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Abstract. In the past, Markov Decision Processes (MDPs) have
become a standard for solving problems of sequential decision under
uncertainty. The usual request in this framework is the computation
of an optimal policy that defines an optimal action for every state of
the system. For complex MDPs, exact computation of optimal poli-
cies is often untractable. Several approaches have been developed to
compute near optimal policies for complex MDPs by means of func-
tion approximation and simulation.

In this paper, we investigate the problem of refining near optimal
policies via online search techniques, tackling the local problem of
finding an optimal action for a single current state of the system.
More precisely we consider an on-line approach based on sampling:
at each step, a randomly sampled look-ahead tree is developed to
compute the optimal action for the current state. In this work, we
propose a search strategy for constructing such trees. Its purpose
is to provide good ”anytime” profiles : at first, it quickly selects a
good action with a high probability and then it smoothly increases
the probability of selecting an optimal action.

1 INTRODUCTION

Solving complex Markov Decision Processes (MDPs) usually re-
quires an off-line approximation of the optimal value function. The
greedy policy defined by this value function is then exploited on-line.
Several approaches have been developed by Artificial Intelligence
and Machine Learning communities to efficiently compute near op-
timal value functions e.g.structure-basedmethods[3], reinforcement
learning[16, 2].

However, when the state space is huge and when no efficient struc-
tured representation is known, the calculation of an accurate value
function is often a hard task. In this paper, we investigate the idea of
replacing the greedy exploitation of an approximate value function
by a search technique : for the current state� � a search tree is devel-
oped over somereceding horizon. From this tree we will compute an
action for the current state. This action is then applied andthe system
evolves to a new current state (see Figure 1). Deriving a greedy pol-
icy from a value function is equivalent to a depth� search. We can
expect to improve that policy at the expense of a deeper search. This
idea has been widely and successfully applied to two-playerperfect
information games like chess [5].

For complex MDPs, performing a lookahead search to compute
an optimal action for a single state might be difficult, in particular
when the model of the dynamics is unknown or when the number
of possible successors of a state (i.e. the branching factorin terms�
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of tree search) is huge. A common approach in reinforcement learn-
ing to overcome these difficulties consists in using asimulatorof
the system. Computations are then performed over sampled states
and rewards. Kearns et al [11] have provided a theoretical foundation
for combining simulation and on-line search. Their algorithm builds
randomly sampled trees defining a stochastic policy. This approach is
very appealing since it allows to tackle arbitrarily large MDPs given
only a simulator of the system.

The price to pay for this generality is that the number of calls
to the simulator required by Kearns et al’s basic algorithm is of-
ten extremely large. This makes the algorithm impractical in many
cases. In this work, we propose a heuristic search strategy for effi-
ciently constructing such sampling based trees. It consists in repeat-
edly following trajectories from the root state to the leaf states while
gradually increasing the receding horizon. Incidentally,we study un-
der which conditions the anticipation is beneficial, bringing to the
fore lookahead pathologies. A lookahead is pathological if looking
deeper aheadincreasesthe chances of choosing a suboptimal ac-
tion. We theoretically and empirically show that pathologies occur
when inappropriate search control is used. On the contrary,our con-
trol strategies ensure a good “anytime” behavior.
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Figure 1. On-line search with receding horizon

The organization of the rest of the paper is the following : insec-
tion 2, we introduce the MDP framework and review relevant back-
ground for solving MDPs on-line. In section 3, we analyze lookahead
pathologies and describe our trajectory-based strategy. Section 4 pro-
vides experimental results obtained for a sailing problem.

2 ON-LINE SEARCH FOR SOLVING MARKOV
DECISION PROCESSES

2.1 Markov Decision Processes

In few words, an MDP [15] is defined by a five-tuple�� � � � 	 � 
 � � �
where

�
is the set of every possiblestatesof the



system,
�

is the set ofactionsthat can be applied to it,
	

is the dis-
crete set ofinstantsat which decisions can be made, that is theglobal
temporal horizonwhich can be finite or infinite;



defines thetran-

sition probabilitiesbetween any pair of states in
�

after executing an
action in

�
;

�
defines thelocal costsassociated with these transi-

tions. Solving an MDP consists in computing anoptimal policy, that
is a function � that associates with any state� � �

anoptimal ac-
tion  � � � � , that is an action that minimizes theexpected global cost
on the remaining temporal horizon. This global cost may be defined
as thesum, thediscounted sum, or themean valueof the local costs
that are associated with the actual transitions.

The MDP theory assigns to every policy a value function� � ,
which associates to every state� � �

the expected global cost� � � � � ,
obtained by applying in � . Bellman’s optimality equations(see
Equation 1) characterize in a compact way theunique optimal value
function � � , from which anoptimal policy  � can be straightfor-
wardly derived (see Equation 2). In case of a global cost which is
defined as the discounted sum of the local costs, these equations are
the following:

� � � � � � � � �� � � � � � � � � � �  � ! " # $� % � & 
 � � ' ( � �  � # � � � � ' � ) �
(1)

 � � � � � * + , � � �� � � � � � � � � � �  � ! " # $� % � & 
 � � ' ( � �  � # � � � � ' � ) - (2)

where . � " / � is the discount factor and
� � � � 0 �

is the
set of applicable actions in state� . When there is no discounting
(" � � ), we assume that there exists acost-free termination state
defining astochastic shortest path problem(SSP) - see [2].

Thevalue iterationalgorithm is a standard numerical algorithm for
solving MDPs off-line. It computes an optimal policy by repeatedly
performingBellman’s updatesover the entire state space :

1 � � � � 2 3 � � � � 4 � � �� � � � � � � � � � �  � ! " # $� % � & 
 � � ' ( � �  � # � 2 � � ' � )
(3)

If every state is updated infinitely often then the sequence of value
functions � � 2 � 2 � 5 eventually converges to the optimal value func-
tion.

2.2 Anytime heuristic search algorithms for MDPs

The main drawback of value iteration is that it performs updates over
the entire state space. To focus computations on relevant states only,
researchers from the Planning community have generalized real-
time heuristic search methods like6 � 	 � � [12] to non-deterministic
problems. For instance, Dean et al’s envelope algorithm [8]and6 � 7 � [9] from Hansen and Zilberstein are based on this principle.

All these algorithms perform a look-ahead search on a subsetof
states reachable from a given current state. Initially, this subset called
envelope in [8] only contains the current state and is progressively ex-
panded. An approximate value function8� is generally used to value
the fringe states. The general scheme of these algorithms isan alter-
nation of :

(i) fringe expansion: some fringe state� is chosen and its value is
updated :� � � � 4 � � �� � � � � � � � � � �  � ! " # $� % � & 
 � � ' ( � �  � # 8� � � ' � )

(ii) ancestors update phase: the value of the ancestors of the newly
updated states are updated using Bellman’s optimality principle 3.

Their output is apartial policy that is a policy which is defined
only on the envelope. These algorithms offer optimality guarantees
when they are not interrupted and ensure a goodanytime behavior:
they produce good quality policies when they are interrupted. Their
efficiency can be improved if8� satisfies some classical assumptions
for heuristic value functions like consistency or admissibility.

These algorithms can solve MDPs very efficiently without evalu-
ating the entire state space. The computation of an optimal or near-
optimal partial policy they calculate is usually orders of magnitude
faster than the computation of an optimal policy with value iteration.

2.3 Kearns et al’s sparse sampling algorithm

The previous look-ahead approaches are applicable as far astransi-
tion probabilities


 � � ' ( � �  � are known and the number of possible
successor states for a state/action pair remains low. If it is not the
case, a natural way of extending this approach consists in using sam-
pling to generate successor states. The only assumption required for
that is the existence of asimulator which is able to generate from any
pair � � �  � a successor state� ' according to probabilities


 � � ' ( � �  � .
Thus, for any pair� � �  � , the probability distribution over the succes-
sor states is approximated by generating a sample of these states.

A simple algorithm, which has been proposed by Kearns and
al. [11], consists in trying every possible action9 times from each
state� : 9 times from the current state� � and recursively9 times too
from every state which has been generated from� � over a given tem-
poral horizon of length: (see Figure 2). An on-line value function
is then recursively defined by :

� ; < = � � � �
>??@??A

8� � � � if B � .� � � � � � � � � C ; � � �  � otherwise
where C ; � � �  � � � � � � �  � !" �= D � % � & � � < � < = � � ; E � < = � � ' � ) (4)

In this equation,
� � � �  � 9 � is the set of the9 states that have

been sampled from the pair� � �  � . The complexity of the on-line
computation of� F < = is O� � ( � ( # 9 � F � .

After this stochastic tree has been developed, the current ac-
tion

 � is straightforwardly derived from Equation 4 :
 � �* + , � � � � � � � � � C F � � � �  � . This algorithm thus defines a stochastic

policy. The theoretical result established by Kearns and al. quantifies
the performance of this stochastic policy in function of9 and: . It
stipulates that its expected degradation in terms of globalcost with
respect to an optimal policy can be as small as required provided
that sufficiently large values of9 and: are used,independently of
the size of the state space. In other words, on-line sampling-based
search is able to provide near optimal policies for any MDP given
only a simulator of the system.

Unfortunately, the values needed for9 and : to ensure conver-
gence are extremely large, and make the algorithm often impractical.
Recently, Chen et al [6] have proposed an improved two-step algo-
rithm, based on the theory of multi-arm bandit problems [1].After an
initialization phase, additional simulations are distributed taking into
account estimated means and variances of states values. However,
the complexity of the search is still in

7 � � ( � ( - 9 � F � .
3 CONTROLLING THE SEARCH

In practice, we have to use reasonable values for9 and: , giving up
the near optimality guarantee provided by Kearns et al ’s result. In
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Figure 2. Kearns et al’s algorithm with two actions andG H I
this section, we provide an analysis of the performance as a function
of 9 and: before introducing our search control algorithm.

3.1 Error bounds and lookahead pathologies

We assume we know an approximate value function8� , which will be
used to value the tree leaf states. From Kearns et al’s main result, we
can derive aprobably approximately correct boundon ( � F < = � � � � J� � � � � � (, which links the probabilityK of making an error to the size
of this error: :

( � F < = � � � � J � � � � � � ( / � L � M N �9 - O P , � ( � ( # 9 � FK ! " F Q
(5)

with a probability of at least� J K , where� L � M is the maximum
local cost and

Q � � * R � S T U ( 8� � � � 3 F � J � � � � � 3 F � ( the error prop-
agated from the leaf states� � 3 F .

For a fixed receding horizon: , if 9 V W , then ( � F < = � � � � J� � � � � � ( V " F Q
, which is a known result for receding horizon ap-

proaches using an exact model of the dynamics [10]. It means that for
large values of9 , if the receding horizon is long enough, the error
will be significantly decayed. Therefore, the probability of selecting
an optimal action on the basis of this lookahead will be improved.

For SSPs, when" � � , it is necessary that
Q � Q F decreases

when: grows to make the lookahead beneficial. In other words, the
error must be smaller for the leaf states than for the currentstate.
Like for two-player games, this happens if some “improved visibil-
ity” property holds for the approximate value function: theaccuracy
of 8� improves as we approach a termination state.

Lookahead pathologies

Surprisingly, increasing the horizon: with a fixed width 9 even-
tually increasesthe error since the term due to finite sampling ap-
proximation grows with: . This means that a simple “iterative deep-
ening” approach will eventually provide a bad choice for action

 � .
This pathology phenomenon has been widely studied in game the-
ory: to deepen search does not automatically improve the quality
of the decision. For example, Pearl [14] considers a 2-player game
with an evaluation function which predicts if a position leads to win
or to loose. This function is imperfect and has some error rate. A
minimax search is performed to improve the quality of the decision.
Tree leaves are evaluated by using this imperfect function and infor-
mation is propagated from leaves up to the root. Under this simple
model, Pearl shows that, without any special assumption, the deeper
the search, the worse the decision. More recently, Bulitko et al [4]
have provided a similar analysis for single agent search. However,
pathologies have never been observed to our knowledge in classical

games like chess or any problem of practical interest. We will show
in section 4 for a common SSP that pathology can occur when we
perform on-line sampling-based search.

In practice, with a limited amount of simulations, we have tolook
for a good trade-off between the horizon: and the width9 . Figure 3
plots the error bound as a function of: for different computational
budgets. By computational budget, we mean the number of simulated
transitions used on-line for the development of the tree. Notice that
the optimal horizon depends on this budget. If we maintain a good
horizon/width trade-off as we expand the tree, we can hope toob-
serve a good anytime behavior i.e. a continuous improvementof the
policy derived from the tree.
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3.2 A trajectory-based strategy

The control strategy we propose consists in repeatedly following
some trajectories of length: from the current state� � to a leaf state� � 3 F . The global width9 is thus no more specified and depends on
the state/action pair� � �  � considered.

In order to maintain a good global horizon/width trade-off,we in-
troduce a dynamic horizon control based on the estimation ofthe
global sampling error on the tree. This estimation is a heuristic which
indicates whether some state/actions pairs need additional sampling.
The idea is to increase the horizon when this estimated erroris stabi-
lized.

3.2.1 Estimating a global sampling error

We have seen that pathological behavior can be caused by the am-
plification of the error due to finite sampling. We would like to have
an estimation of this error in order to monitor the increase of : .
As the width of the different expanded state/action pairs are not uni-
form in our algorithm, we have to use a heuristic decentralized ap-
proach to estimate this error. Such an approach which propagates
errors through a Markovian graph was developed in [13] to design
exploration policiesfor reinforcement learning (see next paragraph).

We can easily estimate the local error due to finite sampling using
a basic result of statistics for Monte-Carlo simulation about confi-
dence intervals. For any state-action pair (s,a) with local width9 we

define the local error as:h � � �  � � i � j k lm n op = where i is the sample

standard deviation of9 observations of" � ; E � � � ' � and q = E �r s t is Stu-
dent’s t-function with9 J � degrees of freedom at user specified con-
fidence level

rt (for instanceu � . - . v ). Notice that this expression
only quantifies the local error due to finite sampling and neither the



local error due to successors states nor the error due to8� . Assuming
that � ; E � � � ' � is a stationary normally distributed random variable of
meanw then C ; � � �  � � � � � � �  � ! " w J h � � �  � � � � � �  � ! " w !h � � �  � ) with probability � J u . As this assumption does not usually
hold because� ; E � is itself an estimate, we don’t have this property
but still useh � � �  � for estimating the local error.

We propagatethis error through the tree, in the same way as
actions and states values were propagated in Equation 4. Thus the
global sampling errorx ; � � � for a state is defined as :

x ; � � � �
>??@??A

i y 2 y � if B � .� � � � � � � � � z ; � � �  � otherwise
where z ; � � �  � � h � � �  � !" �= D � % � & � � < � < = � x ; E � � � ' � (6)

Finally, we have at our disposal for each state of the tree an es-
timation of the global sampling error, and in particular forthe root
state� � .
3.2.2 Organizing the search along successive trajectories

Like heuristic search algorithms for MDPs described in section 2, our
algorithm alternates expansion phases of some fringe states and up-
date phases. An important difference is thatevery state in the tree is
a potential fringe state: as we use a finite sampling approximation, a
state is never perfectly expanded. Indeed, this would mean that every
applicable action for this state has been simulated an infinite number
of times. Consequently, a large number of control strategies can be
considered.

A sensible one consists in following successive trajectories of
length: from the root. These trajectories are guided by some explo-
ration policy. Exploration policies were designed by the reinforce-
ment learning community for the purpose of efficiently converging
towards optimal policies. The general problem they face is the clas-
sical exploration/exploitation dilemma. Several algorithms have been
proposed (see [16]) and are relevant for our tree exploration problem
as they are able to rapidly focus on promising state/action pairs. Here
are the different policies we have experimented :

Uniform exploration: a random action is selected.
Boltzmann’s exploration: an action

 
is selected with probabilityh E { � � < � � s |

D } � � � � � h E { � � < } � s |~ is a positive parameter called the temperature parameter. High tem-
peratures cause (nearly) uniform exploration and low temperatures
cause (nearly) greedy selection.

Meuleau’s IEDP+ algorithm[13]: the selected action
 

maxi-
mizesC � � �  � ! � � � �  � . � � � �  � is an exploration bonus which is
very similar to z � � �  � . It favors actions whose global sampling
error is high.

Our trajectory-based algorithm is described in Algorithm 1. The
routine GenerateTrajectories(: , ,� ) generates� trajectories of
length : following policy  from � � . These trajectories are stored
in the tree. The routine UpdateStatesValues() updates values and er-
rors of states newly expanded and of their ancestors.

4 EXPERIMENTS

4.1 Optimal sailing domain

To validate our propositions, we chose a sailing problem that is mod-
eled as an SSP (8400 states and 8 actions). We wish to find the quick-

Input : exploration policy , approximate value function8� , cur-
rent state� � , tolerance� , size of the batch of trajectories�
Output : action

 �: 4 �7 � � x 4 ! W
repeat

while ( x F � � � � J OldE( � � do
GenerateTrajectories( ,: ,� )7 � � x 4 x ; � � � �
UpdateStatesValues()

end: 4 : ! �
until Termination condition

Algorithm 1: Trajectory-based algorithm for on- line heuristic sam-
pling

est path for a sailboat from initial state� � to final state� � taking into
account random wind fluctuations (see [17] for a complete descrip-
tion and a web interface of the simulator).

To mimic an imperfect value function, we generated8� � � � - � � !Q � where
Q

is a uniform random variable drawn in� J . - � � . - � ) .� � � � � � � � � � - . (minutes to cross the lake).
We evaluate the performances of the stochastic policy derived

from the lookahead search for various control schemes and computa-
tional budgets. The performance of these various stochastic policies
are estimated over 500 trajectories.

4.2 Implementation issues� To save memory, we collapse identical states at the same level; the
tree is therefore actually a graph.� If after execution of

 � , the resulting state� � 3 � belongs to the set
of sampled successors of� � , we then reuse the corresponding sub-
tree.� Parameters values : tolerance for horizon control� � . - � v ; initial
error i y 2 y � � � . - . ; confidence levelu � . - � . ; size of the batch
of trajectories :� � � . . .

4.3 Pathologies and optimal horizon

The basic Kearns et al’s algorithm exhibits pathological behavior :
for 9 � � . we can observe a degradation of the policy’s performance
provoked by deeper search (see Figure 4). The line labeled with 9 �! W is a (time-consuming) lookahead search using the exact model.
All other experiments only use the simulator.
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To demonstrate the influence of the horizon’s choice, we haverun
our trajectory-based algorithm with differentstatic horizons for a
given computational budget. With 100 transitions, the beststatic hori-
zon is 2 for Boltzmann and IEDP+. With 1000 transitions, the best
static horizon is 3 with Boltzmann exploration and 6 with IEDP+
exploration (see Figure 5).
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Figure 5. Optimal static horizon: performance of the policy derived from
the tree as a function of the horizon^ for a fixed computational budget.

4.4 Anytime behaviors

Figure 6 plots the anytime profiles of diverse control strategies,
namely : Kearns et al’s basic algorithm with simple iterative
deepening, our algorithm 1 guided by uniform, Boltzmann and
IEDP+ exploration. We have tested too an improved version of
Kearns’algorithm which increases9 and : simultaneously to ob-
tain a better trade-off.

Our algorithm performs better than Kearns’algorithm when Boltz-
mann or IEDP+ exploration is used : it exhibits good anytime pro-
files, with fast convergence towards near-optimal policies. The dy-
namic horizon management ensures a good trade-off between9 and: . Indeed, for different computational budgets, the gap between the
performance of the policy and the performance of the policy obtained
with the best static horizon is small : when Boltzmann’s exploration
is used, this gap is less than 2 % .
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Figure 6. Anytime profiles of different exploration strategies: performance
of the policy derived from the tree as a function of the computational budget.

5 CONCLUSIONS AND FUTURE WORK

Our algorithm shares characteristics with classical search algorithms
- receding horizon, tree memory structure - and with reinforcement

learning algorithms - exploration by following exploration policies,
dealing with uncertainty.

Future works include the design of exploration policies for
trajectories-based approaches. Indeed, the exploration/exploitation
dilemma to tackle is slightly different from the classical one : we do
not want to minimize costs received during the exploration phase as
we are only interested in quickly selecting an optimal action for the
current state. An appropriate framework for designing exploration
policies is provided by ordinal optimization [7].

We believe that on-line sampling is an efficient approach forsolv-
ing complex MDPs when standard greedy search fails to generate
a good policy. As on-line sampling requires quite a lot of computa-
tion, its main applications are more likely to be within the domains of
simulation of complex industrial systems rather than within real-time
control of embedded systems. We are currently developing this on-
line sampling approach for tackling a real world problem of satellite
constellation management which was proposed by the French Space
Agency and modeled in [18]. Significant improvement of off-line op-
timized policies confirms the relevance of this on-line approach.
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