Voted Co-training for Bootstrapping Sense Classifiers

Rada MIHALCEA!

Abstract. This paper introduces voted co-training, a bootstrapping
method that combines co-training with majority voting, with the ef-
fect of smoothing the learning curves, and improving the average
performance. Voted co-training was evaluated on a word sense classi-
fication problem, with significant improvements observed over basic
co-training algorithms. Various empirical parameter selection meth-
ods for co-training are investigated, with various degrees of error re-
duction.

1 Introduction

The task of word sense disambiguation consists of assigning the most
appropriate meaning to a polysemous word within a given context.
Most of the efforts in solving this problem were concentrated so far
towards supervised learning, where each sense tagged occurrence of
a particular word is transformed into a feature vector, which is then
used in an automatic learning process. While these algorithms usu-
ally achieve the best performance, as compared to their unsupervised
or knowledge-based alternatives, their applicability is however lim-
ited to those words for which sense tagged data is available, and their
accuracy is strongly connected to the amount of labeled data avail-
able at hand.

In this paper, we investigate methods for building sense classi-
fiers when only relatively few annotated examples are available.
We explore bootstrapping methods using simple co-training, and
co-training improved with majority voting (voted co-training), and
evaluate their performance for building sense classifiers. We also
show that classifiers built for different words have different behavior
during the bootstrapping process. Given the set of parameters that
can influence the performance of a co-training process (growth size,
pool size, and number of iterations, as detailed later), we experiment
with various parameter settings, using per-word and global parame-
ter settings, and show that the highest overall error rate reduction is
achieved with a global parameter scheme using voted co-training.

The paper is organized as follows. We first overview the general
approach of co-training for natural language learning. We then in-
troduce the problem of supervised word sense disambiguation, and
define local and topical basic classifiers. We investigate the applica-
bility of co-training to supervised word sense disambiguation, start-
ing with these basic classifiers, and perform comparative evaluations
of basic co-training and voted co-training, for various empirical pa-
rameter settings.

2 Co-training for Natural Language L earning

Co-training [2] is a bootstrapping method that aims to improve the
performance of a supervised learning algorithm by incorporating

1 Department of Computer Science and Engineering, University of North
Texas, rada@cs.unt.edu

large amounts of unlabeled data into the training data set. Shortly,
co-training algorithms work by generating several classifiers trained
on the input labeled data, which are then used to tag new unlabeled
data. From this newly annotated data, the most confident predictions
are sought, which are subsequently added to the set of labeled data.
The process may continue for several iterations.

Figure 1 illustrates the general co-training process. Starting with a
set of labeled and unlabeled data, the bootstrapping algorithm aims
to improve the classification performance, by integrating examples
from the unlabeled data into the labeled data set. At each iteration,
the class distribution in the labeled data is maintained, by keeping a
constant ratio across classes between already labeled examples and
newly added examples; the role of this step is to avoid introducing
imbalance in the training data set. For co-training, the algorithm re-
quires two different views (two different classifiers C1 and Cs) that
interact in the bootstrapping process.

In natural language learning, co-training was applied to statistical
parsing [15], reference resolution [10], [11], part of speech tagging
[5], statistical machine translation [4], and others, and was generally
found to bring improvement over the case when no additional unla-
beled data are used.

One important aspect of co-training consists of the relation be-
tween the views used in learning. In the original definition of co-
training, Blum and Mitchell [2] state conditional independence of
the views as a required criterion for co-training to work. In recent
work, Abney [1] shows that the independence assumption can be re-
laxed, and co-training is still effective under a weaker independence
assumption. He is proposing a greedy algorithm to maximize agree-
ment on unlabelled data, which produces good results in a co-training
experiment for named entity classification. Moreover, Clark et al. [5]
show that a naive co-training process that does not explicitly seek to
maximize agreement on unlabelled data can lead to similar perfor-
mance, at a much lower computational cost. In this work, we apply
co-training by identifying two different feature sets based on a “local
versus topical” feature split, which represent potentially independent
views for word sense classification, as shown in Section 4.

Co-training parameters

Three different parameters can be set in the co-training process, and
usually the performance achieved through bootstrapping depends on
the value chosen for these parameters.

e |terations (I) Number of iterations.

e Pool size (P) Number of examples selected from the unlabeled set
U for annotation at each iteration.

e Growth size (G) Number of most confidently labeled examples
that are added at each iteration to the set of labeled data L.

As previously noticed [12], there is no principled method for se-
lecting optimal values for these parameters, which is an important
disadvantage of these algorithms.

Given:
— A set L of labeled training examples
— A set U of unlabeled examples
— Classifiers C;

1. Create a pool U’ of examples by choosing P random examples
from U.
2. Loop for I iterations:

2.1 Use L to individually train the classifiers C;, and label the
examples in U’

2.2 For each classifier C; select G most confidently labeled
examples and add them to L, while maintaining the class
distribution in L.

2.3 Refill U’ with examples from U, to keep U’ at a constant
size of P examples

Figurel. General co-training process using labeled and unlabeled data

In the following, we describe the general framework of supervised
word sense disambiguation, and introduce several basic sense classi-
fiers that are used in co-training experiments. Next, we explore var-
ious algorithms for empirical selection of the three co-training pa-
rameters, and compare results obtained with basic co-training, and
co-training improved with majority voting.

3 Supervised Word Sense Disambiguation

Supervised word sense disambiguation systems work under the as-
sumption that several annotated examples are available for a target
ambiguous word. These examples are used to build a classifier that
automatically learns clues useful for the disambiguation of the given
polysemous word, and then applies these clues to the classification
of new unlabeled instances.

First, the examples are pre-processed and annotated with morpho-
logical or syntactic tags. Next, each sense-tagged example is trans-
formed into a feature vector, suitable for an automatic learning pro-
cess. There are two main decisions that one takes in the construction
of such a classifier: (1) What features to extract from the examples
provided, to best model the behavior of the given ambiguous word;
(2) What learning algorithm to use for best performance.

Preprocessing

During preprocessing, SGML tags are eliminated, the text is tok-
enized, and part of speech tags are assigned using Brill tagger [3].
Collocations are identified using a sliding window approach, where
a collocation is considered to be a sequence of words that forms a
compound concept defined in WordNet. During this process, all col-
locations that include the target word are identified, and the examples
that use a collocation are removed from the training/test data. For in-
stance, examples referring to short circuit are removed from the data
set for circuit, so that a separate learning process is performed for
each lexical unit.

Features that are good indicators of word sense

Previous work on word sense disambiguation has acknowledged
several local and topical features as good indicators of word sense.
These include surrounding words and their part of speech tags, collo-
cations, keywords in contexts. More recently, other possible features
have been investigated: bigrams in context, named entities, syntactic
features, semantic relations with other words in context. Table 1 lists

Feat. | Description |

CW (L) The word AW itself

CP (L) The part of speech of the word AW

CF (L) Word forms and their part of speech for a window of K words
surrounding AW

COL (L) | Collocations formed with maximum K words surrounding AW

HNP (L) | The head of the noun phrase to which AW belongs, if any

SK (T) Maximum of M keywords occurring at least N times are
determined for each sense of the ambiguous word. The value
of this feature is either 0 or 1, depending if the current
example contains one of the determined keywords or not.

VB (L) The first verb before AW,

VA (L) The first verb after AW.

NB (L) The first noun before AW

NA (L) The first noun after AW.

VO (L) \erb-object relation involving AW

SV (L) Subject-verb relation involving AW

Tablel. Commonly used features for word sense disambiguation. AW
denotes the current (ambiguous) word. Feature type is indicated as local (L)
or topical (T).

commonly used features in word sense disambiguation (list drawn
from a larger set of features compiled by [8]).

Supervised learning for word sense disambiguation

Related work in supervised word sense disambiguations includes
experiments with a variety of learning algorithms, with varying de-
grees of success: Bayesian learning, decision trees, decision lists,
memory based learning, and others. An experimental comparison of
seven learning algorithms used to disambiguate the meaning of the
word lineis presented in [9].

Basic Classifiers for Word Sense Disambiguation

Several basic word sense disambiguation classifiers can be imple-
mented using feature combinations from Table 1, and feature vectors
can be plugged into any learning algorithm. We use Naive Bayes,
since it was previously shown that in combination with the features
we consider, can lead to a state-of-the-art disambiguation system
[7]- Moreover, Naive Bayes is particularly suited for co-training and
self-training, since it provides confidence scores and is efficient in
terms of training and testing time. The two separate views required
for co-training are defined using a local versus topical feature split.

A local classifier: A local classifier is implemented using all local
features listed in Table 1 (features marked with (L) in Table 1).

A topical classifier: The topical classifier relies on features extracted
from a large context (features marked with (') in Table 1). We use
the SK feature, and extract at most ten keywords for each word
sense, each occurring for at least three times in the annotated corpus.

A global classifier: Finally, the global classifier integrates all local
and topical features, again using a Naive Bayes classifier.

4 Co-training for Word Sense Disambiguation

We investigate the application of co-training for bootstrapping sense
classifiers, and explore methods for selecting values for the boot-
strapping parameters.

The data set used in this study consists of training and test
data made available during the English lexical sample task in the
SENSEVAL-2 evaluation exercise (http://www.senseval.org). In ad-
dition to these data sets, a large raw corpus of unlabeled examples

is constructed for each word, with text snippets consisting of three
consecutive sentences extracted from the British National Corpus.
Given the large number of runs performed for each word (2,120 runs
per word, for various parameter settings), the experiments focus on
nouns only. Similar observations are however expected to hold for
other parts of speech. Table 2 lists all the words used in the experi-
ments. For each word, it lists: size of trainingz, test, raw data®; preci-
sion of the basic classifier (the global classifier is used as a baseline);
precision during bootstrapping experiments, for various parameter
settings.

To run the co-training experiments, we use the local and topi-
cal classifiers described in Section 3, which represent two different
views for this problem, generated by a “local versus topical” feature
split.

Unlike previous applications of co-training to natural language
learning, where one general classifier is built to cover the entire prob-
lem space, supervised word sense disambiguation implies a different
classifier for each individual word, resulting eventually in thousands
of different classifiers, each with its own characteristics (learning
rate, sensitivity to new examples, etc.). Given this large heteroge-
neous space of classifiers, the co-training process itself may have a
heterogeneous behavior, and the selection of best co-training param-
eters becomes a critical problem.

To address this issue, a range of experiments is performed. First,
we explore algorithms to select the bootstrapping parameters, using a
validation set: (1) Best global parameter setting (overall and individ-
ual); (2) Best per-word parameter selection. We also introduce and
evaluate an improved co-training method consisting of a bootstrap-
ping scheme combined with majority voting across several bootstrap-
ping iterations.

The parameter selection methods described in this section make
use of the data collected during several co-training runs, for differ-
ent parameter settings. Evaluations are performed on a validation set
consisting of about 20% of the training data — which was set apart for
this purpose. For each run, information is collected about: initial size
of labeled data set, growth size, pool size, iteration number, precision
of basic classifier, precision of boosted classifier.

For the growth size G, a value is chosen from the set: {1, 10, 20,
30, 40, 50, 100, 150, 200}. The pool size P takes one of these values:
{1, 100, 500, 1000, 1500, 2000, 5000}. For each setting, 40 itera-
tions are performed. This results in an average of 2,120 classification
runs per word. At each run, a pool of P raw examples is annotated,
and G most confidently labeled examples are added to the training
set from the previous iteration. The performance of the classifier us-
ing the augmented training set is evaluated on the validation set, and
the precision is recorded. With this range of values for growth size,
pool size, and number of iterations, about 60,000 such records are
collected for all co-training runs.

2 The numbers listed in Table 2 for training/test data size and basic clas-
sifier precision refer to data sets obtained after removing examples with
collocations that include the target word. This explains why the numbers
do not always match figures previously reported in SENSEVAL-2 literature.
If collocations are added back to the data sets, the precision of the basic
classifier is measured at 60.2% — comparable to figures obtained by other
systems participating in SENSEVAL-2

3 The raw corpus for each word is formed with all examples retrieved from the
British National Corpus. While this ensures a natural distribution for each
word (in terms of number of examples occurring in a balanced corpus), it
also leads to discrepancies in terms of raw data size. For words with less
than 5000 raw examples, the pool size recorded in the “settings” column
represents a round-up to the nearest number from the set of allowed pool
values.

4.1 Best global parameter setting

One simple method to select a parameter setting is to determine a
global setting that leads to the highest overall boost in precision.
Starting with the information collected for the 60,000 runs, for each
possible parameter setting, the total relative growth in performance
is determined by adding up the relative improvements for all the runs
for that particular setting. The best global setting identified in this
way is growth size of 50, pool size of 5000, iteration 2. The pre-
dictive accuracy of the classifiers obtained for these settings is listed
in Table 2 under the global settings column. On average, using this
scheme for parameter selection, co-training leads to a precision of
55.67%, which translates into a 4.1% error reduction with respect to
the 53.84% average precision of the basic classifier.

In a similar approach, the value for each parameter is determined
independent of the other parameters. Instead of selecting the best
value for all parameters at once, values are selected individually.
Again, for each possible parameter value, the total relative growth
in performance is determined, and the value leading to the highest
growth is selected. Interestingly, the best values identified in this way
for the three parameters are growth size of 1, pool size of 1, iteration
1 (i.e. the best classifier is the one “closest” to the basic classifier).
The average results are however worse than the baseline (53.49%).

4.2 Best per-word parameter setting

In a second experiment, best parameter settings are identified sep-
arately for each word. The setting yielding maximum precision on
the validation set is selected as the best setting for a given word, and
evaluated on the test data. If multiple settings are identified as lead-
ing to maximum precision, settings are prioritized based on (in this
order): smallest growth size; largest pool size; number of iterations.
Results are listed in Table 2 under the per-word settings column, to-
gether with the setting identified as optimal on the validation set.
There are several words for which significant improvement is ob-
served over the baseline. However, on the average, the performance
of the boosted classifiers is worse than the baseline.

5 Voted Co-training

There is a common trend observed for learning curves for co-
training, consisting in an increase in performance, followed by a de-
cline. Different classifiers exhibit however a different point of raise
or decline, depending on the number of iterations. For instance, the
classifier for circuit achieves its highest peak at iteration 10 (across
all 2,120 co-training runs for different parameter settings), while the
classifier for nation has the highest boost at iteration 21 — where the
performance for circuit is already below the baseline. Given this het-
erogeneous behavior, it is difficult to identify a point of maximum for
each classifier, or at least a point where the performance is not be-
low the baseline. Ideally, we would like the learning curves to have a
more stable behavior — without sharp raises or drops in precision, and
with larger intervals with constant performance, so that the chance of
selecting a good number of iterations for each classifier is increased.

We introduce a new bootstrapping scheme that combines co-
training with majority voting. During the bootstrapping process,
the classifier at each iteration is replaced with a majority voting
scheme applied to all classifiers constructed at previous iterations.
This change has the effect of “smoothing” the learning curves: it
slows down the learning rate, but also yields a larger interval with
constant high performance. Although voted co-training and basic co-
training face similar difficulties in terms of identifying the highest

Size Basic Global setting Per-word setting
Word train test raw classifier basic voted setting basic voted
art 123 52 8012 48.07% || 53.85% 53.85% | 50/1500/32 44.23% 53.85%
authority 157 80 11034 || 50.00% | 51.25% 57.50% 150/2000/2 57.50% 58.75%
bar 205 124 5526 31.45% 31.45% 31.45% 10/1000/5 29.83% 35.48%
bum 79 43 361 37.20% 39.53% 44.18% 1/1/40 46.51% 44.18%
chair 121 63 5889 80.95% || 77.78% 79.36% 1/1500/16 77.77% 80.95%
channel 78 44 1744 43.18% 34.09% 43.18% 1/2000/2 43.18% 45.45%
child 117 60 14192 || 63.33% | 50.00% 51.66% 10/1500/1 55.00% 65.00%
church 81 36 7775 52.77% || 55.56% 58.33% 1/100/23 47.22% 58.33%
circuit 108 57 1891 40.35% || 45.61% 49.12% 100/100/3 3157% 42.10%
day 245 123 50883 || 45.52% || 52.03% 53.65% 150/1500/3 50.43% 55.28%
detention 46 24 638 79.16% || 83.33% 83.33% - 79.16% 79.16%
dyke 52 26 116 38.61% || 50.00% 46.15% 1/2000/19 34.61% 38.46%
facility 110 55 1959 67.27% || 69.09% 69.09% || 150/1500/13 58.18% 58.18%
fatigue 69 42 437 73.80% 71.43% 71.43% 1/1000/1 71.43% 71.43%
feeling 100 51 11214 || 39.21% | 39.21% 50.98% 10/500/5 50.98% 35.29%
grip 72 39 1718 53.46% 43.59% 48.71% 20/100/20 41.02% 60.00%
hearth 60 29 334 44.82% 48.28% 44.82% 1/1000/2 41.37% 44.82%
holiday 55 26 5604 84.61% || 84.61% 84.61% - 84.61% 84.61%
lady 75 39 4677 61.53% || 74.36% 76.92% || 150/2000/10 33.07% 66.66%
material 120 59 10663 || 37.28% | 45.76% 42.37% 100/2000/6 45.76% 49.15%
mouth 109 56 8044 50.00% 51.79% 57.14% 1/1/40 53.57% 50.00%
nation 60 26 4073 65.38% || 69.23% 69.23% || 100/2000/23 69.23% 73.07%
nature 70 38 14218 || 39.47% || 50.00% 47.36% 10/100/3 44.73% 47.36%
post 105 58 10611 37.93% 44.82% 48.27% 1/500/28 44.82% 41.37%
restraint 87 43 881 60.46% 58.14% 60.46% 1/1000/2 53.48% 60.46%
sense 83 36 19048 50.00% 47.22% 58.34% 150/500/40 25.00% 33.33%
spade 48 28 235 78.57% || 75.00% 78.57% - 78.57% 78.57%
stress 77 38 3549 36.84% || 52.63% 55.26% 1/1500/7 47.36% 52.63%
yew 50 20 167 70.00% || 65.00% 75.00% - 70.00% 70.00%
[AVERAGE || 95 48 7085 || 53.84% | 5567% 58.35% | - 51.73% 56.68% |

Accuracy of sense classifiers for basic and voted co-training, with global and per-word parameter settings (the growth size / pool size / number of

that it does not allow for “drastical” changes in the learning curve,
by combining classifiers built at various iterations through majority
voting, and therefore allowing the classifier obtained at a certain iter-
ation to have an impact on the classification process until later stages
of bootstrapping. Moreover, the majority voting scheme brings to-
gether the strengths of several classifiers, with the effect of improv-
ing the overall performance.

Notice that in voted co-training, majority voting is applied on
classifiers consisting of iterations of the co-training process itself,
and therefore voting is applied on bootstrapped classifiers across co-

Table 2.
iterations are also indicated)
Learning curves for basic and voted co-training
65 T T ————— T
basic co-training ———
voted co-training ---------
60 baseline - |
g
j
o
@
[S]
<
o

35 1 1 1 1 1 1 1
0 5 100 15 20 25 30 35 40

Number of iterations

Figure2. Learning curves for the classifier for the noun authority:
baseline, simple co-training, and co-training smoothed with majority voting.

peak on the learning curve, the chance of finding a point where the
accuracy is significantly higher than the baseline is much increased
for voted co-training, since this learning scheme exhibits a larger in-
terval with such higher-than-baseline performance (see e.g. Figure
2).

The main advantage of voted co-training over basic co-training is

training iterations, with the effect of improving the performance of
basic co-training. This is fundamentally different from the approach
proposed in [12], where they also apply majority voting in a boot-
strapping framework, but in a different setting. They use a majority
voting scheme applied to classifiers built on subsets of the labeled
data (bagging) to induce several views for the co-training process. In
their approach, majority voting is used at each co-training iteration
to enable co-training by predicting labels on unlabeled data.

To some extent, smoothed co-training is related to boosting [6],
since both algorithms rely on a growing ensemble of classifiers
trained on resamples of the data. However, boosting assumes la-
beled data and is error-driven, whereas smoothed co-training com-
bines both labeled and unlabeled data and is confidence-driven.

Figure 2 shows the learning curves for simple co-training, and co-
training “smoothed” with majority voting, for the word authority (for
a growth size of 1 and pool size of 1). Notice that the trend for the
smoothed curve is still the same — a raise, followed by a decline —

but at a significantly lower pace. With voted co-training, any num-
ber of iterations selected in the interval 5-40 still leads to significant
improvement over the baseline, unlike the simple unsmoothed curve,
where only iterations in the range 3-10 bring improvement over the
baseline (followed by two other iterations at random intervals).

The methods for global parameter settings and per-word parameter
settings are evaluated again, this time using voted co-training. Table 2
lists the results obtained with basic and voted co-training for the same
global/per-word setting. Since the majority voting scheme requires
an odd number of classifiers, the number of iterations is rounded up
to the next even number (the first iteration is iteration 0, representing
the basic classifier, which is also considered during voting).

6 Discussion

In empirical settings, one unique set of parameters for all classifiers
seems to perform better than an individual set of parameters cus-
tomized to each word. For parameter selection using global settings,
co-training brings an error reduction of 4.1% over the basic classifier.

As previously noticed [13], it is hard to identify conditionally in-
dependent views for real-data problems. Even though we use a “local
versus topical” feature split, which divides the features into two sepa-
rate views on sense classification, there might be some natural depen-
dencies between the features, since they are extracted from the same
context, which may weaken the independence condition. However,
as theoretically shown in [1], and then empirically in [5], co-training
still works under a weaker independence assumption, and the results
we obtain concur with these previous observations.

The bootstrapping scheme is improved even more when coupled
with majority voting across various iterations. Overall, the highest
error reduction is achieved with smoothed co-training using global
parameter settings, where an average error reduction of 9.8% is ob-
served with respect to the basic classifier. In terms of efficiency, voted
co-training has a running time similar to the basic co-training pro-
cess, since the application of the majority voting scheme is practi-
cally instantaneous.

A comparative analysis of words that benefit from basic/voted co-
training with global parameter settings, versus words with little or no
improvement obtained through bootstrapping reveals several obser-
vations:

(1) Words with accurate basic classifiers cannot be improved through
co-training, which agrees with previous observations [14]. For in-
stance, no improvement was obtained for chair, holiday, or spade,
which have the basic classifier performing above 75%.

(2) Words with high number of senses (e.g. bar — 10 senses, channel
— 7 senses, grip— 11 senses) achieve minimal improvements through
co-training. This is probably explained by the fact that the classifiers
are misled by the large number of classes (senses), and a large num-
ber of errors is introduced since the early stages of co-training.

Even though not all words show benefit from co-training, voted
co-training with global parameter settings brings a significant overall
error reduction of 9.8% with respect to the basic classifier, and also
brings an important improvement over the basic co-training scheme.

7 Conclusion

This paper investigated the application of co-training to supervised
word sense disambiguation. Several algorithms for empirical param-
eter selection were investigated: global settings determined as the
best set of parameters across all classifiers, and per-word settings,
identified separately for each classifier, both using a validation set.

An improved co-training method was also introduced, that combines
co-training with majority voting, with the effect of smoothing the
learning curves, and improving the average performance. The im-
proved co-training algorithm, applied with a global parameter se-
lection scheme, brought a significant error reduction of 9.8% with
respect to the basic classifier, which shows that bootstrapping us-
ing an improved form of co-training can be successfully employed
in practice for building sense classifiers when only limited amount
of annotated data is available. Future work will include comparative
analyses and evaluations of: bagging combined with majority voting
[12], boosting [6], and voted co-training.

Acknowledgments
This work was partially supported by a National Science Founda-
tion grant 11S-0336793.

REFERENCES

[1] S. Abney, ‘Bootstrapping’, in Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics (ACL 2002), Philadel-
phia, PA, (July 2002).

[2] A.Blum and T. Mitchell, ‘Combining labeled and unlabeled data with
co-training’, in COLT: Proceedings of the Workshop on Computational
Learning Theory, Morgan Kaufmann Publishers, (June 1998).

[3] E. Brill, ‘“Transformation-based error driven learning and natural lan-
guage processing: A case study in part-of-speech tagging’, Computa-
tional Linguistics, 21(4), 543-566, (December 1995).

[4] C. Callison-Burch, Co-training for Satistical Machine Translation,
Master’s thesis, University of Edinburgh, 2002.

[5] S. Clark, J. R. Curran, and M. Oshorne, ‘Bootstrapping POS taggers
using unlabelled data’, in Proceedings of the 7th Conference on Natural
Language Learning (CoNLL 2003), Edmonton, Canada, (June 2003).

[6] Y. Freund and R. Schapire, ‘Experiments with a new boosting algo-
rithm’, in Proceedings of the 13th International Conference on Machine
Learning (ICML 1996), Bari, Italy, (July 1996).

[7]1 Y.K.Leeand H.T. Ng, ‘An empirical evaluation of knowledge sources
and learning algorithms for word sense disambiguation’, in Proceed-
ings of the 2002 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP 2002), Philadelphia, (June 2002).

[8] R. Mihalcea, ‘Instance based learning with automatic feature selection
applied to Word Sense Disambiguation’, in Proceedings of the 19th In-
ternational Conference on Computational Linguistics (COLING 2002),
Taipei, Taiwan, (August 2002).

[9] R.Mooney, ‘Comparative experiments on disambiguating word senses:
An illustration of the role of bias in machine learning’, in Proceedings
of the 1996 Conference on Empirical Methods in Natural Language
Processing (EMNLP 1996), Philadelphia, (May 1996).

[10] C. Mueller, S. Rapp, and M. Strube, ‘Applying co-training to reference
resolution’, in Proceedings of the 40th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL 2002), Philadelphia, (July
2002).

[11] H.T. Ng, B. Wang, and Y.S. Chan, ‘Exploiting parallel texts for word
sense disambiguation: An empirical study’, in Proceedings of the
41st Annual Meeting of the Association for Computational Linguistics
(ACL-2003), Sapporo, Japan, (July 2003).

[12] V. Ng and C. Cardie, ‘“Weakly supervised natural language learning
without redundant views’, in Human Language Technology/Conference
of the North American Chapter of the Association for Computational
Linguistics (HLT-NAACL 2003), Edmonton, Canada, (May 2003).

[13] K. Nigam and R. Ghani, ‘Analyzing the effectiveness and applicabil-
ity of co-training’, in Proceedings of the Conference on Information
and Knowledge Management (CIKM 2000), McLean, VA, (November
2000).

[14] D. Pierce and C. Cardie, ‘Limitations of co-training for natural lan-
guage learning from large datasets’, in Proceedings of the 2001 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP
2001), Pittsburgh, PA, (June 2001).

[15] A. Sarkar, ‘Applying cotraining methods to statistical parsing’, in Pro-
ceedings of the North American Chapter of the Association for Compu-
atational Linguistics (NAACL 2001), Pittsburgh, (June 2001).

