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Abstract. This paper presents an adaptive visual learning algorithm
for object tracking. We formulate a novel discriminative generative
framework that generalizes the conventional Fisher Linear Discrimi-
nant algorithm with a generative model and renders a proper proba-
bilistic interpretation. Within the context of object tracking, we aim
to find a discriminative generative model that best separates the target
class from the background. We present a computationally efficient
algorithm to constantly update this discriminative model as time pro-
gresses. While most tracking algorithms operate on the premise that
the object appearance or environment lighting condition does not sig-
nificantly change as time progresses, our method adapts the discrim-
inative generative model to reflect appearance variation of the target
and background, thereby facilitating the tracking task in different sit-
uations. Numerous experiments show that our method is able to learn
a discriminative generative model for tracking target objects under-
going large pose and lighting changes.

1 INTRODUCTION

Tracking moving objects is an important and essential component of
visual perception, and has been an active research topic in computer
vision community for decades [8]. Object tracking can be formulated
as a continuous state estimation problem where the unobservable
states encode the locations or motion parameters of the target objects,
and the task is to infer the unobservable states from the observed im-
ages over time. At each time step, the tracker first predicts a few pos-
sible locations (i.e., hypotheses) of the target in the next frame based
on its prior and current knowledge. The prior knowledge includes its
previous observations and estimated state transitions. Among these
possible locations, the tracker then determines the most likely new
location of the object based on the new observation. An attractive
and effective prediction mechanism is based Monte Carlo sampling
in which the state dynamics (i.e., transition) can be learned with a
Kalman filter or simply modeled as a Gaussian distribution. Such
a formulation indicates that the performance of a tracker is largely
based on a good observation model for validating all hypotheses. In-
deed, learning a robust observation model has been the focus of most
recent object tracking research within this framework, and is also the
focus of this paper.

Most of the existing approaches utilize static observation models
and construct them before tracking processes start. To account for
all possible variation in a static observation model, it is imperative
to collect a large set of training examples with the hope that it cov-
ers all possible representative variations of the object’s appearance.
However, it is well known that the appearance of an object varies sig-
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nificantly under different illumination, viewing angle, and self defor-
mation. It is a daunting, if not impossible, task to collect a training set
covering all possible cases. An alternative approach is to develop an
adaptive method that contains a number of trackers that track differ-
ent features or parts of the target object [3]. Therefore, even though
each tracker may fail under certain circumstances, it is unlikely all
of them fail at the same time. The tracking method then adaptively
selects the trackers that are robust at current situation to perform the
validation process. Although this approach improves the flexibility
and robustness of a tracking method, each tracker has a static obser-
vation model and has to be trained beforehand and severely restricts
its application domains. There are many cases, e.g., robotics appli-
cations, where the tracker is expected to track a previously unseen
target once it is detected. To the best of our knowledge, considerably
less attention is paid to adaptive model to account for appearance
variation of a target object (e.g., pose, deformation) or environment
changes (e.g., lighting conditions and viewing angles) as tracking
task progresses.

One formulation is to learn a model for determining the probabil-
ity of the observed image region of a predicted location being gener-
ated from the class of the target or the class of background. That is,
we can formulate a binary classification problem and develop a dis-
criminative model to distinguish observations from the target class
and the background class. While conventional discriminative classi-
fiers simply predict the class label of each test sample, a good model
within the abovementioned tracking framework needs to select the
most likely sample that belongs to target object class from a set of
samples (or hypotheses). In other words, an observation model needs
a classifier with proper probabilistic interpretation.

In this paper, we propose an object tracking algorithm that con-
stantly updates its observation model for validating hypotheses. Our
method takes a discriminative generative formulation, which not only
facilitates the validation process but also allows our algorithm to be
easily incorporated to other probabilistic visual tracking framework.
We estimate a discriminative generative model to best separate the
target object class and the background class. This is formulated as
an optimization problem and we show that it is a direct generaliza-
tion of the conventional Fisher Linear Discriminant algorithm with
proper probabilistic interpretation. In this regard, our method can be
regarded as a hybrid approach that combines a generative model with
discriminative analysis. Our experimental results shows that our al-
gorithm can reliably track moving objects whose appearance changes
under different poses, illumination, and self deformation.

The rest of this paper is organized as follows. Section 2 provides a
brief review of the probabilistic framework for object tracking. Sec-
tion 3 explains our discriminative generative model, which is the fo-
cus of this paper. We first present our model in batch learning mode.
Next, we describe our generative model that is based on probabilis-



tic principle component analysis, and detail our approach to perform
discriminative generative analysis with this generative model. This is
followed by a discussion on how our discriminative generative model
can be updated on line. Our tracking algorithm is summarized in Sec-
tion 4 and experiments are presented in Section 5. Finally, we con-
clude this paper with comments and remarks on future work.

2 PROBABILISTIC TRACKING ALGORITHM

We formulate the object tracking problem as a state estimation prob-
lem in a way similar to [5] [9]. Denote ��� as an image region observed
at time

�
and �����	�
� �������� ����� is a set of image regions observed

from the beginning to time
�
. An object tracking problem is a process

to infer state ��� from observation ��� , where state ��� contains a set of
parameters referring to the tracked object’s 2-D position, orientation,
and scale in image � � . Assuming a Markovian state transition, this
state estimation can be formulated as a recursive equation:

��� ����� ��������� ��� ����� ����� � ��� ����� ���! � � �"� �
�# � � ���! � �%$&���! � (1)

where � is a constant, and �"� �'��� ����� and �"� �
�(� ���! � � correspond to the
observation model and dynamic model, respectively.

In (1), �"� � �! � � � �# � � is the state estimation given all the prior ob-
servations up to time

�*),+
, and ��� � � � � � � is the likelihood that observ-

ing image �'� at state ��� . Combining these two together, the posterior
estimation ��� �
�(� ����� can be computed efficiently. For object tracking,
an ideal distribution of ��� � � � � � � should peak at � � , i.e., � � matching
the observed object’s location � � . While the integral in (1) predicts
the regions where object is likely to appear given all the prior obser-
vations, the observation model ��� �'��� ����� determines the most likely
state that matches the observation at time

�
.

In our formulation, ��� ����� ����� measures the probability of observ-
ing �'� as a sample being generated by the tracked object class. Note
that ��� is an image sequence and if the images are acquired at high
frame rate, it is expected that the difference between � � and � �! �

is small though object’s appearance might vary according to differ-
ent of viewing angles, illuminations, and possible self-deformation.
Instead of adopting a complex static model to learn ��� � � � � � � for all
possible � � , a simpler model can be taken on for the same task by
adapting this model to account for the object appearance change. In
addition, since video frames �'� and ���! � are most likely similar and
computing ��� � � � � � � depends on �"� � �! � � � �# � � , the prior information��� � �! � � � �! � � can be used to enhance the distinctiveness between the
object and its background in �"� �'��� ����� .

The idea of using an adaptive observation model for object track-
ing and then applying discriminative analysis to enhance the valida-
tion performance is the focus of the rest the paper. The observation
model we use is based on probabilistic principle component analy-
sis (PPCA) [10]. Object Tracking using PCA models have been well
exploited in the computer vision community [2]. Nevertheless, most
existing tracking methods do not update the observation models as
time progresses. In this paper, we follow the work by Tipping and
Bishop [10] and propose an adaptive observation model based on
PCA within a formal probabilistic framework. Our result is a gener-
alization of conventional Fisher Linear Discriminant with rigid prob-
abilistic interpretation.

3 A DISCRIMINATIVE GENERATIVE
OBSERVATION MODEL

In this work, we track the object based on its observed appearances
in the videos, i.e. �'� . Since the size of image region ��� might change
according to different �
� , we first convert �'� to a standard size and
use it for tracking. In the following, we denote - � as the standardized
appearance vector of � � .

The dimensionality of the appearance vector -.� is usually high. In
our experiments, the standard fixed image size is a

+�/�01+�/
rectangu-

lar image and thus - � is a 2�3 + -dimensional vector. We thus model the
appearance vector with a graphical model of low-dimensional latent
variables.

3.1 A Generative Model with Latent Variables

A latent model relates a 4 -dimensional appearance vector - to a 5 -
dimensional vector of latent variables 6 :-7��896;:=<>:@? (2)

where 8 is a 4 0 5 projection matrix associating - and 6 , < is
the mean of - , and ? is an additive noise. As commonly assumed in
factor analysis [1] and graphical models [6], the latent variables 6
are independent with unit variance, 6BA�C �ED �GF
H � , where F�H is an5 -dimensional identity matrix, and ? is a zero mean Gaussian noise,?IAJC �ED �GK � F�L � where F�L is an 4 -dimensional identity matrix. Since6 and ? are both Gaussians, it follows that - is also a Gaussian dis-
tribution, -1AMC � < �(N � , where N �O8P8RQ>: K � F L . Together with
(2), we get a generative observation model:

�"� �'�(� �
�%�I� ��� -'��� 8 � < � ?(��AMC � -��(� < � 8P8 Q : K � F L � (3)

This latent variable model follows the form of probabilistic prin-
ciple component analysis, and its parameters can be estimated from
a set of examples [10]. Given a set of appearance samples ST���- �������� -�UV� , the covariance matrix of S is denoted as WX�

�UMY � - ) <"� � - ) <�� Q . Let �[Z]\�� ^�� + ������G_ � be the eigenvalues
of W arranged in descending order, i.e. Z`\bacZ.d if ^beBf . Also, define
diagonal matrix g H � diag � Z �������� Z H � and h H the eigenvectors
that corresponds to the eigenvalues in g H . Tipping and Bishop show
that the the maximum likelihood estimation of < , 8 and ? [10] as
follows: i

<j� +_ Uk
\ml �

-'\ (4)i
8n�Oh H � g H ) K � F�H � �!o ��p

(5)i
K � � +4 ) 5

Lk
\ql Hsr �

Z]\ (6)

where h H is a matrix of 5 column eigenvectors of W with corre-
sponding largest 5 eigenvalues in the 5 0 5 diagonal matrix g H ,
and

p
is an arbitrary 5 0 5 orthogonal rotation matrix.

To model the possible appearance variation of a target object (due
to pose, illumination and view angle change), one could resort to
mixtures of PCA for the task. However, it is not only time consum-
ing to estimate the model parameters but also leads to other serious
questions such as the number of components as well as under-fitting
or over-fitting. On the other hand, at any given time a linear PCA
model suffices to model gradual appearance variation if the model is
constantly updated. In this paper, we use a single PCA, and dynami-
cally adapt the model parameters 8 , < , and K �

.
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3.1.1 Inference with Probabilistic PCA

Once the model parameters are known, we can infer the likelihood of
a vector - being a sample of this generative appearance model. From
(6), the log likelihood is computed by

����� ��� - � 8 � < �GK � ��� ) +� � _ ����� �	� : ����� � N ��: - Q N  � -�
 (7)

where -=� - ) < . Neglecting the constant terms, the likelihood is
determined by -&Q N  � - . Together with N �O8R8PQ�: K � F L and (6),
it follows that

- Q N  � -7� - Q h H g  �H h QH -V: +K � - Q � F L ) h H h QH � - (8)

Here - Q h H g  �H h QH - is the Mahalanobis distance of - in the sub-
space spanned by h H , and - Q � F�L ) h H h QH � - is the shortest distance
from - to this subspace spanned by h H . Usually K is set to a small
value, and consequently the likelihood will be determined solely by
the distance to the subspace. However, the choice of K is not trivial.
From (8), if the K is set much smaller than the actual value, the dis-
tance to the subspace will be over-emphasized and ignore the con-
tribution of Mahalanobis distance, thereby rendering an inaccurate
estimate. The choice of K is even more critical in situations where
the appearance change dynamically and require K should be adjusted
accordingly. This topic will be further examined in the following sec-
tion.

3.1.2 Online Learning of Probabilistic PCA

Unlike the analysis in the previous section where model parameters
are estimated based on a fixed set of training examples, our gener-
ative model has to learn and update its parameters online. Starting
with a single example (the appearance of the tracked object in the
first video frame), our generative model constantly updates its pa-
rameters as new observations arrive.

The equations for updating parameters are derived from (6). The
update of h H and g H is complicated since it involves the computa-
tions of eigenvalues and eigenvectors. Here we use a forgetting factor� to put more weights on the more recent data. Denote the newly ar-
rived samples at time

�
as S � � - � ������ -� � , and assume the mean< is fixed, h �H and g �H can be obtained by performing singular value

decomposition (SVD) on� � � h H�� �# � � g H�� �# � � �!o � � � � +�) � �� S�� (9)

where S	� � - � ) < ������ -  ) <�� . g �!o �H�� � and h H�� � will contain the5 -largest singular values and corresponding singular vectors respec-
tively at time

�
. This update procedure can be efficiently implemented

using an incremental SVD algorithm, e.g., [7].
If the mean < constantly changes, the above update can not be

applied. We recently propose a method to compute SVD with correct
updated mean in which g �!o �H�� � and h H�� � can be obtained by computing
SVD on� � � h H�� �! � � g H�� �! � � �!o �������

� � +�) � �� S ������� � +�) � � ��� < �! � ) <�� � �
(10)

where S � � - � ) < � ������ -  ) < � � and < � � � Y \ml � - \ . This
formulation is similar to the SVD computation with the fixed mean
case, and the same incremental SVD algorithm can be used to com-
pute g �!o �H�� � and h H�� � with an extra term shown in (10).

Computing and updating K is more difficult than the form in (10).
In the previous section, we show that an inaccurate value of K will
severely affect the likelihood estimation. In order to have a accu-
rate estimation of K based on (6), a large set of training examples
is usually required. Our generative model starts with a single exam-
ple and gradually adapts the model parameters. If we update K based
on (6) we will start with a very small value of K and the algorithm
could quickly lose track of the target because of incorrect likelihood
estimate. Since the training examples are not permanently stored in
memory, Z \ in (6) and consequently K may not be accurately updated
if the number of drawn samples is in sufficient. These constraints lead
us to develop a method that adaptive adjusts K according to the newly
arrived samples, which will be explained in the next section.

3.2 Discriminative Generative Model

As is observed in Section 2, the object’s appearance at ���! � and� � does not change much. Therefore, we can use the observation at� �! � to boost the likelihood measurement in � � . That is, we draw
a set samples (i.e., image patches) parameterized by �[� \�! � � ^��+ ��   � � � in ���! � that have large ��� �'�! � � � \�! � � , but the low posterior�"� � \�# � � � �! � � . These are treated as the negative samples (i.e., sam-
ples that are not generated from the class of the target object) that the
generative model is likely to confuse at ��� .

Given a set samples S"!s� ��- � ������ -�#'� where - \ is the appear-
ance vector collected in � �! � based on state parameter � \�! � , we want
to find a linear projection $&% that projects S ! onto a subspace such
that the likelihood estimation of S�! in the subspace is minimized.
Let $ be a � 0 4 matrix and since �"� - � 8 � < ��K � is a Gaussian,�"� $ - � $ � 8 � < ��K �1A C � $V< � $ N $ Q � is a also Gaussian. The log
likelihood can be defined as:����� ��� $VS ! � $ � 8 � < �GK ���) # � � � ����� � �	� � : ����� � $ N $ Q ��: �(' ��� $ N $;Q"�  � $;W ! $ Q � 


(11)
where W ! � �# Y #\ql �

� - \ ) <"� � - \ ) <"��Q .
To facilitate the following analysis we first assume $ project S !

to a 1-D space, i.e. $ �*)*Q . Note that ) � N ) is the variance of the
object samples in the projected space, and we need to impose a con-
straint ) � N )�� +

to ensure that the minimum likelihood solution
of ) doesn’t increase the variance in the projected space. Let and) � N ) � +

, the optimization problem becomes)�% � +�, �.- +�/1032	4 265�7�2 l �98 )*Q�W ! )� +�, �.- +�/ 2 2 5�:<; 22=5>7?2 (12)

Therefore, we obtain an equation exactly like Fisher discriminant
analysis for a binary class problem. As can be seen in (12), ) is a
projection that keep the object’s sample in the projected space close
to the center (with variance ) Q N )R� +

), while keeping negative
samples in S@! away from < in the projective space. The optimal value
of ) is the generalized eigenvector of W ! and N that corresponds to
largest eigenvalue. In a general case, it follows that$ % �A+	, �B- +	/C � $;W ! $ Q �� $ N $ Q � (13)

where $ % can be obtained by solving a generalized eigenvalue prob-
lem of W ! and N . By projecting observation samples onto a low-
dimensional subspace, we enhances the discriminative power of the
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generative model. In the meanwhile, we reduce the computation time
for the inference processes, which is also a critical improvement for
real time applications like object tracking.

3.2.1 Online Update of Discriminative Analysis

The computation of the projection matrix $ depends on matrices N
and W ! . In section 3.1.1, we have shown the procedures to update N .
The procedures can be used to update W ! . Let < � ; � �# Y #\ml � - \ andW � ; � �# Y #\ql �

� - \ ) < � ; � � - \ ) < � ; � Q ,

W ! � �# Y #\ml �
� - \ ) <"� � - \ ) <���Q� W���: � < ) < � ; � � < ) < � ; � Q (14)

In other words, we can use the same procedures to update N and W�� ,
and then use (14) to compute W ! .

Given W ! and N , computing $ is a generalized eigenvalue prob-
lem. If we decompose W ! � � Q � and N ��� Q � , then we can find$ more efficiently using generalized singular value decomposition.
Denote h � and g � as the matrices we used to track W � , it follows that
by letting

� � � h � g �!o �� � � < ) < � � �qQ and � � � h H g �!o �H � K � F �qQ ,W ! � � Q � and N ���;Q�� .
As is detailed in [4] , $ can be computed by first performing a QR

factorization: � ��
	 � ������� 	 p (15)

and then computing the singular value decomposition of
���� �Oh ��� $ Q (16)

and, then $ � p  � $  . When rank � � � is small, the computation of$ is fast. See also [4] for more detail on solving generalized SVD
problem.

4 PROPOSED TRACKING ALGORITHM

In this section, we describe the proposed tracking algorithm in
greater detail and demonstrate how the abovementioned learning and
inference algorithms are incorporated. Our algorithm localizes the
tracked object in each video frame using a rectangular window. A
state � is a 5-tuple vector, �M� � 6 � - ���*���;��� � , that parameterizes
the windows position � 6 � - � , orientation � � � and width and height� �;��� � . The proposed algorithm is based on maximum likelihood es-
timate (i.e., the most probable location of the object) given all the
observations up to that time instance, � %� � +�, � - +	/���� ��� � � � � � � .

We assume that state transition is a Gaussian distribution, i.e.,��� ���(� �
�# � �bAJC � ���! ��� g � �
where g�� is a diagonal matrix. That is, we assume the parameters of
a state variable are independent. According to this distribution, the
tracker then draws _ samples W �V� ��� �������� ��U�� which represent
the possible locations of the target. Denote - \� as the appearance vec-
tor of � � , and S � �9��- �� ������ - U� � as a set of appearance vectors that
corresponds to the set of state vectors W � . The posterior probability
that the tracked object is at � \ in video frame ��� is then defined as��� ���"� � \ � �����b��! ��� - \� � $ � 8 � < �GK � ��� ���"� � \ � � %�! � �
where ! is a constant. Therefore, � %� � +	, �.- +	/#"%$%& : � �"� � � �'��\(� � � � .

Once � %� is determined, the corresponding observation - %� will be
a new example to update 8 and < . Appearance vector - \� that pro-
duces large value in ��� - \� � $ � 8 � < ��K � but whose corresponding state
parameters � \ are away from ��%� will be used as new examples to
update $ .

Our tracking assumes � � and � % � are given (through object detec-
tion) and thus obtains the first appearance vector - � which in turns is
used an the initial value of < , but $ and 8 are unknown at the out-
set. When $ and 8 are not available, our tracking algorithm is based
on template matching (with < being the template). The matrix 8 is
computed after a small number of appearance vectors are observed,
With 8 , we can then start to compute and update $ accordingly.

As mentioned in the Section 3.1.1, it is difficult to obtain an accu-
rate estimate of K . In our tracking the system, we adaptively adjust K
according to g H in 8 . We set K be a fixed fraction of the smallest
eigenvalues in g H This will ensure the distance measurement in 8
will not be over-emphasized on either the Mahalanobis distance in
the subspace or the distance to the subspace.

5 EXPERIMENTAL RESULTS

Figure 1. A target undergoes with appearance deformation and large
lighting variation. The bottom row of each panel shows the samples selected
by our method that best separates the target from background classes. These
samples are then used to update the observation model of our method, and

thereby facilitates object tracking in an ever-changing environment.

We tested the proposed algorithm with face tracking experiments.
To examine whether our model is able to adapt and track faces in the
dynamically changing environment, we design the testing videos to
have appearance deformation, large illumination change, and large
pose variations.
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All the image sequences consist of 2 � D 0 ��� D pixel grayscale
videos, recorded at 30 frames/second and 256 gray-levels per pixel.
The forgetting term is empirically selected as 0.85, and the batch size
for update is set to 5 as a trade-off of computational efficiency as well
as effectiveness of modeling appearance change due to fast motion.

Figures 1 and 2 show snapshots of the tracking results. There are
two rows of images below each video frame. The first row shows the
sampled images in the current frame that have the largest likelihoods
of being the target locations according our discriminative generative
model. The second row shows the sample images in the current video
frame that are selected online for updating the discriminative gener-
ative model.

The first four video frames in Figure 1 show the tracked object un-
dergoes a series of appearance deformation, and our model is capable
of adapting to these changes and correctly locates the tracked object
in these frames. The rest four video frames in Figure 1 demonstrate
our model adapts and keeps tracks the objects when there is a large
illumination and shape variation.

Figure 2. A target undergoes large pose variation. The bottom row of each
panel shows the samples selected by our method that best separates the

target from background classes. These samples are then used to update the
observation model of our method, and thereby facilitates object tracking in

an ever-changing environment.

The results in Figure 2 show that our model is able to locate the
object accurately though there the object appearance undergoes large
and quick pose variation.

We have also tested these two sequences with conventional view-
based eigentracker [2] or template-based method. The empirical re-
sults show that such methods do not perform well as it does not adapt
as the appearance change.

6 CONCLUSION

We have presented a discriminative generative framework that gen-
eralizes the conventional Fisher Linear Discriminant algorithm with
a generative model and renders a proper probabilistic interpretation.
For object tracking, we aim to find a discriminative generative model
that best separates the target class from the background. With a com-
putationally efficient algorithm that constantly update this discrimi-
native model as time progresses, our method adapts the discrimina-
tive generative model to account for appearance variation of the tar-
get and background, thereby facilitating the tracking task in different
situations. Our experiments show that the proposed model is able to
learn a discriminative generative model for tracking target objects
undergoing large pose and lighting changes. We also plan to apply
the proposed method to other problems that deal with nonstationary
data stream in our future work.
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