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Abstract. Whereas decision trees are widely studied in the context
of knowledge representation and inductive learning, guidelines can
be considered as an extension of decision trees that have notreceived
the same amount of attention in the artificial intelligence community,
even though they have been proved highly useful in several decision
support problems as the therapy process in health-care.

This paper is about the formal definition of guidelines as a rule-
based knowledge structure and also about the introduction of an in-
cremental inductive learning algorithm to develop and update time-
independent guidelines. These ideas have been tested in thehealth-
care domain of some heart diseases.

1 INTRODUCTION

In artificial intelligence, classification is the process ofassigning an
object to one of a predefined set of classes according to a listof de-
scriptive properties, and planning is the selection of a sequence of
actions that will result in the achievement of a desired goal. Very of-
ten, these processes appear in other domains with differentnames.
For example, in medicine the procedure by which a patient is labeled
with a particular disease is calleddiagnosis, and the procedure by
which a patient is clinically treated is calledtherapy. The most ex-
tended representations of a classification (or diagnosis) process are
decision trees and production rules [9] [?] [13]. In clinical planning
(or therapy), knowledge-based plans use to be represented as clinical
practice guidelines (CPGs) or protocols [10] [15].

There are many alternative representation models to describe
computer-interpretable CPGs: Arden syntax, Asbru [15], EON [5],
GLIF [10], GUIDE [14], PRODIGY [12], PROforma[8], etc. A wise
comparison of them can be found in [2] and [11].

Decision trees and production rules can be obtained directly from
an expert with a knowledge acquisition procedure or from a set of
supervised instances with an inductive learning procedure. Unfortu-
nately, nowadays it is not clear how a guideline or protocol can be
inductively obtained from an already scheduled set of situations and,
therefore, only user defined guidelines are available.

Extensible to the guidelines, there is a global agreement that any
CPG representation model must comply with the following require-
ments [11]: branching, asserting, unfolding, and state representation,
among others.Branchingis the feature that there can be points in the
guideline where a selection from a set of alternatives must be taken
on the basis of some predefined criterion;assertingis the way that
a guideline uses to indicate that some actions must be applied at a
particular point;unfolding is when some parts of the guideline rec-
ommend a shift to another guideline, andstate representationis used
to describe specific scenarios of patient’s clinical statusin the context
of a particular point of the guideline.
�
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Nowadays CPGs are made by expert committees which are created
by health-care organizations as the HSTAT in the USA, the SIGN in
Scotland, or the NZGG in New Zealand. Therefore, it is expected
that a CPG requires on the one hand, a great amount of knowledge
investment at the beginning, while the guideline is being made and,
on the other hand, periodic updates in order to include new clinical
drugs or clinical procedures in the CPG. These are difficulties that
cannot be easily overcome with automatic methods since onlysimple
CPGs can be automatically generated and updated [3, 4].

In this paper, we propose a new general purpose guideline rep-
resentation model that comply with the requirements of branching,
asserting, unfolding and state representation, and introduce a learn-
ing algorithm to induce time-independent rule-based guidelines. This
knowledge model and the learning algorithm have been designed in-
dependent of the target domain: science, industry, health-care, etc.
and they have been tested and proved useful in the domain of cardiac
diseases with the induction of CPGs for bradycardia and tachycardia.

In section 2, we describe the guideline representation model and
the inductive algorithm. In section 3, we use the model to represent
CPGs as a particular case of guideline. Finally, in section 4we show
some conclusions.

2 GUIDELINE COMPOSITION

A decision tree is a binary tree in which each non-leaf vertexis a yes-
no query, each leaf is labeled as a target, the edge from any non-leaf
vertex to its left son is labeled ’Yes’ (the condition is satisfied), and
the one to its right son is labeled ’No’ (the condition is not satisfied).

Here, a guideline can be broadly described as a tree structure that
combines branching, asserting, unfolding, and state representation
vertices in order to represent a hopefully complete description of
an action plan. Formally, we describe a guideline as a decision tree
whose non-leaf vertices are guarded queries, leaves are discharge rea-
sons or unfold actions, and edges can be attached a set of actions.

Decision trees are commonly used in health-care domains to repre-
sent clinicaldiagnostic knowledge, and guidelines or CPGs represent
clinical therapy knowledge. For example, figure 1 shows a decision
tree that diagnoses the sort of emergency cardiac care that must be
rendered to a particular Adult patient, and figure 2 describes the CPG
that the Maryland Institute for Emergency Medical Servicesrecom-
mends to follow with patients diagnosed with a cardiac emergency.

In the guidelines, branching and state representation are related
to the guardedquery vertices (a guarded query is satisfied only if
the state of the system is subsumed by the guard, and the branching
decision by the query); asserting is related to the edges that contain
actions as drug prescriptions or clinical procedures in CPGs, and un-
folding is related to the leaves of the guidelines, where other guide-
lines can be unfold. For example, some steps of the CPG in figure
2 can be conditioned to the age of the patient and not applicable to



Figure 1. Decision tree for cardiac emergencies.

elder people, in such cases a guard should be related as patient state
to the branching conditions to be avoided. Assertions are the square
blocks, and unfolding points are those remarked in black.

Figure 2. CPG for a cardiac emergency.

Production rules are the natural alternative to graphical decision
trees. They sacrifice the graphical representation of decision trees,
but they encourage other interesting properties about the represented
knowledge as simplicity, scalability, understandability, uncontextual-
ity, flexibility, and reusability. Moreover, converting production rules
into decision trees is a solved problem [6].

As we will see, guidelines can also be represented as rules.

2.1 Rule-Based Guideline Representation

The same way that diagnosis can be done with a set of production
rules [13], therapies can be represented with cause-effectrules where
causes are conditions in the non-leaf vertices and effects are the ac-
tions in the edges. In order to this becomes completely true two re-
strictions must be set on the sort of guidelines that are represented by
cause-effect rules: time-independence and order-independence.

Time-independencemeans that guidelines do not have time con-
straints.Order-independencemeans that the results obtained by the
inference engine do not change if the rules are in a differentorder.

Let � � ���� ��� ����be a set of state descriptors,� � �	�� 	�� ����
a set of causes, and
 � ���� ��� ���� a set of effects.

A single IT actis defined as a tuple�=(�, �, 
) where� �
� represents one state that activates the act,� � � is the cause
that fires the act, and
 � 
 is the effect of the act. Single IT

acts can be represented asif-then rules; for example, the first step
of the CPG in figure 2 represents the rule ”if not responsive then
call for defibrillator” or the IT act (�, �not-responsive

�
, �call-for-

defibrillator
�
). A single ITE actis an extension of the single IT act

as a tuple�=(�, �, 
, 
�) where
� � 
 is the counter-effect of
the act, i.e. the effects when the cause does not fire the act. Single ITE
acts can be represented asif-then-elserules. For example, the second
step in figure 2 is represented by the rule ”if breathing then place
in recovery position else give two slow breaths” or the ITE act (�,
�breathing

�
, �place-in-recovery-pos

�
, �give-two-slow-breaths

�
).

A complex act orguidelineis defined as a set of single acts�(�,
�, 
, 
�): i=1, 2, ..., n

�
, with 
� optional and� � �.

Observe that a guideline describes an order-independent act or, in
other words, that it is a declarative description of a complex action
instead of a procedural one. Moreover, acts are time-independent.

2.2 The Training Set

As in the induction of production rules the training set contains in-
stances of the classes that the rules differentiate, in the induction of
cause-effect rules that represent guidelines, the training set must con-
tain instances of single decisions that the experts take during the ther-
apy process.

Experts are expected not only to make right decisions but also to
justify them supplying the exact causes that entrust their decisions
and sometimes, the consequences that are derived from the absence
of such causes. Among the possible causes of a decision we distin-
guish betweendirect causes andconcurrentcauses. Although this
division is conceptual and does not affect the learning algorithm de-
scribed in section 2.3, the first group is used to contain the causes that
are directly related with the training domain, and the second group
the rest of the causes indirectly related to the domain. For example,
in the domain of cardiac emergencies, decisions can be justified with
medical reasons about the disease (e.g. pulse, breathing, VF/VT, etc.)
or with other information about the patient (e.g. age, sex, etc.).

Each one of the above expert decisions can be represented by a
single IT act (�, �, 
), or a single ITE act (�, �, 
, 
�), where
� stands for the concurrent causes,� for the direct causes,

for the decisions made, and
� for the consequences derived from
the absence of�. In other words, each single act represents an
expert atomic action or an instance of the expert behavior that we
want to capture in a guideline. So, (�Adult

�
,�ChestPain, Hypoten-

sion, AMI
�
, �antropine

�
, �Dopamine, transcutaneous pacing

�
) rep-

resents a medical ITE act that the physician decided during aconcrete
visit of a concrete patient. Then, a complete patient therapy can be
represented as a list of medical acts or a guideline structure that can
be understood as the adaptation of an ’unknown’ general guideline
to that particular patient. The algorithm in the next section describes
how to induce a general guideline from patient concrete treatments.

2.3 The Incremental Inductive Learning Algorithm

A single act iscompleteif it contains all the information required
to make the decision that it represents. Since� and� are defined
as sets, only conjunctive decisions are possible. When all the single
acts of a guideline are complete, the knowledge that each single act
represents is self-contained and independent of the rest ofthe single
acts in the guideline.

We work under the assumption that guidelines are both time-
independent and order-independent. When a guideline is defined as



a list of complete single acts, these single acts describe the best de-
cisions made, according to the circumstances of a particular com-
plex decision which is represented by the whole guideline. Ageneral
guideline is constructed as the integration of the best decisions made
for many individual complex decisions which act as input instances
of the learning algorithm.

Before we introduce the algorithm, we define the combinationfac-
tor �� between two acts� and�� as their similarity (see eq. 1).

�� �
�� � �� ��� � �� � (1)

We define the combination operator� that merges two single acts
� and�� following the indications in tables 1 and 2. Although in [1]
there is an extended description of how these combinations rules are
obtained, broadly speaking they are the result of the logical expres-
sion���� , where�� is represented as (��	��	
) for IT acts
and
��	��	
��
��	�	
�� for ITE acts. Some conflicts
are solved with a generalisation step in order to maintain causes as
conjunctive expressions.

Table 1. Combination operator� for single IT acts.

� � � � �
(��, ��, ��) (�� , �� � �, ��) (�� � �� , ��, ��)
(��, ��, ��) (�� , �� � �, �� � �) (�� � �� , ��, ��)

(�� , �� � �,�)
(��, ��, �� � �) (�� , �� � �, �� ) (�� � �� , ��, �� � �)
(��, ��, �� � �) (�� , �� � �, �� � �) (�� � �� , ��, �� � �)

(�� , ��, �� )
(��, ��, ��) (�� , �� � �, �� ) (�� � �� , ��, �� � ��)
(��, �� � �,��) (�� , �� � �, ��) (�� � �� , �� � �� , ��)
(��, �� � �,��) (�� , �� � �, �� � �) (�� � �� , �� � �� , ��)

(�� , �� , �)
(��, �� � �,�� � �) (�� , �� � �, �� ) (�� � �� , �� � �� , �� )

(�� , ��, �)
(��, �� � �,�� � �) (�� , �� � �, �� � �) (�� � �� , �� � �� � �, �)

(��, ��, ��)
(�� , �� , ��)

(��, �� � �,��) (�� , �� � �, �� ) (��, �� � �, ��)
(�� , �� � �, �� )

(��, ��, ��) (�� , �� ,��) (��, ��, ��)
(�� , �� , ��)

(��, ��, ��) (�� , �� ,�� � �) (��, ��, ��)
(�� � �� , �� , �)

(��, ��, �� � �) (�� , �� ,�� ) (�� � �� , ��, �)
(�� , �� , ��)

(��, ��, �� � �) (�� , �� ,�� � �) (�� � �� , �� � �� , �)
(��, ��, ��)
(�� , �� , ��)

(��, ��, ��) (�� , �� ,�� ) (��, ��, ��)
(�� , �� , ��)

The learning algorithm is designed to integrate all the single acts
of a complex decision�� into a guideline�. For all the single acts
�� � �� , the most similar to�� single act� � � is taken. If�� is
below a predefined threshold,� � �� replaces� in �; otherwise,
�� is incorporated to�. The incremental algorithm finishes when
all the single acts in�� are treated.

algorithm combine GDL (G, G�: GDL): GDL
if empty(G�) then return G
else
a� := first single act(G�);
remove single act(a�, G�);
a := single act with highest ��(G, a�);
if �� < threshold then
remove single act(a, G);
G := union(G, combine(a, a�));
else
G := union(G, a�);
end if;
return combine GDL(G, G�);

end if;
end algorithm

Table 2. Combination operator� for single ITE acts.
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(��, ��,��, ���) (�� , �� � �, �� � �, ���) (�� � �� , ��, ��, ���)
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(��, �� � �, ��, ���) (�� , �� � �, ��, ��� ) (�� � �� , �� � �� , ��, ��� � ��� )
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(�� , �� ,�� , ��� )

3 COMPOSING CPGs IN THE CONTEXT OF
CARDIAC DISEASES

In Evidence-Based Medicine, CPGs are defined as ”systematically
developed statements which assist practitioners and patients make
decisions about appropriate health-care for specific clinical circum-
stances” [7]. CPGs can be graphically represented as in figure 2 or
rule-based represented as we described in the previous section.

The above rule-based guideline knowledge-representationmodel
and inductive algorithm are tested in the context of cardiacdiseases.
In normal Adults, the heart beats regularly at a rate of 60 to 100
times per minute.Bradycardia is an abnormally low heart rate of
less than 60 beats per minute. On the contrary,tachycardiais a heart
rate of more than 100 beats per minute. The purpose is twofold, on
the one hand we want to analyse the robustness of the algorithm, on
the other hand we want to obtain valid CPGs for each one of these
cardiac problems. The input of both tests is a list of 15 bradycardia
patients (6 Adults and 9 Children) and 7 tachycardia patients, and
the therapies followed for each case. In the first test, the set of causes
� � �AMI�ChestPain� ���� was used to make all the possible
combinations describing input patients. Each combinationwas tested
with the input CPGs (i.e. those which represent the single patient
treatments) and with the CPG resulting from the combination. The
result was that the combined CPG proposed a therapy equal to the
closest single patient in more than 87% for bradycardia and 91% for
tachycardia. The second test is commented in the next sections.

3.1 Bradycardia

The treatments of 6 Adult patients and 9 Children suffering from
bradycardia have been used to define a general CPG about brady-
cardia. Table 3 shows the description of the 15 treatments ascom-
plex acts. For example, the first treatment was applied to an Adult
that had got pain in his chest, showed hypotension, and acutemy-
ocardial infarction (AMI). The physician recommended atropine, and



proposed transcutaneous cardiac pacing (TCP) if some of thecauses
was not present. After that, the patient showed a congestiveheart
failure (CHF) combined with hypotension and loss of consciousness,
and the physician decided to change medication to Dopamine and
apply TCP. The treatment concluded when the patient showed pain
in his chest, CFH, AMI, and symptomatic, and physician proposed
to continue with TCP. Observe that the state of the single actions is
only used to distinguish between therapies for Adults and Children.

Table 3. Sample of bradycardia patient treatments.

((((Adult) (ChestPain Hypotension AMI) (Atropine) (TCP))
((Adult) (CHF Hypotension LostConciousness) (Dopamine TCP) (Atropine))
((Adult) (ChestPain CHF AMI Symptomatic) (TCP) (Lidocaine)))

(((Adult) (ChestPain ShortnessBreath Hypotension CHF) (Dopamine) (Atropine)))
(((Adult) (ChestPain LostConciousness) (TCP) (Atropine)))
(((Adult) (PulmonaryCongestion AMI) (Atropine) NIL)
((Adult) (AMI CHF LostConciousness) (Dopamine TCP)))

(((Adult) (Hypoperfusion ChestPain AMI CHF) (Atropine TCP)))
((Adult) (CHF Hypotension LostConciousness) (Dopamine)))

(((Adult) (Hypoperfusion ChestPain AMI) (Atropine) (TCP)))
(((Child) (ChestPain) (ABC Ventilate90) NIL))
(((Child) (ChestPain) (ABC Ventilate90) NIL)
((Child) (Hypotension) (Epinephrine) NIL))

(((Child) NIL (ABC Ventilate90) NIL))
(((Child) NIL (ABC Ventilate90) NIL)
((Child) (Hypotension Hypoperfusion) (ChestCompression Epinephrine) NIL))

(((Child) (ChestPain) (ABC Ventilate90) NIL)
((Child) (Hypotension LostConciousness) (Atropine) NIL))

(((Child) (ChestPain) (ABC Ventilate90) NIL)
((Child) (Hypotension) (Atropine) NIL)
((Child) (Hypotension LostConciousness) (TCP) NIL))

(((Child) NIL (ABC Ventilate90) NIL)
((Child) (LostConciousness) (Apinephrine TCP) NIL)
((Child) (ChestPain Hypotension) (Atropine) NIL))

(((Child) (LostConciousness) (ABC Ventilate90) NIL)
((Child) (Hypotension ChestPain) (Apinephrine) NIL))

(((Child) NIL (ABC Ventilate90))))

When all the knowledge involved in the above clinical episodes is
combined with the inductive learning algorithm described in section
2.3, a CPG of bradycardia is obtained. This CPG is shown in table 4.

Table 4. Bradycardia CPG.

(((Child) (LostConciousness) (ABC Ventilate90))
((Child) (Hypotension ChestPain) (Apinephrine))
((Child) (ChestPain) (Atropine))
((Child) (LostConciousness) (Apinephrine TCP))
((Child) (Hypotension LostConciousness) (TCP))
((Child) (Hypotension) (Atropine))
((Child) (Hypotension Hypoperfusion) (ChestCompression Epinephrine) NIL)
((Child) NIL (ABC Ventilate90))
((Child) (Hypotension) (Epinephrine))
((Adult) (Hypotension PulmonaryCongestion Hypoperfusion ChestPain AMI CHF) (Atropine))
((Adult) (Hypotension ChestPain AMI) (Atropine) (TCP))
((Adult) (Hypoperfusion ChestPain AMI CHF) (TCP))
((Adult) (AMI CHF LostConciousness) (Dopamine TCP))
((Adult) (ChestPain LostConciousness) (TCP) (ATROPHINE))
((Adult) (ChestPain ShortnessBreath Hypotension CHF) (Dopamine) (Atropine))
((Adult) (CHF Hypotension LostConciousness) (Dopamine TCP) (Atropine))
((Adult) (ChestPain CHF AMI Symptomatic) (TCP) (Lidocaine)))

3.2 Tachycardia

A CPG has been automatically generated from the data of 7 Adult
patient treatments. The data of these treatments are in table 5. The
final rule-based CPG is shown in table 6.

Table 5. Sample of tachycardia patient treatments.

((((Adult) (NotResponsive) (CallForDefibrillator EMS) NIL)
((Adult) (VR>150BPM) (Sedation) (Diltiasem)))

(((Adult) (SVT) (Ademosine6mg ApplyVFVT_GDL) (Intubate)))
(((Adult) (NotResponsive Breathing Pulse) (Intubate EMS) (START_CPR))
((Adult) (Breathing Edema) (ApplyEdema_CHF_GDL) NIL))

(((Adult) (NotResponsive) (EMS) NIL)
((Adult) (Breathing Pulse) (Intubate) (START_CPR)))

(((Adult) (NotResponsive Breathing Pulse)(CallForDefibrillator START_CPR) NIL)
((Adult) (Breathing Pulse SVT) (ApplyEdema_CHF_GDL) (Ademosine6mg)))

(((Adult) (Pulse Breathing) (Oxygen90_100) (START_CPR))
((Adult) (Pulse Edema) (ApplyEdema_CHF_GDL) (Ademosine6mg)))

(((Adult) (SVT Pulse) (Ademosine6mg) NIL)
((Adult) (SVT NotResponsive) (Oxygen90_100 CallForDefibrillator) NIL)
((Adult) (Pulse Edema) (ApplyEdema_CHF_GDL) NIL)))

Table 6. Tachycardia CPG.

(((Adult) (NotResponsive) (CallForDefibrillator EMS) NIL)
((Adult) (Pulse Edema) (ApplyEdema_CHF_GDL) (Ademosine6mg))
((Adult) (SVT NotResponsive) (Oxygen90_100))
((Adult) (SVT Pulse) (Ademosine6mg))
((Adult) (Breathing Pulse SVT) (ApplyEdema_CHF_GDL))
((Adult) (NotResponsive Breathing Pulse) (START_CPR))
((Adult) (Breathing Pulse) (Intubate Oxygen90_100))
((Adult) (Breathing Edema) (ApplyEdema_CHF_GDL))
((Adult) (NotResponsive Breathing Pulse) (Intubate))
((Adult) (SVT) (Ademosine6mg ApplyVFVT_GDL) (Intubate))
((Adult) (VR>150BPM) (Sedation) (Diltiasem)))

4 CONCLUSIONS

Applying inductive learning to automatically construct and update
guidelines is a difficult task that has been proven possible in this
work. First, a rule-based model for guideline representation has been
defined that satisfies the properties of time and order-independence,
branching, asserting, unfolding, state representation, and complete-
ness. An inductive algorithm has been proposed and tested with two
cardiac diseases. The tests are based on the at the moment available
incompletedata. This explains some troubles with the CPGs obtained
that will be solved with the use of more accurate training sets.

Although we have obtained interesting CPGs based on a real-life
application domain, the work presented must be considered as part of
a work in progress. So, there are still several improvementsthat must
be achieved before the CPGs could be useful. These include extend-
ing the guidelines requirements with sequencing, timing, iterative
and cyclic flows, and overcome the limitations of time-independence
and order-independence.

This work has been developed within the research CICYT projects
TIC2001-0633-C03 and TIC2003-07936.
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