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Abstract. In this paper, we proposea new visual learningmethod
for real-world objectrecognitiontask.Ourmethodis basedontheSet
CoveringMachine(SCM),to makethelearningtimeshorterthanthe
methodsbasedoncommonlyusedtrial-and-erroralgorithms,suchas
geneticprogrammingandreinforcementlearning.Generally, thepro-
cessof visual learningis quite time-consumingbecauseimagedata
consistsof large amountof information.We attemptto reducethe
learningtime by introducingthe effective featureselectionmethod
to find a small numberof useful featuresin imagedata.Addition-
ally, we introduceda criterion basedon the Minimum Description
Length(MDL) principle to refinethehypothesis.We performsome
experimentsto verify theeffectivenessof our method.

1 Intr oduction

Visual learning [5] is widely studied to aquire information and
knowledgefrom imagesfor variousobjectrecognitiontasks.How-
ever, therearesomeopenproblemsfor visual learning.Firstly, most
of thesemethodsarebasedonthetrial-and-errorlearningalgorithms,
such as geneticprogramming[4] and reinforcementlearning [9].
Thesemethodsrequirea largeamountof time to searchfor theop-
timal solution.In addition,the learningprocessis nondeterministic
anddependsonrandomnessto someextent.Thus,theresultof learn-
ing canberatherunstable.Secondly, specializedknowledgeis often
requiredto constructthelearningalgorithm.That is, it is difficult to
constructa general-purposealgorithm for visual learning.Thirdly,
visual learninglearnsbasedon the intensityof eachpixel in an im-
age.Thus,it is quitetroublesomeandtime-consumingto find useful
informationfrom thedatabecausethenumberof pixels in animage
is very largeeven if thesizeof the imageis not very large.Finally,
somepreprocessingis requiredfor the input imagedata.It is very
onerousto preprocessall theinput imagedata.

In this paper, we proposea visual learningmethodusingthe Set
CoveringMachine(SCM) [7][8]. SincetheSCMworkswithout trial
and error, the cost of searchingthe optimal solution is relatively
small andthe resultof learningis stable.Additionally, the SCM is
a general-purposelearningalgorithm.It is applicableto a varietyof
visual learningtaskswithout domain-specificknowledgeandimage
preprocessing.

To make our methodefficient, we introducea featureselection
methodto reducethenumberof attributes(i.e. pixels).We definean
estimationfunctionto evaluatetheusefulnessof anattributeandse-
lect a small numberof usefulattributesby the estimationfunction.
By doingthis, thecomputationalcomplexity canconsiderablybere-
duced.In addition,we proposethe adaptive learningmethodbased�
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ontheMDL principleto make thehypothesisconcise.Weattemptto
reducethecomputationalcomplexity andmake thehypothesisaccu-
rateby introducingtheadaptive learning.Weverify theusefulnessof
ourmethodby someexperiments.

2 SetCovering Machine (SCM)

TheSCM[7][8] is ageneral-purposelearningalgorithmthatis appli-
cablefor variouslearningtasks.TheSCMtakesasetof � examples��� ���	�
���� ����� �	� � ���������� ����� ��� � � asthetrainingset,whereeach

���
is a � -dimensionalvectorandeach � � is a classlabel, which is an
elementof thelabelspace������� �� �! .

In theSCM,a Boolean-valuedfunction " � is definedfor eachex-
ample

���
. " � is calledfeature. A featureis a classifierto bedefined

as:

" �$# % ��� ��&�'$(�)" % ��� � � � � � * � �,+.-�/0��� � ��� �2143� �,5�687:9<;	= +?> 9 (1)

where, � � denotesthe Booleancomplementof � � , and
/0��� � ��� � de-

notesthedistancebetweenthesetwo examples.Equation(1) means
thatif thedistanceis equalto or lessthansomerealvalue 3 , thefea-
ture " �$# % outputs� � , otherwise� � . Whenthereis noambiguityabout3 , weabbreviate " �$# %@��� � to " �	��� � .

The hypothesisA ��� � of the SCM is expressedas a logical for-
mula.It is representedby conjunctionsor disjunctionsof featuresas
follows:

A ��� � � *CB ��DFE " �8��� � - 5�;HGJI�5FKFLNM:K:I6 + 5FKO ��DFE " �8��� � - 5�;HGQP +R> LNM:KSI<6 + 5TK (2)

For theconjunctioncase,A ��� � �  , if " � ��� � �  for all U , otherwiseA ��� � �V� . For thedisjunctioncase,A ��� � �V� , if " �8��� � �V� for all U ,
otherwiseA ��� � �  .

To generatean accuratehypothesis,useful featuresmust be se-
lected.In theSCM,theusefulness of afeatureis definedto determine
usefulfeatures.TheusefulnessWYX of feature" is definedasfollows:

WYX &�'$(�CZ [\X]ZF^`_ � Z abX]Z (3)

where,in a conjunction(disjunction)case, Z [\X]Z denotesthe num-
berof negative (positive) examplesthatarecorrectlyclassifiedby " ,
and Z acX0Z denotesthenumberof positive(negative)examplesthatare
misclassifiedby " . The penaltyvalue _ is definedfor the tradeoff
betweentheaccuracy on thetrainingdataandthecomplexity of the
hypothesis.A hypothesisconsistsof thefeaturesthatareselectedin
descendingorderof theirusefulness.



3 Visual Learning with SetCovering Machine

Thelearningprocessof ourmethodmainly consistsof threecompo-
nents(seeFigure1). First, imagefiltering to extract usefulfeatures
of imagesto generatean accuratehypothesis.Thereare 17 filters
usedin our method,consistingof Intel ImageProcessingLibraries
[1] andOpenCVLibraries[2]. Second,learningwith theSCMto get
a hypothesis.Third, evaluationof hypothesesgeneratedby eachfil-
teringto find thebestfilter. Thelearningproceedsby repeatingthese
threeoperationsd times,thenfinally outputsa final hypothesis.d
is thenumberof filtersappliedto thetrainingimages.Theparameter
is givenby theuser. Thefinal hypothesisA2ef is thehypothesiswhich
hasthehighestvalueof theevaluationfunctionamongthehypothe-
sesgeneratedduringthelearningloop (step2 to step5 in Figure1).
Thus,thefinal hypothesisA ef is givenby:

A2ef � G�;8gThiGkjl Dnm l8o # p p p # l	qsrHt � A � (4)

where,t is theevaluationfunction(definedlater).

1. Input trainingimages,and
/vu  .

2. For all filters,geta hypothesiswith theSCM.
3. Evaluateeachhypothesiswith theevaluationfunction.
4. RetainthebesthypothesisAkw whichhasthehighest

valueof theevaluationfunciton.
5. If

/ �Vd , thengotostep6.
ElseApply thebestfilter to all thetrainingimages,/xuy/bz  , andgotostep2.

6. Outputthefinal hypothesisA{ef whichhas
thehighestestimationvalue.

Figure 1. Thelearningprocessof ourmethod.

Our methodusesraw imagesasinput data.An imageconsistsof��| U /~} "���"]��U��
" } � pixels. Provided that an imageis a gray scale
image,eachpixel hasthedepthin bits. Its intensityis expressedby
a scalarvalue.The intensityof a � -bit depthpixel rangesfrom 0 to�F� ^  . Thus,anexampleis representedas

��� �	�S� , where
�

is avector
of theintensityvaluesand � is a classlabel.

We choseto constructa hypothesiswith conjunctionsof features
for thefollowing two reasons:First, it is reportedin [7] and[8] that
thedifferencebetweenconjunctionanddisjunctioncasein theaver-
ageclassificationaccuracy is not significant.Second,the computa-
tionalcomplexity is almostequalbecausethealgorithmsof conjunc-
tion anddisjunctioncasearesymmetrical.For ourmethod,wedefine
afeature" ��# �# % by thedistancebetweentheintensityof the � -th pixel
of two examplesasfollows:

" �$# �# % ��� � &�'$(��" % ��� � � � �$# � � � * � ��+?- Z �:� ^ ����# � Z 143� ��5F687:9;	= +R> 9 (5)

where,
� �

denotesthe intensity of the � -th pixel. We abbreviate" ��# �# %n��� � to " ����� � whenthereis noambiguityabout� and 3 .
We fixed the penaltyparameter_ in equation(3) to � because

this parametersettingsimplifies the procedurefor constructingthe
hypothesis.By this setting,thefeaturesthatmisclassifyoneor more
positive examplesare never selected.Thus, a hypothesisconsists
only of the featuresthatcorrectlyclassifyall thepositive examples.
In ourmethod,ahypothesiscorrectlyclassifiesall thetrainingexam-
plesif the two examplesthat have the sameintensityvaluesfor all
pixelsandhave oppositeclasslabeldo notexist.

Tomakeourmethodefficient,weaddressthefollowing fourpoints
anddiscussthesepointselaborately.

1. Find a small numberof useful featuresto reducethe computa-
tional complexity.

2. Evaluatehypothesesto find thebestfilter to beapplied.
3. Searchthebestsequenceof filters efficiently.
4. Extendthealgorithmto solve multi-classproblems.

3.1 Feature Selection

In caseof thefirst point,we presentthemethodto selectusefulfea-
turesby evaluatingthe usefulnessof eachattribute.The numberof
possiblefeaturesis �x_ , where � is the numberof training exam-
plesand _ is the numberof attributes.The numberof attributesis
very largeeven if an imageis not very large.However, the number
of useful featuresis small comparedwith that of uselessfeatures.
Thus,the computationalcomplexity to find usefulfeaturestendsto
beexcessively high.Generally, themorethecomputationalcomplex-
ity increases,the learningtime becomeslonger. Hence,thecompu-
tationalcomplexity canbereducedconsiderablyby selectinguseful
attributesto reducethenumberof possiblefeatures.

Figure2 (a) is anexampleof a usefulattribute.In this case,posi-
tive andnegative examplesareseparable.Thus,all theexamplesare
correctlyclassifiedby only onefeature.In contrast,in caseof Figure
2 (b), it is impossibleto correctlyclassifyall theexamplesbecause
therearetwo examplesthathavethesameintensityvaluesandoppo-
siteclasslabels.Moreover, it is obvious thateven if theseexamples
areeliminated,theremainderis not separableby onefeature.

intensity

positive example (y = 1)

negative example (y = 0)

(a) useful attribute

(b) useless attribute

intensity

Figure2. A usefulattributeandauselessattribute.

Weusethestatisticsof thetrainingexamplesasthecriterionof the
usefulnessof anattribute.If thevariancesof thepositiveandnegative
examples’intensityvaluesaresmall, and the distancebetweenthe
meanintensityvaluesof thepositiveandnegativeexamplesarelarge,
thenthetwo classeswill beseparable.Thus,wedefinetheusefulness� � U � of the U -th attributeas

� � U � � �
� � U �

�
�� � U � z �

�� � U � (6)

where, �
� � U � , �

�� � U � and �
�� � U � arethevarianceof meanintensityof

eachclassof the U -th attribute,andvariancesof the U -th attribute’s
intensityof thepositive andnegative examplesrespectively. Thatis,

�
� � U � � ���s� U � ^ � � � U �	� � zV���H� U � ^ � � � U �	� � (7)

�
�� � U � � ��� D � ��� � ^ � � � U �	�

�
� � (8)

�
�� � U � � � � D � ���0� ^ � � � U �	�

�
� � (9)



where,�0�
: the U -th attribute’s intensityof example

���� ���
: thesetof positive [negative] examples� � � � � � : thenumberof positive [negative] examples� � � U �� � � � U �� G�K]P �H� U � :

themeanvalueof the U -th attribute’s intensityof
positive,negative,andall examples,respectively.

In our method,if thenumberof possiblefeaturesis large,only a
few featuresthathave highusefulnessareusedto generateahypoth-
esis.The numberof features� to be usedis determinedbasedon
thenumberof thetrainingimages.Themaximumnumberof features� ����� includedin thehypothesisof theSCM is givenby

� ����� � hiGkj � � � � � � z  k!n� (10)

Hence, � ����� featuresareconsiderdto be sufficient to generatea
hypothesisandwe define � as

� &<'�(� h + K �F� ����� �� :! (11)

where,   is thenumberof attributesof the training images.Thehy-
pothesis¡ ��� � consistsof � selectedfeatures¢ � ��� ��������� ¢~£ ��� ��¤��" � ��� ������<��� " �H¥ ��� �8! , andis givenby

¡ ��� � � £¦�¨§ � ¢ � ��� �� (12)

3.2 Evaluation of Filters

For thesecondpoint,we defineanevaluationfunctionbasedon the
informationgain [10] to measurethe usefulnessof a filter. The in-
formation gain is a measurementto determineuseful attributesto
efficiently classifythetrainingexamples.It is usedfor decisiontree
learningalgorithmssuchasC4.5[11]. Thoughtheinformationgain
is usuallycomputedfor anattribute,in our method,the information
gain is computedto evaluateall featuresincludedin a hypothesis.
Since the information gain is the differencebetweenthe entropy
of the ( U	^ 1)-th featureand the weightedmeanof the entropy of
the U -th feature,we definethe informationgain for the U -th feature
( U��  F� � �������<� � ) that

©   U$� � " � �Y&�'�(� t � }NªF« _ � � " ��¬ � � ^ � ^® �� ^® ��¬ � t � }�ª�« _ � � " � � (13)

where, � denotes the number of generated features, andt � }NªF« _ � � " � � denotesthe entropy of the set
�$¯±° � � � , where

¯
is

the training setand
� �

is the setof negative examplesthatarecor-
rectlyclassifiedby features" �����<����� " ��¬ � . Theentropy t � }�ª�« _ � � " � �
for the U -th feature( U��V� �� T� � ��������� � ) is givenby:

t � }�ª�« _ � � " � � � ^ � �� ^² ��³ 5Fg �
� �� ^´ �

^ � � ^® �� ^´ � ³ 5Fg �
� � ^® �� ^´ � (14)

where, �
: thenumberof trainingexamples� � : thenumberof negative examples
correctlyclassifiedby the U -th feature" �

 � : thesumof � �������<��� � � , thatis �
��§ � � � ,

and Tµ is definedto be0.

We definethe evaluationfunction t asthe weightedsumof the
informationgainof all thefeaturesasfollows:

t &�'$(�
�¶ �·§ � �

�� � ©   U$� � " � �� (15)

3.3 Search for the BestSequenceof Filters

For thethird point,weintroduceamethodto efficiently searchfor the
bestsequenceof filters. The learningprocessof our methodcanbe
regardedasasearchfor thebestsequence(or combination)of filters.
Thereare � f possiblesequencesof filters, andthe searchspaceis
representedasa treestructureshown in Figure3. In Figure3, the
nodesin U -th deptharethecandidatesfor the U -th filter.

depth = 1 filter 1 filter 2 filter n

filter 1 filter 2 filter n. . .depth = 2

. . .

. . .

. . .

filter 1 filter 2 filter n. . .depth = D

.
... ...

..
...

... ... ...

. . . . . . . . . . . .

.

.

.

E = 0.25
E = 0.10 E = 0.05

Figure 3. Thetreestructureof thesearchspace.

The treeconsistsof �
f�·§ µ � � nodesincluding leafs,where � is the

numberof filters. Sincethe numberof nodesin the tree increases
exponentiallyas d increases,searchingtheoverall nodesof thetree
requiresquitelargeamountof time.

Hence,we use beam search which is commonly usedfor effi-
cient searchto reducethe computationalcomplexity by restricting
thesearchspace(i.e. the numberof nodes).The maximumnumber
of nodesretainedby beamsearchis calledbeam width. If thenum-
ber of nodesto be retainedis larger thanthe valueof beam width,
then beamsearchdoesnot openthe nodeswhich haslow estima-
tion values.If a certainnodehasa low estimationvalue, then its
child nodesalsoseemto have low estimationvalue.Thus,by apply-
ing beamsearch,thenodesthathave low estimationvalueswill not
beopened.For example,in Figure3, the node“filter 2” at depth1,
whosevalueof t is 0.10andthe node“filter � ” at depth1, whose
valueof t is 0.05will notbeopened.

3.4 Extensionto Multi-class Problems

For the fourth point, we describethe methodto solve multi-class
problems.Sincethe SCM originally solvesonly binary (two-class)
problems,when a classificationproblem containsmore than two
classes,we mustextendtheSCM to solve multi-classproblems.To
dealwith multi-classproblems,weusedtheone-against-all method.
In theone-against-allmethod,̧ hypothesesareobtainedby execut-
ing the learningalgorithm ¸ times,where ¸ denotesthe numberof



classes.The U -th hypothesisis generatedby regardingall of theex-
amplesthat belongto the U -th classas positive examples,and the
remainderasnegative examples.

4 Experiments

We performedsomeexperimentsusingthe syntheticapertureradar
(SAR) datasetin theMSTAR SAR database[3]. The learningtask
is to recognizethe SAR imagesof the threedifferent objects(i.e.
classes):BMP-2 ArmoredPersonnelCarrier, BTR-70ArmoredPer-
sonnelCarrier, andT-72Main BattleTank.Weused585images,and
thesetof imageshasbeensplit into disjoint trainingsetandtestset.
All imagesin the trainingsetandthe testsetareregardedasa gray
scale(8-bit depth)image,andresizedto 48 � 48pixels.

Wecarriedoutsomeexperimentsandtheresultsareshown in Fig-
ure 4. For the confirmationof the effectivenessof featureselection
andbeamsearch,we show the resultswith four differentsettings:
theresultswith featureselectionandbeamsearch(featureselection
+ search),with featureselectiononly (featureselection),with beam
searchonly (search),andwithout featureselectionandbeamsearch
(none).We fixedthevalueof beam width to 10.

55

60

65

70

75

80

85

0 5 10 20

A
cc

ur
ac

y(
%

)

D

feature selection + search
feature selection
search
none

0

20000

40000

60000

80000

100000

5 10 20

Le
ar

ni
ng

 T
im

e 
(s

ec
)

D

feature selection + search
feature selection
search
none

Figure4. Theresultsof experiments.

Comparedwith theresultswithout featureselection,the learning
timeis considerablyshortenedby featureselection,whereastheclas-
sificationaccuracy is almostequal.By using featureselection,the
numberof featuresusedto generatea hypothesisis reducedfrom
2304to 98. It is obvious thatusefulfeaturesareselectedby feature
selection.With asmallnumberof features,it is possibleto generatea
hypothesiswhich is asaccurateasthehypothesisgeneratedby using
all the attributes.From the results,it canbe said that beamsearch
is effective to improve theclassificationaccuracy, but thesearchre-
quiresrelatively long learning time. Provided that beamsearchis

carriedout, the classificationaccuracy with d¹�  � is fairly high
comparedwith the classificationaccuracy with dº�C» . However,
theclassificationaccuracy with d)� � � is almostequalto theclas-
sificationaccuracy with d¼�  � . This implies that to someextent
theclassificationaccuracy increasesin proportionto thevalueof d .
However, assigningtoohighavalueto d will makethelearningtime
quitelong.Moreover, it will notfurtherimprovetheclassificationac-
curacy of thehypothesis.Thus,we musttake into considerationthe
tradeoff betweentheclassificationaccuracy andthelearningtime. It
is desirableto find somecriterionto determinetheoptimalparameter
setting.

5 Adaptive Learning Basedon the MDL Principle

In our method,theSCM continueslearninguntil thereareno more
negative trainingexamplesthatcanbecorrectlyclassified.A feature
that correctly classifiesmany negative training examplesgenerally
makesahypothesisaccurate.In contrast,afeaturethatcorrectlyclas-
sifiesfew negative trainingexamplesis generallyuselessto generate
anaccuratehypothesis.

Hence,we proposeto introducethe adaptive learning into our
method.To put it concretely, in the step3 of Figure1, the hypoth-
esisis evaluatedwith acostfunction.If thevalueof thecostfunction
of thehypothesisis higherthanthatof theprevious hypothesis,the
SCM stopslearning(i.e. go to step6). By introducingthe adaptive
learning,theimprovementof ourmethod’s performanceis expected.

We definedthecostfunction ½ basedon thestochasticcomplex-
ity of theMDL principle[6]. TheMDL principleprovidesacriterion
for thetradeoff betweenthesimplicity of themodelandthemodel’s
fitnessfor the data.Oneis calledmodel description length andthe
otheris calleddata description length. On onehand,thesimplerthe
model,thesmalleris themodeldescriptionlength.Ontheotherhand,
thebetterthemodel’s fitnessfor thedata,thesmalleris thedatade-
scriptionlength.In our case,themodeldescriptionlengthincreases
in proportionto the numberof featuresandtraining examples.The
datadescriptionlengthis proportionalto therateof misclassification.
The MDL principle assertsthat the bestmodelposesthe minimum
valueof the sumof the modeldesciriptionlengthandthe datade-
scription length.By introducingthe MDL-basedcriterion into our
method,uselessfeatureswill beexcludedfrom thehypothesis,then
ourmethodcanbeimproved.

Thecostfunction ½ � " � � of the U -th featureis definedas

½ � " � ��&�'�(�¾�¿d � " � � z dÀd � " � � (16)

where, ��d � " � � and dÀd � " � � arethemodeldescriptionlengthand
thedatadescriptionlengthof the U -th featuredefinedas

�¿d � " � �Á&�'$(� U� ³ 5Tg � � (17)

dÀd � " � � &�'$(�
�¶ �<§ � � � ³ 5Fg � �

�� �
^ � � � ^® � � ³ 5Fg � � � ^² ���Â ^®U � � � (18)

where,
Â

is the estimationof the numberof featuresto be included
in the hypothesis.Sincethe valueof A � U � � � � � ^Ã � � tendsto
decreaseexponentiallyas U increases,we estimatethe valueby the
function A � U � �   ��Ä � ^  . Thecoefficients   and Å aredetermined
by the two conditions: A � � � � � � � A �  k� � � � ^�� � . Thus,we
defined

Â
experimentallythat



Â &�'$(� ³ K � � � z  k�³ K � � � z  �� ^ ³ K � � � ^²� � z  k� (19)

here,³ K � denotesthenaturallogarithmof
�

, and A ��Â � �V� .
We performedsomeexperimentsusingthesamedatasetandthe

sameparametersettingsas the experimentsin section4. To ver-
ify whetherthe adaptive learningimproves the performanceof our
method,we show the resultswith four differentsettings:theresults
with adaptive learningand beamsearch(adaptive + search),with
adaptive learningonly (adaptive), with beamsearchonly (search),
andwithoutadaptive learningandbeamsearch(none).For all exper-
iments,featureselectionwascarriedout. The resultsareshown in
Figure5.
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Figure5. Theresultsof experiments.

By introducingadaptive learning,theaveragenumberof features
includedin the hypothesisreducedfrom 27.7 to 13.3,andthusthe
learningtime alsoreducedby 20 Æ 30%.It is clearfrom theresults
that the reductionof the numberof featuresis effective to reduce
the computationalcomplexity. However, the classificationaccuracy
did not changefor all experiments.This result implies that the fea-
tureswhich correctlyclassify few negative training exampleshave
smallinfluenceto overall classificationability of thehypothesis.The
parameter

Â
may be connectedwith the performanceof the adap-

tive learning.Thenumberof featuresincludedin thehypothesisde-
creasesin proportionto thereductionof

Â
, andthevalueof

Â
some-

timesunderestimated.Morepreciseestimationof thevalueof
Â

may
be effective to improve the adaptive learningmethod.From the ex-
perimentalresults,it is implied thattheadaptive learningis effective
in improving thecomputationalcomplexity of ourmethod.

6 Conclusionsand Futur eWork

We have proposedthe visual learningmethodby the SCM algo-
rithm [7][8] and introducedthe effective featureselectionmethod.
Additionaly, wehave introducedthebeamsearchto reducethecom-
putationalcomplexity. We have verified by someexperimentsthat
featureselectionconsiderablyshortensthelearningtime without the
degradationof theclassificationaccuracy. Weconfirmedfrom there-
sult that featureselectionenablesto find only appropriateattributes
whichmakethehypothesisaccurate.Thus,ourmethodis effective in
learningtime comparedwith commonlyusedtrial-and-error-based
algorithms.Sincethesearchmakesa hypothesismoreaccurate,our
methodis alsoeffective in classificationaccuracy.

Thoughour methodis highly efficient, we did not find the opti-
mal parametersettingsfor the maximumnumberof filters d and
beam width for thetradeoff betweentheclassificationaccuracy and
thelearningtime.While it is verydifficult to find theoptimalparam-
eter settingsbecausethe optimal settingsgenerallydependon the
givendataset,we shoulddefinesomecriterionfor thetradeoff.

Sincethe imagesin the SAR dataset are rathernoisy, we con-
firmed from the resultsof experimentsthat our methodworks well
for noisy data set. However, it is not sufficient to prove that our
methodis robust to noisy data.We shouldcarry out more experi-
mentsusingnoisydatasetandmake our methodstabler.

In chapter5, we have introducedtheMDL-basedcostfunctionto
improve theperformanceof our methodby eliminatinguselessfea-
tures.By usingthecostfunction,thesearchfor featuresis terminated
at the properpoint, thenthe hypothesisconsistsof only usefulfea-
tures.As aresult,thelearningtimeis shortenedandtheclassification
accuracy is not changed.

Finally, our methodconstructsa hypothesisusing conjunctions
of featuresbecauseconjunctionsanddisjunctionsarealmostequal
in averageclassificationaccuracy [8]. However, it is possiblethat
disjunctionsachieve higherperformanceon particulardatasets.We
shouldconfirmwhethertheperformancecanbe improvedwith dis-
junctionsandfind a criterion for makinga selectionfrom conjunc-
tionsanddisjunctions.
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