
Incremental Augmented Naive Bayes Classifiers
Josep Roure Alcob́e.1

Abstract. We propose two general heuristics to transform a batch
Hill-climbing search into an incremental one. Our heuristics, when
new data are available, study the search path to determine whether it
is worth revising the current structure and if it is, they state which part
of the structure must be revised. Then, we apply our heuristics to two
Bayesian network structure learning algorithms in order to obtain
incremental Augmented Naive Bayes classifiers. We experimentally
show that our incremental approach saves a significant amount of
computing time while it yields classifiers of similar quality as the
ones learned with the batch approach.

1 Introduction

The incremental learning approach was firstly motivated by the hu-
man capability for incorporating knowledge from new experiences.
However, nowadays there exist other reasons which increase the in-
terest in incremental algorithms. Companies store huge amounts of
data every day and batch algorithms are not able to process and incor-
porate to a knowledge base this great amount of continuously incom-
ing instances in a reasonable amount of time and memory space. In
this environment,incremental learningbecomes particularly relevant
since these algorithms are required to use a small constant time per
record, to scan datasets only once, to use a fixed amount of memory,
and to make a usable model available at any point in time [5].

Classification plays an important role in the field of machine learn-
ing, pattern recognition and data mining. The simplest Bayesian
Classifier is the Naive Bayes [6, 11]. It assumes that attributes are
independent when the class label is known. More recently, a lot of
effort has focused on improving the Naive Bayes classifier by relax-
ing independence assumptions [8, 3]. Mainly, these methods infer
networks among features from data. In this way, these methods com-
bine some of the Bayesian Networks ability to represent dependen-
cies with the simplicity of Naive Bayes.

1.1 Hill-Climbing Search
Here we revise the hill-climbing search algorithm, HCS from now
on, in order to introduce the notation that we will use in the follow-
ing sections. The idea of HCS is to generate a model in a step-by-
step fashion by making the maximum possible improvement of an
objective quality function at each step. So, we need to define the fol-
lowing three elements for a given problem: (i) an objectivefunction
S(M, D) to measure the quality of a given modelM with respect to
a datasetD, (ii) a set oftraverse operatorsOP = {op1, . . . , opk}
that given an argument,A and a modelM , obtain a new model
M ′ = opi(M, A), (iii) a domain MD to define thelegal models.
For example, in Bayesian network learning, the domain is the space
of DAGs, an operator is adding an arc, and an argument is the arc.

1 Escola Universit̀aria Polit̀ecnica de Mataŕo, Av. Puig i Cadafalch 101-111,
08303 Mataŕo, Catalonia, Spain. Email: roure@eupmt.es

We remark that a traverse operatoropi will be used only if it pro-
duces a model within the domainMD. This fact guides us to define
the concept of neighborhood by means of a traverse operator set,

Definition 1 (Neighborhood) The neighborhoodN (M) of a given
modelM is the set of all the alternative models that belong to the
domainMD and that can be built by using a single operator,

N (M) = {M ′|M ′ = opi(M, A) ∧M ′ ∈MD}
Note that a neighborhood,N (M), is built using a set of operator and
argument pairs,OpAN (M) = {(opi, Ai) | opi(M, Ai) ∈ D}.

Now, we are able to describe HCS formally, see Algorithm 1. HCS
begins with an initial modelM0 (i.e. the empty model) and iter-
atively constructs a sequence of modelsMi, i = 0, . . . , n, where
each modelMi is the one with the highest score of the models in the
neighborhood ofMi−1, Mi = arg maxM∈N (Mi−1)S(M, D). HCS
stops when no further improvement can be achieved, that is, when the
current model has the highest score of the ones in its neighborhood.

Algorithm 1 Hill-Climbing Search

Require: a domainMD, a databaseD, an initial modelM0, a scor-
ing functionS(M, D), a set of operatorsOP = {op1, . . . , opk}

Ensure: M be a model of high quality withinMD
i=0
repeat

oldScore=S(Mi, D)
i = i + 1
Mi = opki

i (Mi−1, Ai) where (opki
i , Ai) =

arg max (opk,A)∈OpAN(Mi−1)
S(opki

i (Mi−1, Ai), D)

until oldScore≥ S(Mi, D)

Usually, one is interested in the final modelM yielded by HCS
and does not bother about the intermediate ones. However, we will
study the wholesearch path(i.e. the sequence of intermediate mod-
els) because we will use it in our incremental approach.

Definition 2 (Search path) Let M0 be an initial model, letM be
the final model obtained by a hill-climbing search algorithm as

M = opkn
n (. . . (opk2

2 (opk1
1 (M0, A1), A2) . . . , An)

where each operator and argument pair(opki
i , Ai) yields

the model with the highest score of the neighborhood,
(opki

i , Ai) = arg maxOpAN(Mi−1)
S(opki

i (Mi−1, Ai), D).

The search path is the sequence of operator and argument pairs
Oop = {(opk1

1 , A1), (op
k2
2 , A2), . . . , (op

kn
n , An)} used to build

M , or equivalently, the sequenceMM = {M0, M1, . . . , Mn} of
intermediate models obtained with the sequence of operators and
argument pairs, whereMi = opki

n (Mi−1, Ai).

Note that the models in thesearch pathare ordered in increasing
quality score order,S(M0, D) < S(M1, D) < . . . < S(Mn, D)
and that the final modelMn is a local maximum of the domainMD
of models.

1.2 Bayesian Network Learning
A Bayesian networkis an annotated directed acyclic graph that en-
codes a joint probability distribution of a set of random variables
X = {X1, . . . , Xn} each of which has a domain of possible val-
ues. Formally, a Bayesian network forX is a pairBN = (BS , BP)
where the first component,BS , is a directed acyclic graph (DAG)
whose vertices correspond to the random variablesX1, . . . , Xn, and
whose edges represent directed dependencies between variables. The
parents ofXi, denoted asPai, is the set of variables with an arc to
Xi in the graph. The model structure yields to a factorization of the
joint probability distribution forX, P (X) =

∏n

i=1
P (Xi|Pai). The

second component,BP , represents the parameters that quantifies the
network. It has a parameterθijk = P (Xi = xk

i |Pai = paj
i) for

each possible statexj
i of Xi and for each configurationpaj

i of Pai.
We will revise two learning algorithms, namely, the Chow & Liu

[4], (CL algorithm) to learn tree-shaped networks, and one that learns
general Bayesian networks [7] that we will call GN. Both are hill-
climbing searchers that begin with the arc-less network and perform
the operator that most increases the score of the resulting structure
and does not introduce a cycle into the network. Algorithms stop
when the use of a single operator cannot increase the network’s score.
The difference between the algorithms is the domain of models and
the operators they use.

Algorithm CL obtains a maximum spanning tree that maximizes
the mutual information of variables. The neighborhood,NCL(BS)
of a network structure,BS = (X, E), is the set of all trees that can
be obtained fromBS by adding a single arcXj → Xi to BS ,

NCL(BS) = {(X, E′) | E′ = E ∪ {(Xj , Xi)}
∧ 6 ∃Xk : (Xk, Xi) ∈ E}

Algorithm GN yields full DAG structures and the neighborhood of
a given network structure,BS , is the set of all networks that can
be obtained fromBS by adding, reversing or deleting a single arc
Xi → Xj to BS such that does not introduce a cycle,

NH(BS) = {(X, E′)|E′ = E ∪ {(Xi, Xj)} ∧B′
S is a DAG

∨E′ = E ∪ {(Xi, Xj)}\{(Xj , Xi)} ∨ E′ = E\{(Xi, Xj)} }
CL uses the mutual information between two variables as quality

function, and algorithm GN uses, in our experiments, the Bayesian
Dirichlet approach (BDeu), see [2].

1.3 Bayesian Network Classifiers

Bayesian classifiers have proven to be competitive with other ap-
proaches like nearest neighbor, decision trees or neural networks [8].
Bayesian classifiers learn from pre-classified data instances the prob-
ability of each attributeXi given the class labelC, P (Xi|C). Then
the Bayes rule is used to compute the probability that an example
e =< x1, . . . , xn > belongs to a classCi, P (Ci|x1, . . . , xn). In
this way, the class with highest posterior probability is calculated.
The independence assumptions among attributes or variables distin-
guish the different Bayesian classifiers.

TheNaive Bayesas discussed by Duda and Hart [6] assume that
all attributes are independent given the class label. This classifier
can be represented by a simple Bayesian Network where the class
variable is the parent of all attributes. TheTree Augmented Naive
Bayes(TAN) classifier was introduced [8] in order to improve the
performance of the Naive Bayes. The TAN classifier relaxes the in-
dependence assumptions having a dependence tree among the at-
tributesx1, . . . , xn and maintains the class variable as a parent of
each attribute. Finally, a straightforward extension of TAN is the

Bayesian Network Augmented Naive Bayes(BAN) classifier [8].
The BAN classifier further relaxes the independence assumptions
having a Bayesian networkBN among the attributes and maintains
the class variable as a parent of each attribute. The posterior proba-
bility is of these classifiers is formulated as

P (Ci|x1, . . . , xn) ∝ P (Ci)
∏

k

P (xk|Pak, Ci)

wherePak is the empty set for the Naive classifier, it is a set with
one single parent for TAN, and it is an unlimited parent set for BAN.

Friedman et al. [8] showed that TAN outperforms Naive Bayes
while maintaining the computational simplicity on learning and clas-
sifying. Furthermore, Cheng et al. [3] showed that BAN generally
outperforms TAN and that the former is at most five times slower.
Note that to incrementally learn the Naive Bayes classifier we only
need to calculate its parameters since the network structure is fixed
beforehand (i.e. the class variable is the single parent of each vari-
able) and so, we could learn the parameters incrementally [14]. On
the contrary, for the TAN and BAN classifiers we need to update the
network structure in addition to the network parameters.

2 Incremental Hill-Climbing Search

In this section we propose two general heuristics in order to trans-
form any batch Hill-Climbing searcher into an incremental one. Both
heuristics study the search path obtained in the former learning step
in order to decide whether it is worth to update the current structure
and, when it is worth, they are able to determine from which point in
the search path the structure should be revised.

Our heuristics relies on a desirable property of scoring func-
tions. We usually prefer quality functions that score similarly
a model structure when it is measured with respect to similar
datasets, that is, sets whose underlying probability distance is close,
DKL(P (D)||P (D′)) (the Kullback and Leibler measure). For ex-
ample, we do not want quality functions to be sensitive in the pres-
ence of few noisy instances in a dataset. Using this property, we can
deduce that when a model hassignificantlydifferent quality scores
when it is measured with respect to two datasets, then their underly-
ing probability distributions are alsosignificantlydifferent.

2.1 Traversal Operators in Correct Order

We call the first heuristicTraversal Operators in Correct Order,
TOCO from now on. The TOCO heuristic assumes that it is only
worth to update an already learned model when the new data alter
the order of the models that are in its search path.

In our incremental approach, we will keep the search path of the
former learning step obtained with a given datasetD, S(M0, D) <
. . . < S(Mi−1, D) < S(Mi, D) < . . . < S(Mn, D). When new
dataD′ are available the score of the models of the search path can
be calculated again,S(Mσ(0), D ∪ D′) < . . . < S(Mσ(i−1), D ∪
D′) < S(Mσ(i), D ∪ D′) < . . . < S(Mσ(n), D ∪ D′). Where
σ(i) is a mapping function such that0 ≤ σ(i) ≤ n. If the or-
der of models in the path changes, that is, there exists0 ≤ i ≤ n
such thatσ(i) 6= i we can conclude two facts. First, we know that
DKL(P (D)||P (D ∪ D′)) is bigger enough to significantly change
the quality score of models and thus the new data provides addi-
tional information. Second, we know that algorithm HCS, see Algo-
rithm 1, would follow a different search path through the space of
models and possibly obtain a different one. On the contrary, when
the order still holds,∀i ∈ [0, n] σ(i) = i, we conclude that
DKL(P (D)||P (D ∪ D′)) is small and thereof, we assume that al-
gorithm HCS would follow again the same path and obtain the same

model. Thus, in the former case we trigger algorithm HCS while in
the latter we do not revise the structure.

When the order of models in the path changes, we will assume
that the model built by means of the correctly ordered traverse op-
erators is still correct and thus we will use it as the initial model for
algorithm HCS. More precisely, if the first model in incorrect order
is Mi, the first part of the learning path,S(Mσ(0), D ∪D′) < . . . <
S(Mσ(i−1), D∪D′) , is kept and the search is resumed from the last
model in correct order,Mσ(i−1).

So, the benefit of the TOCO heuristic is twofold. First, the model
will only be revised when it isinvalidatedby new data, and second,
in the case that it must be revised, the learning algorithm will not
begin from scratch.

2.2 Reduced Search Space

The second heuristic applies when the current structure needs to be
revised. Basically, it reduces the search space by restricting the set of
operator and arguments pairs that will be considered during the next
learning steps. We call this heuristic Reduced Search Space (RSS).

Given a modelM , the HCS algorithm scores operator and argu-
ment pairsOpAN (M) in order to obtain the best model of the neigh-
borhoodN (M). During this process, the RSS heuristic stores, into
a setB, thenRSS pairs with the best scores. So, in the next search
steps, when new data are available, the HCS algorithm restricts the
search to the models of the neighborhood obtained with these pairs,
namelyOpAN (M) ∩B . The rationale for this is that if the score of
a model is very low it will not grow very much with a short chunk
of new data instances specially when these instances come from the
same underlying probability distribution. Note that whennRSS is
close to zero the search space is very much reduced and thus the
model obtained may be biased towards the former one and it may be
very different to the one obtained using the whole search space.

Algorithm 2 Incremental Hill-Climbing Search

Require: a domain of modelsMD, a set of operatorsOP =
{op1, . . . , opk}, a databaseD, a scoring functionS(M, D), the
search path of the last learning stepOOp used to obtain the for-
mer modelMfor, the setsBi for each variable, two positive in-
tegersnRSS andk to state the number of pairs inB to consider

Ensure: M be a model of high quality inMD
let (op

kj

j , Aj) be the last ordered pair inOOp

Mini = op
kj

j (. . . (opk2
2 (opk1

1 (M0, A1), A2) . . . , Aj)
i = 0; Mi = Mini

repeat
oldScore=S(Mi, D)
i = i + 1
Mi = opki

i (Mi−1, Ai) where
(opki

i , Ai) = arg max (opk,A)∩Bi
S(opki

i (Mi−1, Ai), D)
if Mini 6= Mfor then

CalculateBi for each pair inOOp

end if
until oldScore≥ S(Mi, D)

2.3 Incremental hill-climbing search
Now we are ready to show the incremental hill-climbing search
(iHCS) which incorporates the TOCO and RSS heuristics. Algorithm
iHCS, see Algorithm 2, performs two different tasks. The first one
corresponds to the TOCO heuristic and consists in checking whether
the learning path of the previous learning step are in correct order
and to state the initial model,Mini, from which the search will be

resumed. The second task consists in performing the search (i.e. up-
date the model) using the newly available data.

Note that although all the operator and argument pairs are in cor-
rect order the incremental algorithm will try to improve the model
obtained in the previous learning step. It is convenient to allow iHCS
algorithm to use new operators as more data are available because
more complex structures (i.e. higher degree relations among vari-
ables) can reliably be evaluated. So, there are two different situations
(i.e. pre-conditions) in which the iHCS algorithm gets to therepeat
statement. The first one happens when the TOCO heuristic finds an
operator and argument pair incorrectly ordered (Mini 6= Mfor) and,
in consequence, the iHCS fires the revising process. The second one
happens when the TOCO heuristic finds all operators in correct or-
der (Mini = Mfor) and thus the former model is stillvalid and the
iHCS algorithm tries to use new operators just in case that the for-
mer model can be improved. In the first situation the sets of the RSS
heuristic,B, are not updated, while in the second the RSS sets are
updated sinceDKL(D||D ∪ D′) is big enough to provoke changes
in the ranking of operator and parameter pairs.

3 Incremental TAN and BAN
Here, we adapt the TOCO and RSS heuristics to CL and GN algo-
rithms to incrementally learn augmented classifiers. Remember that
both algorithms begin with the arc-less network structure and apply
the operator that most increases the quality of the current Bayesian
network. In our case, to learn Augmented Naive Bayes classifiers,
algorithms begin from the Naive structure, that is, a structure where
the class variable is the parent of all the other variables. Recall also
that algorithm CL only uses theadd operator while algorithm GN
usesadd, reverseanddeleteoperators.

Before adapting our heuristics, we want to show that the quality
measures used by the CL and GN algorithms, namely the mutual in-
formation and the BDeu, score similarly a Bayesian network when
it is measured with respect to two datasets with similar underlying
probabilities,DKL(P (D)||P (D ∪ D′). This can be shown using
some properties of the measures. First, see that the mutual infor-
mation measure proposed by Chow & Liu [4] is a special case of
the MDL measure where there is no penalty term for the network
complexity. Second see that the MDL is a decreasing function of the
divergence,DKL(P (D)||P (BS)), between the probability distribu-
tion of a datasetD and the probability distribution of a Bayesian net-
work structureBS [10], from where the desired behavior for the mu-
tual information is straightforward. And finally, see that under some
conditionsMDL(BS , D) = BDeu(BS , D) +O(1) [1].

In order to use our TOCO heuristic we keep the order in which
the operators are used (the search path) to built the structure when
datasetD is available. In the following learning steps, when new data
D′ are presented, this order is checked. If the order does not hold at
a given point of the path when the operator and argument pairs are
measured with respect to the old and new dataD ∪ D′, the search
path is resumed from that point.

We say that the order does not hold when there exists one opera-
tor in the order that does not maximize the score. More precisely, let
(opi, (Xm, Xn))k be an operatoropi and an arc(Xm, Xn) in posi-
tionk within the orderO, we say that(opi, (Xm, Xn))k is not in cor-
rect order when exists another operator(opj , (Xp, Xq))r in the or-
der wherek < r and such thatS((opi(BS , (Xm, Xn)), D ∪D′) <
S((opj(BS , (Xp, Xq)), D ∪D′).

We experimentally saw that this condition of order among arcs
was too strong in algorithm GN. That is, in many cases the order
of operators did not hold and when the learning process was fired,

it yielded the same operators in a different order. This provoked to
fire the revising process when in was not actually needed and thus to
spend unnecessary computing time. For this reason, we relaxed this
condition by means of awindowwhen checking the order. That is,
when new data are available we do not require the best operator to
be exactly at the same place in the order but in a place nearby. In this
way, thek-th operator in the orderO will be considered correct if
the score with respect to the new data,D ∪D′, is between the(k −
nTOCO)-th and the(k + nTOCO)-th position, wherenTOCO
is a parameter. The intuition is that we need more evidence that an
operator is incorrect to revise the structure. Note that if the window
length is too large, theTOCO heuristic will never detect changes in
the order and thus the revising process will not be fired.

In order to introduce the RSS heuristic into algorithms CL and
GN, we keep for each variable as many lists of operator candidates
as parents the variable has. So, when a revision is performed, the
algorithm will only try those operators in the lists of candidates. The
number of operators stored into the lists in order to restrict the search
is specified by means of a parameternRSS.

4 Experimental Results

In this section we compare the accuracy of the batch classifiers
against the corresponding incremental ones. We used the datasets
Adult(48.842 instances, 13 variables and 2 classes), Car (1.738 inst.,
6 var. and 4 cl.), Letter Recognition (20.000 inst., 16 var. and 26 cl.),
Mushroom (8.124 inst., 23 var. and 2 cl.) and Nursery (12.960 inst.,
9 var. and 5 cl.) from the UCI machine learning repository [13], We
used the discretize utility of MLC++ [9] in order to discretize the
attributes of the Adult and Letter Recognition datasets.

We trained both TAN and BAN with 2/3 of the dataset instances
and the rest to calculate the accuracy. These last ones were randomly
sampled from the datasets. We fed training instances to both algo-
rithms in chunks of 100 and calculated the accuracy of the classifiers
obtained along all the learning process. We also presented training
instances in different orders to test the behavior of our incremental
approach. Incremental algorithms may suffer fromordering effects
due to the nature of the incremental processing of data combined with
the tendency of HCS to get stuck at local maxima. It is known that
incremental HCS may output a very skewed model when the first ob-
served samples give a biased view of the domain even in cases when
the later samples give a correct view. We fed the instances to the al-
gorithms in four different kind of orders. Namely, an order where
similar instances are consecutive, another where dissimilar instances
are consecutive, another where instances from the same class are con-
secutive and finally a random order. We used five different orders of
each kind to run both algorithms, and the results shown in this section
correspond to the mean and the standard deviation of the accuracy.

The main objective of our incremental algorithms is to reduce the
time spent in learning a new network structure when the system al-
ready learned one from past data and still produce classifiers with
high accuracy. In Table 1 and Table 2 we present the accuracy ob-
tained with both the batch and incremental approaches of TAN and
BAN classifiers, respectively. In Table 1, we also present the accu-
racy obtained with the Naive Bayes classifier to see the improve-
ment obtained withaugmentedclassifiers. In Table 2, we present the
results obtained with thenTOCO parameter set to 0 and to 3, in
order to see the behavior of the TOCO heuristic. In this table, the
standard deviation is only shown for the accuracy where the BAN
algorithm was run withnTOCO = 3 for a lack of space. The stan-
dard deviation of the other columns was seen to be slightly lower
than the one shown. Columns “TG% ” and “CG% ” show the time

Table 1. Results with Naive Bayes and TAN classifiers

NAIVE TAN
Accuracy Acc. Batch Acc. Incr. TG% CG%

Rnd 0.838 (0.01) 0.860 (0.00) 0.859 (0.00) 63.61 80.34
A Sim 0.833 (0.00) 0.859 (0.00) 0.856 (0.01) 65.53 82.37

Dis 0.864 (0.04) 0.864 (0.01) 0.862 (0.01) 64.93 83.10
Cl 0.828 (0.01) 0.841 (0.05) 0.840 (0.04) 67.54 81.20
Rnd 0.848 (0.03) 0.930 (0.02) 0.925 (0.02) 100 46.91

C Sim 0.830 (0.03) 0.930 (0.02) 0.929 (0.03) 0.00 35.52
Dis 0.848 (0.03) 0.940 (0.01) 0.932 (0.02) -200 52.85
Cl 0.830 (0.05) 0.908 (0.05) 0.907 (0.04) -140 38.18
Rnd 0.746 (0.01) 0.860 (0.01) 0.860 (0.01) 50.65 60.57

L Sim 0.751 (0.00) 0.864 (0.01) 0.864 (0.01) 49.21 59.00
Dis 0.758 (0.02) 0.865 (0.01) 0.865 (0.01) 56.19 65.96
Cl 0.740 (0.01) 0.857 (0.01) 0.857 (0.01) 45.53 51.10
Rnd 0.981 (0.01) 1.000 (0.00) 1.000 (0.00) 34.13 54.29

M Sim 0.983 (0.00) 1.000 (0.00) 1.000 (0.00) 6.08 12.24
Dis 0.982 (0.00) 1.000 (0.00) 1.000 (0.00) 30.67 31.94
Cl 0.984 (0.01) 1.000 (0.00) 1.000 (0.00) 42.25 29.64
Rnd 0.894 (0.01) 0.927 (0.01) 0.927 (0.01) 11.44 52.02

N Sim 0.908 (0.00) 0.935 (0.01) 0.937 (0.01) 19.60 49.47
Dis 0.893 (0.01) 0.925 (0.01) 0.920 (0.02) 47.04 54.62
Cl 0.894 (0.02) 0.930 (0.01) 0.934 (0.01) 62.96 61.46

Table 2. Results with BAN classifier

nTOCO=0 nTOCO=3
Ac.B Ac.I TG% CG% Acc. Incr. TG% CG%

R 0.865 0.861 95.40 83.11 0.862 (0.00) 96.12 83.73
A S 0.863 0.862 89.36 78.59 0.858 (0.00) 96.93 84.56

D 0.867 0.866 86.42 76.94 0.867 (0.01) 95.84 83.31
C 0.845 0.842 89.26 78.07 0.842 (0.06) 89.26 80.24
R 0.853 0.853 37.50 45.87 0.853 (0.03) 46.15 45.87

C S 0.875 0.871 71.43 43.01 0.872 (0.08) 79.17 47.18
D 0.860 0.860 43.75 44.75 0.860 (0.04) 39.73 49.85
C 0.839 0.839 26.32 46.55 0.839 (0.06) 30.30 46.55
R 0.822 0.812 66.83 79.19 0.797 (0.04) 67.66 80.79

L S 0.814 0.779 70.04 79.73 0.772 (0.01) 71.54 80.77
D 0.822 0.794 88.59 82.17 0.792 (0.02) 89.24 82.67
C 0.810 0.783 80.56 73.53 0.774 (0.03) 93.50 84.02
R 1.000 1.000 8.17 19.78 1.000 (0.00) 79.41 71.93

M S 1.000 1.000 2.85 9.08 1.000 (0.00) 47.51 50.62
D 1.000 1.000 4.30 12.99 1.000 (0.00) 62.48 62.08
C 1.000 1.000 4.26 13.33 1.000 (0.00) 64.17 63.14
R 0.913 0.917 80.46 65.33 0.914 (0.01) 81.11 66.17

N S 0.922 0.917 77.46 63.29 0.915 (0.02) 75.38 68.24
D 0.908 0.908 79.86 64.60 0.905 (0.01) 78.94 68.78
C 0.917 0.917 77.74 67.70 0.918 (0.01) 83.99 70.07

gain and the gain in the number of calls to the scoring function per-
formed by the algorithms, respectively. The columns are calculated
as(1 − nI/nB) × 100, wherenI andnB are the number of clock
ticks or calls performed by the incremental and the batch approach
respectively. We believe that the number of calls are a good measure
of the time spent because it gives an idea of the number of the dif-
ferent network structures being considered by the search algorithms.
Note also that for small datasets (i.e. Car) where the computer use
few clock ticks the time gain does not seem to correspond to the call
gain. Another advantage of using this number is that it is decoupled
from the specific architecture of the computer being used.

We can see in the tables that for both algorithms, the incremental
approaches save a significantly amount of CPU clock ticks while the
accuracy of the final Bayesian classifiers is very close to the ones
obtained with the batch approaches. We also note from the tables
that the more complex a domain is, that is, the more attributes and
the larger the range of attributes, the greater the gain is. Also note
that the gain grows with the number of data instances. This last point
is due to the fact than when many data instances have already been
processed, the new incoming data instances slightly modify the data
distribution and therefore the network structure does not have to be
updated. Though observe, in Table 1 and in Table 2 the columns that
correspond tonTOCO = 0, that we obtain the lowest time gain
with the Mushroom dataset. Analysing the structures returned by the
incremental algorithms we saw that it is due to the fact that there
are many arcs that bring similar quality to the network and this pro-
vokes that the order of operators in the search path change very often
when new data are considered. In order to obtain a higher time gain,
we relaxed the TOCO heuristic (settingnTOCO = 3) for the BAN

classifier. Table 2 shows that the accuracy for the Mushroom dataset
is exactly the same (i.e. 100%) while the time gain grows from about
5% whennTOCO = 0 to about 60% whennTOCO = 3. Despite
of this, we observed that the score quality of the Bayesian network
structures returned by the incremental algorithm is a bit worse in the
latter case. The accuracy do not decrease because the returned struc-
tures still are of high quality and the class with highest posterior is the
same. This behavior is observed for all datasets, being the accuracy
slightly worse only for the Letter database.

We want to remark that our incremental approaches do not suffer
from ordering effects, that is, they are able to recover from biased
past Bayesian classifiers yielding final structures of almost the same
accuracy as the batch approaches do, independently of the order in
which data instances are presented to the learning algorithms. This is
true for all along the learning path.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2000 4000 6000 8000 10000 12000 14000

Num of data

BAN Accuracy. Incremental Approach

Rnd
Sim
Dis

Class

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Num of data

BAN Accuracy. Incremental Approach

Rnd
Sim
Dis

Class

Figure 1. Learning path of Letter (top) and Nursery (bottom) datasets

Figure 1 shows the learning paths of the incremental classifiers for
the Letter and the Nursery datasets and for the four data orders. We
can see that for the random, similar and dissimilar orders the accu-
racy grows asymptotically being the curve of the similar order the
one that grows slowest among the three. The curve that corresponds
to the order where the instances of the same class are consecutive
is shaped like a staircase. The parts of the curve that rapidly grow
correspond to the moments where the first instances of a class are
processed and consequently instances from that class are correctly
classified. The plain parts of the curve correspond to the moments
where the classes have already beenlearnedand new instances from
the same class are still being processed. In this figure we can see
again that our incremental algorithm is not order dependent since all
the learning curves reach almost the same accuracy.

5 Discussion and Final Conclusions
There are few works on incremental Bayesian network learning and
here we will briefly comment the most relevant from our viewpoint.
Buntine [2] stores in memory the most promising networks and re-

stricts the search among them when new data is available performing
a sort of beam search. Friedman et al. [7] usetwo-wayoperators (i.e.
add, delete and reverse arcs) to obtain a new network from the cur-
rent one. These operators allow them to reconsider the arcs added
during the past learning steps and to perform a sort of back-tracking
to revise the current structure.

We have experimentally seen that our incremental proposal is ro-
bust in front of different instance orders. Also we claim that our pro-
posal is very reactive to data distribution changes and consequently,
when new data provides new information, the current classifier is up-
dated obtaining a new classifier with almost the same accuracy than
the one obtained with the batch approach. This is done saving a sig-
nificant amount of computing time.

We also want to comment that in order to avoid processing data
multiple times we storedsufficient statisticsin memory by means of
AD-tree structures [12]. However, the full discussion of our approach
to AD-trees is beyond the scope of this paper.

As a final conclusion, we would like to remark that TOCO and
RSS heuristics are a general method that allows to transform any
batch hill climbing searcher into an incremental one, and we believe
that our approach can be successfully applied to learn incrementally
from data other complex models.

ACKNOWLEDGEMENTS

We would like to thank to Ramon Sangüesa, Luis Talavera and
anonymous referees for many interesting comments. This work has
been supported by FEDER and CICYT, TIC-2003-083282-C05-02.

REFERENCES
[1] R.R. Bouckaert,Bayesian belief networks: from inference to construc-

tion, Ph.D. dissertation, Utrecht University, 1995.
[2] W. Buntine, ‘Theory refinement on Bayesian networks’, inProceedings

of the 7th UAI, (1991).
[3] Jie Cheng and Russell Greiner, ‘Learning Bayesian belief network clas-

sifiers: Algorithms and systems’, inProceedings of the Canadian Con-
ference on AI, pp. 141–151, (2001).

[4] C.K. Chow and C.N. Liu, ‘Approximating discrete probability distribu-
tions with dependence trees’,IEEE Transactions on Information Teory,
14, 462–467, (1968).

[5] Domingos and Hulten, ‘A general framework for mining massive
data streams’,Journal of Computational and Graphical Statistics, 12,
(2003).

[6] R. O. Duda, P. E. Hart, and D. G. Stork,Pattern Classification, John
Wiley & Sons, New York, 2nd edn., 2001.

[7] N. Friedman and M. Goldszmidt, ‘Sequential update of Bayesian net-
work structure’, inProceedings of the 13th UAI, (1997).

[8] Nir Friedman, Dan Geiger, and Moises Goldszmidt, ‘Bayesian network
classifiers’,Machine Learning, 29(2-3), 131–163, (1997).

[9] R. Kohavi, G. John, R. Long, D. Manley, and K. Pfleger, ‘MLC++: A
Machine Learning library in c++’, inProceedings of the Sixth Inter-
national Conference on Tools with Artificial Intelligence, pp. 740–743.
IEEE Computer Society Press, (1994).

[10] W. Lam and F. Bacchus, ‘Learning Bayesian belief networks. an
approach based on the MDL principle’,Computational Intelligence,
10(4), 269–293, (1994).

[11] Pat Langley and Stephanie Sage, ‘Induction of selective Bayesian clas-
sifiers’, inProceedings of the tenth Conference on Uncertainty in Arti-
ficial Intelligence (UAI’94), eds., R. Ĺopez de Mantaras and D. Poole,
pp. 399–406. San Francisco, CA: Morgan Kaufmann, (1994).

[12] Andrew W. Moore and Mary S. Lee, ‘Cached sufficient statistics for ef-
ficient machine learning with large datasets’,Journal of A.I. Research,
8, 67–91, (1998).

[13] P.M. Murphy and D.W. Aha. UCI repository of Machine Learning
databases. http://www.ics.uci.edu/ mlearn/MLRepository.html., 1994.

[14] D. J. Spiegelhalter and S. L. Lauritzen, ‘Sequential updating of con-
ditional probabilities on directed graphical structures’,Networks, 20,
579–605, (1990).

