Ideal Refinement of Datalog Clauses using Primary Keys

Siegfried Nijssen and Joost N. Kok !

Abstract. Inductive Logic Programming (ILP) algorithms are fre-
quently used to data mine multi-relational databases. However, in
many ILP algorithms the use of primary key constraints is limited.
We show how primary key constraints can be incorporated in a down-
ward refinement operator. This refinement operator is proved to be
finite, complete, proper and therefore ideal for clausal languages de-
fined by primary keys. As part of our setup, we introduce a weak Ob-
ject Identity subsumption relation between clauses which generalizes
over traditional, full Object Identity. We find that the restrictions on
the language and the subsumption relation are not very restrictive.
We demonstrate the feasibility of our setup by showing how the re-
finement operator can be incorporated in the refinement strategy of
common ILP algorithms.

1 INTRODUCTION

In multi-relational data mining research, much attention has been
given to Inductive Logic Programming. Inductive Logic Program-
ming provides a well-founded framework on which machine learn-
ing algorithms can be built which extend beyond the classical setting
of attribute-value learning. Such situations typically arise when one
has to deal with learning tasks for databases that consist of multiple,
related tables. In this setup, it is common practice to map the rela-
tions of a database to predicates and the rows of tables in a database
to facts (atoms of a predicate for which all parameters are constants).
The close relationship between logic and relational databases has al-
ready been studied and led to the development of Datalog. While
Datalog is a restriction of the full mathematical logic to function-free
clauses on the one hand, at the other hand Datalog extends relational
databases with recursive queries.

However, as far as we are aware of, until now the relation between
databases and Datalog for machine learning tasks has not been given
much attention. More precisely, we observe that in the development
of many relational machine learning algorithms typical properties of
databases have been disregarded: for most databases also primary
keys and foreign keys of relations are defined. These keys describe
constraints on a database. One could wonder in which ways this in-
formation can be used in ILP algorithms. One possibility is to use
the keys to restrict the search space of queries; clearly, queries that
express relations that are known to be forbidden by primary keys
should not be considered by a learning algorithm. We will formalize
this by integrating the primary key constraints in a downward refine-
ment operator, and will show that this new refinement operator has
several desirable properties in comparison with traditional operators.

Every ILP algorithm traverses a search space of clauses of a cer-
tain language in some structured way using a so-called refinement

L LIACS, Leiden University, Niels Bohrweg 1, 2333 CA, Leiden, The Nether-
lands, {snijssen, joost}@liacs.nl

operator. A downward refinement operator p is an operator that cre-
ates more specific clauses starting from very general clauses. Given
a language of clauses and a quasi-order on clauses in this language
several desirable properties for refinement operators have been iden-
tified [7]:

(1) p should be locally finite: all refinements of a clause should be
computable within finite time;

(2) pshould be complete: given a clause, every clause in the language
which is more specific according to the quasi-order should be ob-
tainable by (repeatedly) applying the refinement operator.

(3) p should be proper: after refinement, according to the quasi-order
the refined clause should always be more specific than the original
clause (and therefore never equivalent);

(4) p should be ideal: the combination of (1)-(3).

In most ILP systems, the concepts of “more specific” and “general”
are modeled using a quasi-order called #-subsumption. This choice
has a major drawback: if a refinement operator is finite and complete
under #-subsumption, it can be shown that this operator can never
be proper; as a result, it is possible that a clause is infinitely refined
without obtaining a more specific clause.

To face this problem, in [3, 4] a different quasi-order based on
subsumption was defined: subsumption under Object Identity. Under
Object Identity a clause is evaluated in a different, more restricted
way than is usual. Ideal refinement is possible under Object Identity.
In the second section of this paper, we will review both traditional
subsumption and the concept of Object Identity; we will illustrate
with several examples that the additional constraints of OI introduce
several new problems.

In the third section, we will introduce a new quasi-order and a cor-
responding downward refinement operator which promises to solve
the problems that we illustrated in the second section for function-
free (Datalog) clauses. The key feature of the refinement operator is
that it exploits primary key information. Our new way of evaluating
clauses is somewhere in the middle between evaluation under Object
Identity and ordinary clause evaluation; we therefore call our eval-
uation technique evaluation under weak Object Identity. The fourth
section provides hints on the incorporation of weak OI refinement in
ILP algorithms. Section five concludes.

2 PREREQUISITES AND PROBLEM
DESCRIPTION

We will briefly review some terminology [7] and introduce some new
concepts. A (Datalog) atom p(t1, ..., tn) consists of a relation sym-
bol p of arity n followed by n terms ¢;. A term is either a constant or
a variable. A substitution 6 is a set of the form {v1/t1,...,vn/tn}
where v; is a variable and ¢; is a term. One can apply a substitution
0 on an expression e, yielding the expression ef, by simultaneously

replacing all variables v; by their corresponding terms ¢;. An atom
set is a set of atoms; an ordered set of atoms is an atom list. A clause
is an expression of the form h « S, where h is an atom and S is
an atom set. In this paper, without loss of generality, we consider the
head h of clauses to be a fixed atom; we only consider the bodies of
clauses. Previously, two kinds of subsumption have been defined:

e Traditional 0-subsumption: an atom set S; 6-subsumes an atom
set Sy (S2 > S7) if there exists a substitution 6 such that S16 C
Sa.

e Ol-subsumption: an atom set S; Ol-subsumes an atom set So
(S2 >=or Sh) if there exists an injective substitution 6 such that
510 C S3 and 6 does not map any variable to a constant or vari-
able already occurring in S1.

Under traditional §-subsumption, two atom sets S; and Sa are con-
sidered to be equivalent (denoted by S1 ~ S2) iff S1 > S and
S >= Si. This is reasonable as one can show that: (VS’(S’ = S; —
S = S2) AVS(S" = S1 — 5 = 52)) & S1 ~ Sa; or, in words:
given two atom sets S1 and So, if it is not possible that an atom set
subsumes S7 but does not subsume S2 (or vice versa), then S; and
S are equivalent and must subsume each other.

We will illustrate these subsumption operators using predicates
that encode directed, edge labeled graphs. The assumption is that
we are interested in clauses with predicates e(G, V1, Va2, L) (which
encodes that there is an edge from vertex V; to a vertex V> with label
L) and is(L, K) (which encodes that a label L is a label in the class
K). So, our language consists of the set of predicates {e/4,is/2};
furthermore, we assume the set of constants {a, b}. The following
clauses can be expressed in this language:

Ci=p(G) < e(G,V1,Va,L1),is(L1,a),

Co=p(G) «— e(G,V1,Va,L1),is(L1,a),e(G, Vs, Va, L2),

Cs =p(G) «— (G, V1,Va,L1),i8(L1,a),e(G,Va, Vs, Ls),

Cy=p(G) «— (G, V1,Va,L1),i8(L1,a),e(G, Vs, Va, L2),
e(G, Va4, Vs, Ls),

Clause C states that a graph contains an edge of class a. Clause
() states that a graph contains an edge of class a and furthermore
contains a vertex with at least one incoming and one outgoing edge,
independent of the label. Under traditional subsumption, C'; ~ Ca ~
Cg and Cy = C1.

A well-known refinement operator [7] for traditional clauses ap-
plies the following refinements to a clause C":

o unify any pair of different variables in C by applying a substitution
that maps one variable onto another;

e substitute each variable with all possible constants in the lan-
guage;

e add a new atom different from every atom in C.

By adding new atoms in two steps, C'4 can be obtained from C. In
whatever order the last two atoms of C4 are added, however, each
intermediate clause is equivalent with C;: Co ~ C1 and C3 ~ Cj.
This refinement operator is therefore not proper. If one would decide
not to allow a refinement from C; to Cz or Cs, the operator would
not be complete: one can show that Cy cannot be refined to Cy4 in
that case.

If one applies Ol-subsumption as quasi-order, the relations be-
tween clauses are different: C4s o5 C2 =or C1 and Cy >or
C3 o1 Ci. For example, to C> one may not apply 6 =
{V3/V1,Va/Va, Lo/ L1} to obtain C1, as it maps variables to vari-
ables already occurring in C. For OI-subsumption one can obtain an

ideal refinement operator by limiting the above three refinement op-
erators: a pair of variables may never be unified; constants may only
be substituted with constants that do not already occur in a clause.
More details can be found in [3].

A different way of defining OI is to define it using traditional 6-
subsumption. We will follow this practice in this paper. Given a set
of atoms S, we define constr(S) to be the set of atoms

constr(S) = {(t1 # t2)|t1 # t2,t1,t2 € terms(S)}

where # is a binary predicate denoted in infix notation, and
terms(S) is the set of all terms occurring in atom set .S. For ex-
ample:

constr({is(L1,a),is(L1,K1)}) =
{(Ll 7& a)v (Ll 7é K1)7 (a 7’é Ll):
(a 75 K1)7 (Kl # Ll)a (Kl 75 a)}

OI-subsumption can then equivalently be defined as:

S1 =01 S2 & S1 U constr(St) = S2 U constr(Ss).

When evaluating Cly, it is clear now that {(Vi # Va),(Va #
Vi), (Vs # Va),(Va # Vs)} C constr(Cs) and {(L1 #
L3), (L2 # L3)} C constr(C4): the nodes must be different, and
also all labels must be different.

Assume now that one still wishes to find a theory for predicate p
that allows nodes to be equal, then this theory should contain several
clauses under OI:

p(G) — e(G,Vi,Va, L1),is(L1,a),e(G, Vs, Vu, L),
p(G) — e(G,Vi,Vi,L1),is(L1,a),e(G, Vs, Vu, L),
p(G) — e(G,Vi,Va, L1),is(L1,a),e(G, Vi, Va, L),
p(G) «— e(G,V1,Va,L1),i8(L1,a),e(G, Vs, Vi, L2),

for a total of 15 clauses, each of which reflects some case of variable
equality. For C4 even 52 clauses are required. One can show that the
number of clauses grows exponentially in the number of variables.
For theories in which one would like to allow equality, Object Iden-
tity can therefore be very impractical.

In some situations, there are ad hoc solutions to solve problems
caused by OI. Assume that one would like to express the following
theory with only one clause:

p(G)
p(G)

G(G, V17 V27 L1)7 iS(Lh a): e(Gz ‘/27 ‘/37 L2)7
e(G’, Vl, VQ, Ll), iS(L1, ll)7 e(G, VQ, Vg, Ll)7
then one could choose to use another predicate language. Consider a
language with predicate e/4 and a predicate ea(G, V1, V) which is

defined in terms of e and %s to express that there is an edge from 1
to V3 in label class a. The following clause can then be expressed:

p(G) — ea(G7 V17V2)36(G7 ‘/27 ‘/37-[’2);

in this clause Lo can be the same label as the label between nodes V7
and V>. However, this representation has an unwanted side effect:

p(G) — ea‘(G7 V17V2)56(Ga Vla VQle);

according to OI-subsumption, this clause is not equivalent with any
smaller clause, but by the definition of ea we know that the last atom

can be removed. We believe therefore that this construction is unde-
sirable too.

From our point of view, the best solution would be to force Object
Identity constraints only to some variables in a clause. The question
is how this can be done without loosing the desirable, ideal properties
of OL In the next section we will provide an answer to this question.

3 WEAK OBJECT IDENTITY USING
PRIMARY KEYS

We will first formally define the bias of a language with primary
keys. Immediately after the definitions, we will illustrate their mean-
ing using examples.

Definition A bias B is a tuple (P,C, K, OI, h), where P is a finite
set of predicate symbols (each of which has a unique arity arity(p)),
C a finite set of constants, I is a function which defines a set of
primary keys for each predicate p € P; a primary key is a sub-
set of {1,...,arity(p)}. OI is a function which for each p € P
defines a subset of {1,...,arity(n)} and thus partitions the argu-
ments of each predicate into OI arguments (arguments which are
part of OI(p)), and OI-free arguments (arguments which are not
part of OI(p)); h is an atom.

Definition Atom set S is constrained by primary key K € K(p) iff:

Vp(tn, .. .,tln),p(tgl, .. ,tzn) IS

(Vl c K :t; = tgi) = p(tll, .. .,tln),p(tzl, ... ,tgn).

The intuition is that in an atom set there may be no two different
atoms of the same predicate which are equal in the terms that are
part of the primary key.

We will continue with our graph example. Assume that we know that
in one direction there is at most one edge from one vertex to another,
and that an edge always has exactly one label, then we can express
this knowledge using one primary key for the predicate e:

K(e) — {{17273}}5

this key states that an edge can be identified uniquely by giving a
graph and two vertices. Following common practice in database the-
ory, we allow for multiple primary keys for each predicate; therefore,
the function /C defines a set of primary keys. The following atom set
is not constrained by the single primary key in C(e):

{C(G, V17 ‘/2711),6(G, ‘/17‘/27b)}

By OI(e) — {1,2,3} we define that the first three arguments
of e are OI arguments. Terms that are used as OI arguments, in the
example G, Vi and Va, we will refer to as OI terms. Ol-free terms
are terms that are used in Ol-free arguments, in the example constant
b.

Definition A clause C' = h « S is part of the language L£(B)
defined by a bias B iff:

e all predicate symbols in S are part of P, with the correct arity;

e all constants in S are part of C;

e S is constrained by each primary key in K;

e in S no single term is both OI and Ol-free;

e there is an order L of atoms in S (called the proper order) such
that for every atom p(t1,...,t») € S there is at least one primary
key K € KC(p) such that for every term ¢; in that key (i € K):

— t; is either a constant,
— ort; is a variable and 7 € OI(p),
— ort; is a variable and ¢; occurs in L before it occurs in A.

We call above three constraints on one key the properness con-
straints.

In our example assume furthermore that the primary key of is is
defined by K(is) — {{1,2}} and that is has no OI arguments,
OI(is) — 0; then the following clause is not in L(B):

p(G) — e(Gv V17 %,Ll),iS(L1,C1);

in the last atom C1 is new and does not occur at an OI position,
while there is no key which does not include C. For the other order
of atoms, the same problem remains. Using bias B, is atoms may
only have constants as second argument. If either OI(is) — {2} or
K(is) — {{1}} would be contained in B, the clause is part of L(B).
The technical reasons for the atom order constraint will become clear
after we have defined weak OI-subsumption. The idea behind weak
Object Identity is however that some variables, although they are not
forced to have an own ‘identity’ through Object Identity, will always
have a distinctive identity through their relation to other variables.

Definition Given two clauses C1 = hy < S1 € L(B),C2 = hy «—
So € L(B), S1 B-Ol-subsumes Sa, denoted by S2 »=5_or S, iff
Sz U constri(S2) = S1 U constri(S1), where constri(S) =
{(t1 # t2)|t1,t2 € Ol-termsp(S),t1 # t2} and Ol-termsp(S) is
the set of terms occurring in .S at argument positions ¢ of predicates
p for which ¢ € OI(p) € B.

The main difference with traditional OI-subsumption is that OI
constraints are only forced to some variables in a clause. Consider
the following clauses which are part of £(B):

02 = p(G) — e(G, Vl,Vg,Ll),is(Ll,a),e(G,V3,V4,L2),
Cs p(G) — e(G,V1,Va, L1),is(L1,a), e(G, Vs, Vi, L1),

then Cs5 >=p_or C2 while C5 ¥ o5 Ca. In comparison with tradi-
tional OL, (L1 # L2) & constrp(C2).
Now consider the following refinement operator p.

Definition Given a clause C € L(B), C' € p(C) iff C’ is con-
strained by /C and either:

o C' = (0, where 0 = {t1/t2}, t1 is a variable in terms(C'), and
t2 is one of the following possibilities:
- tois aconstantin C, t2 €OI-terms(C).

- if t1 ¢OI-termsg(C'), t2 is a variable in terms(C), t2 ¢OI-
termsg(C).

e or, 0/ = CUA, where A = p(t1,...,t,) and there is at least
one primary key K € KC(p) such that for every argument ¢; in that
key (¢ € K):

— t; is either a constant,
— ort; is a variable and ¢ € OI(p),
— ort; is a variable and ¢; occurs in C'.

In our example, C2 € p(C1), Cs € p(C2), Cs € p*(C1) and C5 €
p(C2). Our claim is now:

Theorem 1 Refinement operator p for language L(B) with quasi-
order >=pB_o1 is finite, complete and proper, and therefore ideal.

Proof Finiteness Clearly, the number of substitutions is finite (the
number of variables is finite, as well as the number of constants in
the language). Also the number of possible new atoms is finite, as-
suming that of each possible new clause only one alphabetic variant
is considered (for example, by numbering new variables in the new
atom in order of occurrence, instead of giving them names).

Properness We distinguish two cases:

e refinement by substitution. One can show that (C' U
constrg(C))0 = C6O U constrg(C0). Furthermore, one
can show that refinement by above substitutions yields a more
specific clause under traditional subsumption. Under tradi-
tional subsumption (C' U constri(C))0 is more specific than
C U constrg(C), consequently also C £p_or C.

e refinement by adding an atom. Assume that [C, A] ~g—or C.

Then there is a substitution such that exactly one atom A; €
[C, A] is mapped to exactly one atom A, € [C, A], A10 = A,
while at least A; = A or A = A. No more atoms may be af-
fected, as otherwise [C, A]6 would yield a clause smaller than C'.
Furthermore, as [C, A] is a refinement of C, A; must be differ-
ent from A, in all primary keys. Every primary key in A; must
contain an OlI-free variable that is substituted by 6.
As C'is in L(B), and the added atom A is constrained to satisfy
the properness constraints, [C', A] must be a proper atom order. In
this order, A; must satisfy the properness constraints, and there
must be a primary key in A; which contains an OI-free variable
that occurs in another atom before A1 in L. This contradicts our
observation that a substitution may only affect one atom.

Completeness We first note that any subset of a clause in £(B) also
obeys the primary key constraints. One can safely —and should—
always remove clauses that disobey primary key constraints.

Given are two clauses C1,C2 € L(B), C2 =p_or Ch; 0 is the
substitution involved in this weak subsumption. Without loss of gen-
erality, we assume that there is no alphabetic variant of C such that
the substitution involved is smaller. In this case substitution § only
maps from variables in C} to variables in C or to constants. Further-
more, only for Ol-free variables # maps from variables to variables;
it can only map to constants not in Ol-terms(C').

We claim that refinement operator p can perform all substitutions
in € in some order; therefore p*(C1) 3 C3 = C160 C C2. As C: €
L(B), there is an order L2 of atoms in C2 which obeys the properness
constraints.

We claim furthermore that p can incrementally extend C's with all
atoms in C2 — Cf3, in an order such that in each intermediate step the
atom set obeys the properness constraints. Consider the following
list of atoms: L5 = [Ls, L4], where L3 is a proper order of atoms
in C3 and Ly is the list of atoms in C3 — C5 in order of occurrence
in Lo. Given an atom A in a list L, let L(A) denote the set of atoms
occurring before A in that list (not including A). We observe that
for each A € Cy — Cs, La(A) C Ly(A). For each atom in Ly the
properness constraints are therefore obeyed; L5 is also a proper order
of C and for each atom A € Ly also [L5(A), A] € p(Ly(A)).

This construction shows that every specialization of a clause C'
can be constructed using operations in p.

4 APPLICATIONS IN ILP ALGORITHMS

Our theoretical observations of the previous section can easily be
incorporated into practical systems and refinement algorithms. In this
section, we apply our observations to the refinement of clauses using

modes. Mode refinement is a strategy taken in several ILP algorithms
[1,2,5,8,9]. Amode is a declaration of the form

m =p(ci,...,cn),

where c¢; is either 4+, — or #. Clauses are refined only by adding
new atoms according to these declarations®. Given a clause C, atom
A = p(t1,...,tn) may only be added to a clause C if a mode has
been specified such that for every 1 < ¢ < n:

e {; is a constant and c¢; IS #;
e t; is a variable not occurring in C' and ¢; is —;
e {; is a variable occurring in C and ¢; is +.

The question is in which cases this refinement operator is proper if
we take weak Object Identity as quasi-order. According to our the-
ory, a refined clause should satisfy the properness and the primary
key constraints, while OI terms and Ol-free terms must be disjoint.
A check for primary key and disjunction constraints should be per-
formed by the refinement algorithm while refining clauses according
to the modes. The properness constraint can however be checked at
beforehand. It suffices to check every mode: for at least one primary
key K € K(p) in every mode m, for every ¢ € K, ¢; should be
either # or +, orif ¢; is —, ¢ € OI(p).

Continuing our graph example where we left it, the following
modes yield a proper refinement operator:

M= {e(+,—,—, =), e(+,+,—, =), is(+, #)}.

Example clauses C1, ..., C5 can be constructed using these modes.
The refinement operator is proper, although the last argument of e
and the first argument of ¢s are Ol-free.

In many ILP algorithms, the mode principle is extended with the
notion of types. Using a description language similar to the mode
definition language, in these algorithms every argument of each pred-
icate is given a type; during query construction these types forbid
queries in which the same variable is used in arguments with dif-
ferent types. In many cases, this is a useful restriction, as it makes
queries impossible such as

p(G) — S(G, ‘/17 VQ,Ll),e(G,LhLl,Lz),

which would otherwise be generated by mode set M. As one sees
here, our mechanism of Ol-arguments and Ol-free arguments is a
special case in which only two mode types are used. Our approach
can however easily be extended to a situation with multiple types. In
that case, instead of defining OI and OI-free arguments, one has to
specify which types are considered to be OI types and which types
are Ol-free types. The argument types then force the same subdivi-
sion between OI and Ol-free arguments as we discussed here, and
force some additional restrictions on top of that.

In order to gain some further insight in the benefits and draw-
backs of weak Object Identity, we implemented this mode refine-
ment with types under weak Object Identity in the multi-relational
frequent query data mining algorithm FARMER [9, 10]; more infor-
mation about frequent query miners can also be found in [2, 11].
Contrary to most other ILP algorithms which perform a heuristic
search [1, 5] these algorithms perform an exhaustive search in which
all queries are found that are satisfied by a large enough number of
examples in a database, where ‘large enough’ is defined by a thresh-
old value. Similar to other algorithms, they perform this task in an

2 The refinement operator is therefore certainly not complete.

iterative two-phase procedure which consists of a query generation
phase first, and a query evaluation phase next. To reduce the num-
ber of queries that needs to be evaluated FARMER uses a refinement
algorithm which, as much as possible at least, joins two previously
evaluated queries in stead of extending one single query.

Our testcase is the molecular PTE [6] dataset which con-
sists of 320 molecules. We conceive the molecules as undi-
rected graphs with labels on both the edges and the nodes.
In our first experiment we are interested in finding fre-
quent induced subgraphs, which can be expressed using
modes {bond(+, +, —, #), bond(+, +, +, #), atom(+, +, #),
atom(+, —, #)} and keys {K(bond) — {{1,2,3}}, K(atom) —
{{1,2}}}. A query within the search space is for example:

p(M) «— atom(M, Ai,c),bond(M, A1, Az, single),
bond(M, Az, A1, single), atom (M, Az, c),

and denotes two carbon atoms connected by a single bond. Please
note that for this particular problem setting we do not strictly require
an ILP algorithm. There are several frequent graph miners which
can also be applied to this setting [12, 13]. Furthermore, within the
framework of full OI De Raedt et al. also recently proposed [11]
to use additional constraints to restrict the search space of frequent
query miners, including the possibility of using primary keys.

We first evaluate all types under Object Identity. Thus, the effect
of introducing primary keys is isolated. Results are shown in Table 1;
as one sees here, the relative number of avoided queries is low; the
source of this phenomenon is the effective refinement algorithm of
FARMER: if no primary keys are specified, infrequent combinations
of atoms are still quickly discovered and used to avoid the further
generation of useless combinations.

Absolute Number of Total number Number of
threshold | avoided queries of evaluated queries frequent queries
30 4749 141881 1065
20 9741 311343 2343
10 96447 4325893 22786

Table 1. Overview of query evaluation savings using primary keys.

For the PTE dataset, it is also interesting to consider different
kinds of frequent patterns. For example, it is known that when a
limited number of carbon atoms is replaced by nitrogen atoms in
a molecule, its chemical properties do not change significantly.
Nitrogens and carbons can therefore be put into an equivalence
class. In an ILP algorithm one can easily formalize this by adding a
predicate nc(T') to the knowledge base, where nc(c) is true for the
elements ¢ and n, and false for all other elements; the bias would
become {bond(+,+, —, #), bond(+, +, +, #), atom(+, +, #),
atom(+, —, #), atom(+, +, =), atom(+, —, =), nc(+)}. Con-
sider the following query:

p(M) — atom(M, A1, T),nc(T),bond(M, A1, Az, single),
bond(M, Az, A1, single), atom (M, Az, c).

Under full OI, T" would be restricted to nitrogen! Within our frame-

work, however, it is possible to remove the OI constraint from 7" very

naturally, after which the semantics of the query are as expected. Ta-

ble 2 gives a short overview of the resulting numbers of queries. Only

when one adds the nc predicate with weak OI, the number of frequent
queries increases exactly as desired.

S CONCLUSIONS

We have shown that both traditional subsumption and Object Identity
subsumption have undesirable properties. While for traditional sub-

Absolute Number of frequent queries
threshold | without nc with ne, OI with ne, weak OI
150 61 63 1852
125 65 74 1873
100 71 137 3648
75 163 262 8521

Table 2. Number of frequent queries discovered.

sumption no ideal refinement operator exists, Object Identity restricts
the expressiveness of single clauses too much. We propose a solution
by restricting full clausal languages to languages that do not violate
primary key constraints. In most situations, this is a very desirable
restriction as it restricts the full clausal language to expressions that
make sense from a human user point of view. For these more re-
stricted languages, we have given a proof which convinces us that,
using a weak subsumption operator, it is not necessary to force Ob-
ject Identity on all variables to obtain an ideal refinement operator;
this allows single clauses to express more interesting patterns.

As our restricted language can be as large as a full clausal lan-
guage —in this case our weak OI subsumption becomes full OI
subsumption— our setup is a generalization of traditional Object
Identity. Weak subsumption is exactly in the middle between tradi-
tional subsumption and OI subsumption.

Thus, we have shown how concepts from relational database the-
ory can also be used for other useful purposes than the reduction
of the number of evaluated queries. Several questions have however
been left unanswered. On the theoretical side, it would be interesting
to investigate how other constraints, such as foreign keys and par-
ticipation constraints, but also more general constraints [11], can
be exploited further. Similar to primary keys, these constraints can
also restrict the search space of ILP algorithms; the relations between
these constraints and refinement operators deserve further study. On
the practical side, we have evaluated weak OI here in the context
of frequent query mining and concluded that the capabilities of pri-
mary keys to limit the search space may be limited. We would expect
different results in learners that use more traditional refinement op-
erators, but further experiments would have to confirm this.

REFERENCES

[1] H. Blockeel and L. De Raedt. Top-down Induction of Logical Decision
Trees, 1997.

[2] L. Dehaspe and H. Toivonen. Discovery of frequent Datalog patterns. In:
Data Mining and Knowledge Discovery 3, no. 1., pages 7-36, 1999.

[3] F. Esposito, N. Fanizzi, S. Ferilli and G. Semeraro. A generalization
model based on Ol-implication for ideal theory refinement. Fundamenta
Informaticae, 47:1533, 2001.

[4] FA. Lisi, S. Ferilli and N. Fanizzi. Object Identity as Search Bias for
Pattern Spaces. In: Proceedings of the Fifteenth European Conference
on Artificial Intelligence (ECAI-2002), pages 375-379, Lyon, 2002.

[5] S. Muggleton. Inverse entailment and Progol. In: New Generation Com-
puting, 13:245-286, 1995.

[6] http://web.comlab.ox.ac.uk/

oucl/research/areas/machlearn/PTE/

[7]1 S.-H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic
Programming. LNAI 1228. Springer, 1997.

[8] S.Nijssen and J.N. Kok. Faster Association Rules for Multiple Relations.
In: IJCAI-01, pages 891-896, 2001.

[9] S. Nijssen and J.N. Kok. Efficient Frequent Query Discovery in Farmer.
In: PKDD-2003, 2003.

[10] http://hms.liacs.nl

[11] L. De Raedt and J. Ramon. Condensed Representations for Inductive
Logic Programming. In: KR-2004, 2004.

[12] T. Washio and H. Motoda. State of the Art of Graph-Based Data Mining.
In: ACM SIGKDD Explorations, pages 59—68, 2003.

[13] X. Yan and J. Han. gSpan: Graph-Based Substructure Pattern Mining.
In: Proceedings of the 2002 International Conference on Data Mining
(ICDM2002), 2002.

