster will have more chance of being conneckeoh
in the increasing case. We have experimentally observedthban-
creasing order gives the best results. The most dissinmala skem
to be good starting points for building classes in our model.

Initial sorting of the data

4 Experimental study and automatic portal site
generation

4.1 Comparative study

Table 1. Description of used databases (see text for more explanatio

Databases Size (# of documents)  Size (Mb)  # of classes
Reuters 1025 4.05 9
CE.R.LE.S. 258 3.65 17
Database 1 319 13.2 4
Database 2 524 20 7

We have evaluated AntTree on 4 databases which have from 258

to 1025 texts (see table 1). The Reuters databases con@@®ss 1
texts extracted from the reuteurs21578 database (8658).t&tte
CE.R.l.E.S. database contains 258 texts dealing with higkiar({the
CE.R.LLE.S. is a laboratory funded by Chanel). Databasensists
of scientific web pages (73 about scheduling, 84 about patéeng-
nition, 81 about Tcplp network, 94 about vrml courses). basz 2

portion of data couples which are not correctly clustered,in the
same real cluster but not in the same found cluster, and eisay

2
Ec= m Z €ij (1)
(4,5)€{1,...,N}2,i<j
where :
0 if(Cri=Cr; NCfi =Cf;)V
€ij = (Cri #Crj NCfi # Cfy) (2
1 else

The results are averaged over 15 trials. We have also pessent
standard deviations which are respectively denoted dyopr and
OEc-

We have compared our algorithm to the Hierarchical Ascandin
Clustering [6] which is an efficient hierarchical method reumtly
used in the industry (see for instance the SAS software).

We have used the Ward criterion for cutting the dendrograine. T
same similarity measure is used for both algorithms. It sebaon
the well known cosine measure [14] which encodes each teat as
vector of word count. We have used a common weighting schemes
i.e.tf-idf (term frequency - inverse document frequentfydenotes
the word count of the document aitfl denotes the inverse document
frequency (document frequency is the number of documenishwh
contain the considered word).

Table 2. Purity obtained with AntTree and AHC.

AHC AntTree
DataBases P. P.lop,]
Reuters 0.50 0.40[0.007]
CERIES 0.30 0.37 [0.012]
Database 1  0.82 0.68[0.012]
Database 2  0.52 0.80 [0.009]

P, averaged purity obtained on 15 runs
o p standard deviations

Table 3. Results obtained by AntTree and AHC on several databases.

AHC AntTree
DataBases C, FEc Cjy Eclog.] Ctloc,]
Reuters 9 021 5 035[0.004] 12[0.00]
CERIES 17 021 7 0.15[0.001] 17[0.00]
Databasel 4 0.09 7 0.29[0.011] 7[0.00]
Database2 7 023 3 0.10[0.006] 8[0.00]

Ec averaged classification error obtained on 15 runs
C» number of real clusters

C'y averaged number of clusters found on 15 runs
o, standard deviations



interface allows the user to explore the generated tree. Wemse
of a hyperbolic display to zoom on specific part of the treehwuitt
loosing the global context (general shape of the tree). Bee may
click on the nodes to select a document.

Table 4. Prossesing Time: seconds

Databases  AntTree AHC

Reuters 1.51 120 Once the texts have been clustered in a tree, then it is Btraig
ggg'biie 1 Odofz 46 forward to generate the corresponding portal site. Thealséy of
Database 2  0.34 25 documents is represented in our actual implementation mectaty

tree with indentation. The tree is encoded in a databasedw adc-

onds and the generation of HTML files is dynamic. Figure 5 gae
Results are presented in tables 2, 3 and 4 with detail of aueonf tyPical example of the portal home page obtained for Reyf124

sion matrix in 5. Our analysis of the results is as followsagarage ~ documents). In figure 6 we show how we have integrated a search

(see table 2), both algorithms obtain similar performaneis re- engine based on a word index. This index is automaticallegead

spect to the purity of classes. Each algorithm outperfotresother I the database.

in the same number of cases. In general, AntTree gives lreHelts

JRETES|
than AHC when data are very dissimilar from each others. HOW{ e - 5 -5 & aume wme o 5 5 054 —
. dvesse [{€) bitp:fjuwwm. jobwork.comip =] @ox  tiens 7|
ever, table 3 shows that AntTree better approximate the rurob / = 5
classes: cutting the denglogram is difficult, while it is gm‘orv_varq @;’,‘uﬁ_g;j @g
to interpret the results given by AntTree (the brancheseatdp indi- .
cate the classes). Another positive advantage of AntTrés cOm- [ — ol —
putation time (see table 4). The use of the tree structuslglow- RS
ers the tlr_ne_comple_xny of AntTree. Furthermore, t_he menspgce A LONDON ORE ENQUIRES/EXTURES
required is linear with the size of the database while fagpiémen- 1. LONDON METAL FREIGHTS
tations of AHC have higher space complexity. B. CANADIAN MONEY SUPFLY PALLS INWEEK
a. CANADIAN MONEY SUPPLY RISES IN WEEK
a. CANADIAN MONEY SUPPLY FALLS IN WEEK
a. CANADIAN MONEY SUPPLY FALLS IN WEEK
Table 5. Purity matrix obtained with DataBase @ denotes the “found € CHNA TRADE DEFIGIT FALLS N JANUARY
clusters” and”,. the real clusters. e W YORK DUSINESS LOANS FALL 29 MLN DLRS
2. PERU SHORT-TERM TRADE CREDIT UP TO 430 MLN DLRS
a. CANADA JANUARY TRADE SURPLUS 533 MLN DLRS
Datas Cr1 Cr2 Cy3 Crd Cv5 Cr6  Cp7 Pr i ol R D
Cy1 86 0 0 0 0 0 0 1 S BUSNESS LOANS FELL S22 MLNDLRS
Cf 2 0 0 0 0 0 0 2 1 E b. TURKISH r%%mw — =
= | rternet
Cr3 0 5 89 42 2 5 14 0.56
Cyd 0 0 0 0 76 0 0 1 Figure 5. A typical portal site generated from the Reuters (1024 Jarta
Cr5 0 0 0 0 o 31 3 091 few seconds only
Cr6 0 28 0 0 0 0 0 1
Cy7 0 21 1 8 3 1 80 0.70
Cr8 0 1 0 0 0 26 0 0.96
ETES|
F=
e [ o swor =] Gox Juens ”
4.2 Generating a portal site
Search London
almlx] A LONDON METAL FREIGHTS
B. LONDON ORE ENQUIRIES/FIXTURES
1. LONDON METAL FREIGHTS
- C. INDIA BUYS WHITE SUGAR FROM LONDON TRADERS
i 1. GOOD DEMAND FOR COLOMBIANS ON BREMEN MARKET
- - D. LONDON SUGAR TRADES AT SESSION HIGHS BY MIDMORNING
o e ; EUROPEANBEETTSOW\NGSCATCHUP USSR DELAYED
o E. COLOMBIA TO SELL SUGAR, LONDON TRADERS SAY
\\\‘ 1 REDITOR BANKS MAY BUY INTO SINGAPORE COFFEE FIRM
T h - F. LONDON GRAIN FREIGHTS
o s G. EC SUGAR TENDER HARD TO PREDICT - LONDON TRADE
// 1. ROTTERDAM PORT SUBSIDY TO END JULY 1 - MINISTER
s o 2. MALTA TENDERS FOR WHITE SUGAR TODAY - TRADE ||
VAN ™ 7N H. LONDON COCOA TRADES AT LOWS BY MIDMORNING
) A \\ rd \, 1. YEUTTER SAYS JAPANESE CURB ALL BUT CERTAN
£ 247 o) (28] i) i) 25 | LONDON SUGAR OPENS STEADY BUT QUIET
m g o ok 1. NY TRADERS SAY TURKEY MADE LARGE SUGAR PURCHASE e o
ficielle | . . .
o g Figure 6. Searching through the portal site
+
" |
Figure 4. AntTree software: interactive visualization of the treel és 5 Conclusion and perspectives

HTML view . .
We have shown in this paper how a new model based on the self-

assembly behavior of real ants can be applied to the higcalaius-
We show in figure 4 the interface of the AntTree software. Thistering problem. We have shown how this model can be used stezlu



documents. The comparison with an efficient hierarchiasdtelring
algorithm (AHC) is positive especially with respect to thember of

found clusters and to the computation time. As a consequeree

have shown that AntTree can be efficiently used for autonpatital
site generation.

The extensions of this algorithm concern the following p&imve
wish to deal with larger collection of texts using a sampktigitegy.
The texts which are not used for building the tree are diyemth-
nected to the tree by following a path of greatest similaftkys is
a fast procedure). We are currently developping an intieaetitor
to modify the results of the algorithm: in this way, the usas lthe
possibility to adjust the obtained results. Finally, we warimprove
our model, each ant will have the possibility to disconneself from
its position and to move on others ants perhaps more sirhdarthat
on which it is. We also wish to generalize AntTree to the gatien
of graphs (and not just trees). We could generate hypenéitighe
same self-assembly principles.
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