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Abstract. In the past, Markov Decision Processes (MDPs) haveof tree search) is huge. A common approach in reinforcenaamt
become a standard for solving problems of sequential agcisider  ing to overcome these difficulties consists in usingimulator of
uncertainty. The usual request in this framework is the agatpn  the system. Computations are then performed over sampgesst
of an optimal policy that defines an optimal action for evagtesof ~ and rewards. Kearns et al [11] have provided a theoreticaidation
the system. For complex MDPs, exact computation of optiroéit p  for combining simulation and on-line search. Their aldoritbuilds
cies is often untractable. Several approaches have beefogedto  randomly sampled trees defining a stochastic policy. This@ach is
compute near optimal policies for complex MDPs by meanswéfu  very appealing since it allows to tackle arbitrarily larg®Wis given
tion approximation and simulation. only a simulator of the system.

In this paper, we investigate the problem of refining neainagt The price to pay for this generality is that the number of<all
policies via online search techniques, tackling the locabfem of  to the simulator required by Kearns et al's basic algoritisnofi
finding an optimal action for a single current state of thetesys  ten extremely large. This makes the algorithm impractinahany
More precisely we consider an on-line approach based onlsamp cases. In this work, we propose a heuristic search strateggffi-
at each step, a randomly sampled look-ahead tree is dewktope ciently constructing such sampling based trees. It consisepeat-
compute the optimal action for the current state. In thislkyere edly following trajectories from the root state to the lettes while
propose a search strategy for constructing such treesutfgope  gradually increasing the receding horizon. Incidentaliy,study un-
is to provide good "anytime” profiles : at first, it quickly sets a  der which conditions the anticipation is beneficial, brirgyto the
good action with a high probability and then it smoothly e&ses fore lookahead pathologie#\ lookahead is pathological if looking
the probability of selecting an optimal action. deeper aheathcreaseghe chances of choosing a suboptimal ac-
tion. We theoretically and empirically show that patho&mybccur
when inappropriate search control is used. On the coniarngon-
trol strategies ensure a good “anytime” behavior.

1 INTRODUCTION

Solving complex Markov Decision Processes (MDPs) usualy r
quires an off-line approximation of the optimal value fuont The
greedy policy defined by this value function is then expbbie-line. Si3
Several approaches have been developed by Atrtificial igesite
and Machine Learning communities to efficiently computerroga
timal value functions e.gtructure-based metho{3, reinforcement
learning[16, 2].

However, when the state space is huge and when no efficient str
tured representation is known, the calculation of an a¢euralue 3 2l .
function is often a hard task. In this paper, we investiga¢eidea of
replacing the greedy exploitation of an approximate valuefion
by a search technique : for the current stata search tree is devel-
oped over someeceding horizonFrom this tree we will compute an
action for the current state. This action is then appliedthacgystem
evolves to a new current state (see Figure 1). Deriving adgrpel-
icy from a value function is equivalent to a deptisearch. We can
expect to improve that policy at the expense of a deeperlsebinis
idea has been widely and successfully applied to two-plpgeiect
information games like chess [5].

For complex MDPs, performing a lookahead search to compute
an optimal action for a single state might be difficult, intmadar 2 ON-LINE SEARCH FOR SOLVING MARKQOV
when the model of the dynamics is unknown or when the number DECISION PROCESSES
of possible successors of a state (i.e. the branching facterms

Figure 1. On-line search with receding horizon

The organization of the rest of the paper is the following sé-
tion 2, we introduce the MDP framework and review relevartiba
ground for solving MDPs on-line. In section 3, we analyzeiaioead
pathologies and describe our trajectory-based strategyid® 4 pro-
vides experimental results obtained for a sailing problem.

2.1 Markov Decision Processes

I Institut National de la Recherche Agronomique, Unite denBétrie . . .
et Inteligence Artificielle, 31326 Castanet Tolosan, Ran In few words, anMDP [15] is defined by a five-tuple<
peret@toulouse.inra.fr S, A, T, P,R > whereS is the set of every possibiatesof the



system,A is the set ofactionsthat can be applied to iff is the dis-
crete set oinstantsat which decisions can be made, that isghabal
temporal horizorwhich can be finite or infiniteP defines theran-
sition probabilitiesbetween any pair of states fhafter executing an
action in A; R defines thdocal costsassociated with these transi-
tions. Solving an MDP consists in computing@ptimal policy that
is a functions™ that associates with any statec S anoptimal ac-
tion 7*(s), that is an action that minimizes tlegpected global cost
on the remaining temporal horizon. This global cost may Wiandd
as thesum thediscounted supor themean valuef the local costs
that are associated with the actual transitions.

The MDP theory assigns to every poliaya value functionV,
which associatesto every state S the expected global co (s),
obtained by applyingr in s. Bellman’s optimality equationésee
Equation 1) characterize in a compact way timque optimal value
function V*, from which anoptimal policy=* can be straightfor-
wardly derived (see Equation 2). In case of a global cost wigc
defined as the discounted sum of the local costs, these eqsiatie
the following:

Vi(s) = min [r(s,a) + - S%P(ﬂw) VS, @)

7*(s) = argmin[r(s,a) + v - z P(s'|s,a) - V*(s"]. (2

a€A(s) s'es

where0 < v < 1 s the discount factor and(s) C A is the
set of applicable actions in state When there is no discounting
(v = 1), we assume that there existxast-free termination state
defining astochastic shortest path probl@®SP) - see [2].

Thevalue iterationalgorithm is a standard numerical algorithm for
solving MDPs off-line. It computes an optimal policy by repedly
performingBellman’s updatesver the entire state space :

Vs €S Vpti(s) « min [r(s,a)+7- Z P(s/|s,a) . Vn(s')]

a€A(s) s
3

If every state is updated infinitely often then the sequemnealoe
functions (V5 ) .en eventually converges to the optimal value func-
tion.

2.2 Anytime heuristic search algorithms for MDPs

The main drawback of value iteration is that it performs updaver
the entire state space. To focus computations on relevatessinly,
researchers from the Planning community have generalieald r
time heuristic search methods likeRT' A* [12] to non-deterministic
problems. For instance, Dean et al's envelope algorithmaj&]
LAO™ [9] from Hansen and Zilberstein are based on this principle.

All these algorithms perform a look-ahead search on a sudfset
states reachable from a given current state. Initiallg skibset called
envelope in [8] only contains the current state and is pexjvely ex-
panded. An approximate value functibhis generally used to value
the fringe states. The general scheme of these algoritharsaster-
nation of :

(i) fringe expansion: some fringe statés chosen and its value is
updated :

V() e min r(ss) 47 3 P(sIs,) V()]
s'es

(i) ancestors update phase: the value of the ancestore oftivly
updated states are updated using Bellman’s optimalitycipiia 3.

Their output is gpartial policy that is a policy which is defined
only on the envelope. These algorithms offer optimality rgutees
when they are not interrupted and ensure a gaogime behavior
they produce good quality policies when they are interrdipieneir
efficiency can be improved ¥ satisfies some classical assumptions
for heuristic value functions like consistency or admigijb

These algorithms can solve MDPs very efficiently withoutleva
ating the entire state space. The computation of an optimatar-
optimal partial policy they calculate is usually orders adgnitude
faster than the computation of an optimal policy with vakeedtion.

2.3 Kearns et al's sparse sampling algorithm

The previous look-ahead approaches are applicable as fearess-
tion probabilitiesP(s’|s, a) are known and the number of possible
successor states for a state/action pair remains low. ¢f iitot the
case, a natural way of extending this approach consistsrig sam-
pling to generate successor states. The only assumptiaireddor
that is the existence of@amulator which is able to generate from any
pair (s, a) a successor staté according to probabilitie®(s’|s, a).
Thus, for any paifs, a), the probability distribution over the succes-
sor states is approximated by generating a sample of thetes st

A simple algorithm, which has been proposed by Kearns and
al. [11], consists in trying every possible acti6htimes from each
states: C times from the current state and recursivel\C' times too
from every state which has been generated fsgiover a given tem-
poral horizon of length? (see Figure 2). An on-line value function
is then recursively defined by :

V(s) ifh=0

mingea(s) @n(s,a) otherwise
where Qr(s,a) =[r(s,a)+
P}/% ZS’GS(S,a,C) Vh_l:c(sl)]

In this equation,S(s, a,C) is the set of theC states that have
been sampled from the pa(s, a). The complexity of the on-line
computation oz ¢ is O((| 4| - C)F).

After this stochastic tree has been developed, the current a
tion a; is straightforwardly derived from Equation 4 «;
argmin ¢ 4(,) @& (s¢, a). This algorithm thus defines a stochastic
policy. The theoretical result established by Kearns anguantifies
the performance of this stochastic policy in functionfofind H.. It
stipulates that its expected degradation in terms of globsi with
respect to an optimal policy can be as small as required geovi
that sufficiently large values a@f and H are usedindependently of
the size of the state spade other words, on-line sampling-based
search is able to provide near optimal policies for any MDRegi
only a simulator of the system.

Unfortunately, the values needed f6rand H to ensure conver-
gence are extremely large, and make the algorithm oftersiatigal.
Recently, Chen et al [6] have proposed an improved two-dtgp a
rithm, based on the theory of multi-arm bandit problemsAffer an
initialization phase, additional simulations are disitéd taking into
account estimated means and variances of states valuegveliow
the complexity of the search s still @((|4].C)™).

Vh,o(s) = 4)

3 CONTROLLING THE SEARCH

In practice, we have to use reasonable value€fandH, giving up
the near optimality guarantee provided by Kearns et al ‘'sltel



games like chess or any problem of practical interest. Weshidw
in section 4 for a common SSP that pathology can occur when we
perform on-line sampling-based search.

In practice, with a limited amount of simulations, we havéoiak
for a good trade-off between the horizéhand the widthC'. Figure 3
plots the error bound as a function Bf for different computational

a, .
Mnstep Epectation Mo step Expectation budgets. By computational budget, we mean the number ofaiet

transitions used on-line for the development of the tredidgdhat

the optimal horizon depends on this budget. If we maintaimadg
Figure 2. Kearns et al's algorithm with two actions antd= 3 horizon/width trade-off as we expand the tree, we can hopbto
serve a good anytime behavior i.e. a continuous improvewighe

policy derived from the tree.

<t H >

this section, we provide an analysis of the performance asetibn
of C' and H before introducing our search control algorithm.

3.1 Error bounds and lookahead pathologies

We assume we know an approximate value funcliomhich will be
used to value the tree leaf states. From Kearns et al’'s msiirityave
can derive grobably approximately correct bourtth |Vz ¢ (s¢) —
V*(s:)|, which links the probabilityA of making an error to the size
of this error: :

H

Figure 3. Error bound onfVy ¢ (st) — V*(s:)| as a function of the

. 1 Al-CH horizonH for different computational budgeta = 0.1, ¢ = 1.0,
[Vi,c(s:) — V*(st)| < rmast/ E.log % +~7c (5) Fmaz = 0.5,|A| = 3,y =0.8

with a probability of at least — A, wherer,, . is the maximum
local costan@ = maxs, |V (se45) — V*(se42)| the error prop-
agated from the leaf states; x.

For a fixed receding horizoH, if C — oo , then|Vg,c(s:) —
V*(s:)] = 7™, which is a known result for receding horizon ap- The control strategy we propose consists in repeatedipviiiyg
proaches using an exact model of the dynamics [10]. It mémmddr  some trajectories of length from the current state; to a leaf state
large values of”, if the receding horizon is long enough, the error 5, ,; The global widthC' is thus no more specified and depends on
will be significantly decayed. Therefore, the probabilifyselecting  the state/action pals, a) considered.
an Optlmal action on the basis of this lookahead will be |mﬁd) In order to maintain a good globa| horizon/width trade_m‘é in-

For SSPs, wher = 1, it is necessary that = ey decreases troduce a dynamic horizon control based on the estimatiothef
whenH grows to make the lookahead beneficial. In other words, theyiobal sampling error on the tree. This estimation is a séiarivhich
error must be smaller for the leaf states than for the custate.  indicates whether some state/actions pairs need addianepling.

Like for two-player games, this happens if some “improvesibii-  The idea is to increase the horizon when this estimated isrtabi-
ity” property holds for the approximate value function: thecuracy  |ized.

of V improves as we approach a termination state.

3.2 Atrajectory-based strategy

_ 3.2.1 Estimating a global sampling error

Lookahead pathologies

. _ _ i ) _ _ We have seen that pathological behavior can be caused byrthe a
Surprisingly, increasing the horizofi with a fixed widthC' even-  pjiication of the error due to finite sampling. We would likettave
tually increaseghe error since the term due to finite sampling ap- 5, estimation of this error in order to monitor the increasgio
proximation grows with/7. This means that a simple “iterative deep- as the width of the different expanded state/action paiesnat uni-
ening” approach will eventually provide a bad choice foi@tt:. form in our algorithm, we have to use a heuristic decentaliap-
This pathology phenomenon has been widely studied in game th pr5ach to estimate this error. Such an approach which peipag
ory: to de_epen search does not automaticall_y improve théitgua grorg through a Markovian graph was developed in [13] tdges
of the decision. For example, Pearl [14] considers a 2-plggene  exporation policiedor reinforcement learning (see next paragraph).
with an evaluation function which predicts if a positiondeeo win We can easily estimate the local error due to finite samplgigg!
or to loose. This function is imperfect and has some err@.rat 5 pasic result of statistics for Monte-Carlo simulation watzonfi-

minimax search is performed to improve the quality of theislen.  gence intervalsFor any state-action pair (s,a) with local widthwe
Tree leaves are evaluated by using this imperfect functi@hirgfor- 5

mation is propagated from leaves up to the root. Under thiplsi  define the local error as{(s,a) = o= whereo is the sample
model, Pearl shows that, without any special assumptiejéeper standard deviation af’ observations of V,_1 (s') andtQC/;1 is Stu-
the search, the worse the decision. More recently, Bulitkal ¢4] dent’s t-function withC' — 1 degrees of freedom at user specified con-
have provided a similar analysis for single agent searchweder,  fidence Ievelg (for instanced = 0.05). Notice that this expression
pathologies have never been observed to our knowledgessicdd  only quantifies the local error due to finite sampling andhrezithe



local error due to successors states nor the error dlie &ssuming
thatVi,_1(s’) is a stationary normally distributed random variable of
meanv thenQx(s,a) € [r(s,a) + yv — e(s,a),r(s,a) + vv +
e(s, a)] with probabilityl — 6. As this assumption does not usually
hold becausé&},_, is itself an estimate, we don’t have this property
but still usee(s, a) for estimating the local error.

We propagatethis error through the tree, in the same way as
actions and states values were propagated in Equation 4. fhieu
global sampling erroE} (s) for a state is defined as :

Oinit Ifh=0

minge a¢s) Mn(s,a) otherwise

where Mpy(s,a) = e(s,a)+

’Y% Zs'es(s,a,c) En-1(s)
Finally, we have at our disposal for each state of the treesan e

timation of the global sampling error, and in particular fbe root

states;.

En(s) = (6)

3.2.2 Organizing the search along successive trajectories

Like heuristic search algorithms for MDPs described inise@, our
algorithm alternates expansion phases of some fringesstaie: up-
date phases. An important difference is thegry state in the tree is
a potential fringe stateas we use a finite sampling approximation, a
state is never perfectly expanded. Indeed, this would niestrevery
applicable action for this state has been simulated anfefimnimber

of times. Consequently, a large number of control strategan be
considered.

A sensible one consists in following successive trajeeibf
lengthH from the root. These trajectories are guided by some explo
ration policy. Exploration policies were designed by thmfierce-
ment learning community for the purpose of efficiently caguey
towards optimal policies. The general problem they facbésdas-
sical exploration/exploitation dilemma. Several alguris have been
proposed (see [16]) and are relevant for our tree exploratioblem
as they are able to rapidly focus on promising state/actiins pHere
are the different policies we have experimented :

Uniform explorationa random action is selected.

Boltzmann's exploratiaran action: is selected with probability

o—Q(s,0)/7
S eny € REDIT

T is a positive parameter called the temperature parametgrtéim-
peratures cause (nearly) uniform exploration and low teatpees
cause (nearly) greedy selection.

Meuleau’s IEDP+ algorithm[13]: the selected action maxi-
mizesQ(s,a) + B(s,a). B(s,a) is an exploration bonus which is
very similar to M (s, a). It favors actions whose global sampling
error is high.

Our trajectory-based algorithm is described in Algorithmirhe
routine GenerateTrajectorid$(w,N) generatesN trajectories of
length H following policy = from s;. These trajectories are stored
in the tree. The routine UpdateStatesValues() updatessalnd er-
rors of states newly expanded and of their ancestors.

4 EXPERIMENTS
4.1 Optimal sailing domain

To validate our propositions, we chose a sailing problerighaod-
eled as an SSP (8400 states and 8 actions). We wish to finditie qu

Input : exploration policyr, approximate value functiol, cur-
rent states;, toleranced, size of the batch of trajectorie§
Output : actionas
H+1
OldE + 4+
repeat
while |Ex(s¢) — OldE > § do
GenerateTrajectories(H ,N)
OldE « En(s:)

UpdateStatesValues()
end

H« H+1 .
until Termination condition

Algorithm 1: Trajectory-based algorithm for on- line hestic sam-
pling

est path for a sailboat from initial statg to final states ; taking into
account random wind fluctuations (see [17] for a completeries
tion and a web interface of the simulator).

To mimic an imperfect value function, we generatée= V(14
€) wheree is a uniform random variable drawn i-0.1;0.1].
V*(s0) = 119.0 (minutes to cross the lake).

We evaluate the performances of the stochastic policy eeriv
from the lookahead search for various control schemes anguot-
tional budgets. The performance of these various stochpaglicies
are estimated over 500 trajectories.

4.2 Implementation issues

s To save memory, we collapse identical states at the samietiese

tree is therefore actually a graph.

o [f after execution ofi;, the resulting state;; belongs to the set
of sampled successorsaf, we then reuse the corresponding sub-
tree.

o Parameters values : tolerance for horizon cordtrel 0.75 ; initial
erroro;ni;: = 10.0 ; confidence leved = 0.10 ; size of the batch
of trajectories N = 100.

4.3 Pathologies and optimal horizon

The basic Kearns et al's algorithm exhibits pathologicdidwor :

for C' < 10 we can observe a degradation of the policy’s performance
provoked by deeper search (see Figure 4). The line labetbdivi=

+oo is a (time-consuming) lookahead search using the exactimode
All other experiments only use the simulator.

—-c=z
~ c=4
c=6
c=1
c

=t

Optimal policy

2

To

Figure 4. Lookahead pathology : performance of the policy derivedfro
the tree as a function of the horizéh for a fixed width.



To demonstrate the influence of the horizon’s choice, we have
our trajectory-based algorithm with differestatic horizons for a

given computational budget. With 100 transitions, the bigic hori-

zon is 2 for Boltzmann and IEDP+. With 1000 transitions, tlestb

static horizon is 3 with Boltzmann exploration and 6 with IED
exploration (see Figure 5).

100 trans. (IEDP+)
100 trans (Boltz)

1000 trans. (IEDP+)
<+ Traj. 1000 trans (Boltz.)
— al policy

136 P |

1381 - -

93533
1253558

134

132

130

cost to goal

128
1260

E
124 S
22 oo

120

Figure 5. Optimal static horizon: performance of the policy deriveahfi
the tree as a function of the horizéhfor a fixed computational budget.

4.4  Anytime behaviors

Figure 6 plots the anytime profiles of diverse control sgits,

namely : Kearns et al's basic algorithm with simple iterativ
deepening, our algorithm 1 guided by uniform, Boltzmann and [4]

learning algorithms - exploration by following exploratipolicies,
dealing with uncertainty.

Future works include the design of exploration policies for
trajectories-based approaches. Indeed, the exploratiploitation
dilemma to tackle is slightly different from the classicako: we do
not want to minimize costs received during the exploratibage as
we are only interested in quickly selecting an optimal acfwr the
current state. An appropriate framework for designing esgilon
policies is provided by ordinal optimization [7].

We believe that on-line sampling is an efficient approacistdv-
ing complex MDPs when standard greedy search fails to genera
a good policy. As on-line sampling requires quite a lot of pota-
tion, its main applications are more likely to be within trenthins of
simulation of complex industrial systems rather than wittgial-time
control of embedded systems. We are currently developiisgott-
line sampling approach for tackling a real world problematedite
constellation management which was proposed by the FrepateS
Agency and modeled in [18]. Significant improvement of afelop-
timized policies confirms the relevance of this on-line apgoh.
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