
Combining Multiple Answers for Learning Mathematical
Structures from Visual Observation

Paulo Santos and Derek Magee and Anthony Cohn and David Hogg
�

Abstract.
Learning general truths from the observation of simple domains

and, further, learning how to use this knowledge are essential capa-
bilities for any intelligent agent to understand and execute informed
actions in the real world. The aim of this work is the investigation
of the automatic learning of mathematical structures from visual ob-
servation. This research was conducted upon a system that combines
computer vision with inductive logic programming that was first de-
signed to learn protocol behaviour from observation. In this paper
we show how transitivity, reflexivity and symmetry axioms could be
induced from the noisy data provided by the vision system. Noise in
the data accounts for the generation of a large number of possible
generalisations by the ILP system, most of which do not represent
interesting concepts about the observed domain. In order to automat-
ically choose the best answers among those generated by induction,
we propose a method for combining the results of multiple ILP pro-
cesses by ranking the most interesting answers.

1 Introduction

Two important requirements for an autonomous agent to understand
and act in any real environment are the ability to hypothesise about
perceptual information and the ability to act according to the accept-
able behaviour (protocol behaviour) in that environment. In this pa-
per we briefly introduce a system (in Section 2) that combines com-
puter vision with an inductive logic programming (ILP) language,
which is here used to generate high-level theories generalising the vi-
sual data. In this work we use PROGOL [11, 10] as the ILP language.
Our system has been initially designed to learn protocol behaviours
from sensor data that could further be used by a virtual agent. In this
work, however, we use this system to show how some general math-
ematical structures (such as transitivity rules) can be induced from
the visual data.

In the search for general rules we observed that noise in the data
sets induced the ILP system to generate misleading answers that,
even though generalising most of the input set, were not representing
interesting concepts about the application domain. This work reports
a possible solution to this issue. Our solution involves running PRO-
GOL on multiple sets of observations of a particular aspect of the
domain. The resulting generalisation sets are further combined into
a final answer set in which, as we shall see, the most interesting for-
mulae are ranked according to a voting criteria. This procedure falls
in the class of ensemble methods in machine learning [4, 15].

The framework proposed in this this paper is evaluated on visual
observation of two simple game scenarios. In the first, the system
�

School of Computing, University of Leeds,Leeds, UK email:�
psantos,drm,agc,dch � @comp.leeds.ac.uk

observes a dice game which is described as follows: two dice are ini-
tially thrown on a board, the game consists of keeping on the table
the die with the greater face value while the other die is replayed.
Both dice are withdrawn from the table when their faces show the
same figure. The task of the logic engine was to find a definition of
ordering between the dice faces from the action of taking one die out
of the table. The challenge here is to generate this definition without
any preconceived notion of number or any pseudo definition of or-
dering given as background knowledge to the ILP module. The only
assumption underlying this domain was that there were six distinct
symbols representing the different faces of a die. The rules of the
second game experiment were analogous to the first but, instead of
dice, the vision system was observing pairs of 3 different cards rep-
resenting the figures of the game paper scissors stone. In this case
the assumption of a one-to-one relation between the symbols given
by the vision system and the objects in the game was dropped as the
classifier was set to provide 15 classes for the three objects in the
game (since it is unlikely that a system could reliably cluster data
into exactly the right number of concepts). The task of the logic en-
gine, in this case, is to provide the three axioms of equivalence given
the cases where there was a draw (i.e. when both objects were taken
out of the board).

This work makes three main contributions. First, we show how
transitivity, reflexivity and symmetry axioms can be induced from
the noisy data provided by a vision system. Second, in order to auto-
matically choose the best answers among those generated by the ILP
system, we propose a method for combining the results of multiple
PROGOL processes by ranking the most interesting answers. Finally,
the axioms sought were constructed without the assumption of any
explicit background theory. The last point represents a key differ-
ence of the present investigation and previous research on high-level
image interpretation [13, 5, 6], which were characterised by the inter-
pretation of sensor data given domain-specific background theories.

By setting our system the task of learning basic axioms of mathe-
matics we do not intend to develop a system to assist mathematicians
(such as [3] and [7]) but to investigate how common sense knowl-
edge can be automatically induced from computer vision data. The
long term purpose of this research is provide an autonomous system
with the necessary machinery that will allow it to formulate its own
logical explanations about its environment.

2 The experimental setup

The experimental setup used in this work is composed of a video
camera observing a table top where two players are engaged in play-
ing a game, as shown in Figure 1. Figure 1 also depicts a schema of
our prototype implementation.

Figure 1: An scheme of the experimental setup.

The vision system consists of a spatio-temporal attention mecha-
nism and an object classifier. In brief, the attention mechanism uses
motion as the cue to select interesting portions of space-time. Based
on a generic blob tracker [8], this mechanism works on the principle
of multi-modal background modelling and foreground pixel group-
ing. Thus, the bounding box, centroid location and pixel segmenta-
tion are extracted from any moving object in the scene in each frame
of the video sequence. The attention mechanism identifies key frames
where there is qualitatively no motion for a number of frames, which
are preceded by a number of frames containing significant motion.
Each object in the selected frames is classified in two steps. First,
features are extracted using banks of wavelets. Second, a set of ex-
ample feature vectors is partitioned into classes using a graph parti-
tioning method [14]. The resulting partitions are used as supervision
by a conventional statistical learning algorithm that provides models,
which are further used to generate the symbolic information input to
the ILP module. In effect, for each object identified by the attention
mechanism, a symbol is associated according to the specific model
in which this object is classified. For example: �����	��
���
 ������������������� in-
dicates that there are two distinct objects in the scene, at time ����� ,
represented by the feature classes: � and � .

The output of the vision system is sent to a PROLOG meta pro-
gram whose task is to re-write the input into multiple PROGOL ex-
periments. As this processing stage is of central importance to the
present paper, it will be discussed in detail in Section 3 below.

As a brief introduction to the PROGOL system, our prototype uses
the CPROGOL4.5, which is an implementation of the definite modes
language [11]. This allows the generalisation of a set of positive ex-
amples without the need of negative examples to guide the search.
This characteristic suits well our aim to explain passive visual obser-
vation since, in this case, negative examples cannot be easily input
without supervision.

In brief, PROGOL works as follows. For each positive example it
generates a most specific Horn clause constructed according to user
defined mode declarations. Mode declarations in PROGOL account
for restrictions in the possible form of the proposed generalisations.
The initial most specific clause is further contrasted with the remain-
ing examples in the search for a more general formula capable of
subsuming most of the data set.

3 Setting multiple experiments
As presented in the previous section, the output of the vision system
is a sequence of state descriptions of the observed scene. The ques-
tion now is to set appropriate PROGOL programs to search for general
facts from this data. For instance, with appropriate mode declara-
tions, PROGOL can be set to search for time-dependent rules involv-

ing sequences of state descriptions, or for patterns in the changes of
objects in state descriptions, or for recursive rules comprising pairs
of states. In this paper we concentrate on the last kind of rules. Even
when assuming a single kind of rule, different PROGOL’s runtime pa-
rameters (such as the maximum depth of resolutions) result in the
construction of distinct formulae for the same set of data.

Changing the search settings and mode declarations when a par-
ticular kind of formulae is expected are straightforward tasks for ex-
perienced PROGOL programmers. However, with this paper our goal
is to close the loop from data acquisition and data generalisation as
we expect the results of this research to be one step towards the de-
velopment of fully autonomous agents immersed in the real world.
Therefore, a PROLOG meta program was developed to automatically
set, run and evaluate different PROGOL experiments. The meta pro-
gram, in this work, also has the task of selecting subsequent pairs
of state descriptions from the vision data generating, for each pair, a
predicate ���������	��� �!��� �#" � � , read as the transition from state ��� to state
� �$" � . Or aim, thus, is to search for pairwise recursive rules from the
data, such as transitivity.

3.1 Looking for transitivity
Transitive inference is the process whereby the relation between two
objects can be deduced given the relation of these objects with a third
one. From reasoning about qualitative features to reasoning about so-
cial dominance relationships, transitive inference has not only been
shown to be present in human adults and infants [1] but also in less
evolved animals [9]. Whether or not this inference capability is in-
nate in natural beings is not a question that we have expertise to an-
swer. The importance and generality of transitive inference, however,
seems to suggest that it lies in the foundations of reasoning. It is one
of our goals, in this paper, to show that transitive rules can be induced
from the data generated by a computer vision system. How such rules
can be used in the inductive process to allow the generation of fur-
ther, more complex, formulae and how they can be learnt from and
imported to diverse domains are issues for further research.

In order to show the motivations of this paper’s main argument,
assume the dice scenario described in Section 1 above. In this case,
for instance, the vision system provided the following sequence of
state transitions, where �%� (&(')
+*,� -�-.-.�%���) are time points and � ,/ and 0 are three of the six classes representing the dice faces as
given by the classification method: �����	��
	��
 �1� / ����� � ��-2�����	��
���
 �����!� � ��-
���!����
	��
 ����03������4 ��-1�����	��
	��
 03���!��5.��-	-.- -

Obtaining a transitive rule from this data using the meta program
described seemed to be a straight forward task. Indeed, when no
noise in the data is present and a fairly complete set of examples
is provided, the meta program creates a PROGOL program rewrit-
ing the state facts above into: �!�1�����3��
 �1� / ����
 ���#��-6���������	��
 ������
 �1�%03�#��-
�!�1�����3��
 �1��03����
 03�#��-	-.-.-

With this representation of the vision data, PROGOL generates (for
variables 78��9 and : ranging over dice faces) the rule 1 below2,
which represents the transitivity of the relation that holds on the two
objects in the first argument of �!�1������;,< (in this paper we call formu-
lae such as (1) transitivity rules for simplicity).

�!�1�����3��
 7=��9>���
 7?�#�A@CBD�!�1�����3��
 78�%:E����
 7?�#�����!�1�����3��
 9F��:E���
 :E�#��- (1)

� Formula 1 was generated using mode declarations restricting the head
of the formulae to be of the form GIH J�K�L M!N ODP	J�Q�R�S�TUP	J�Q%R�VIS�N TUP	J1Q%R�V$W
and the bodies to be a conjunction of atoms of the form GIH J�K�L -M!N ODP	J�Q%R�S%TUP	J1Q%R�VIS�N ODP	J�Q�R%V$W or GIH J�K�L M!N ODP	J�Q�R�S%TUP�J�Q%R�VIS�N TUP	J1Q%R%V$WXW orGIH J�K�L�MXN TUP	J1Q%R�S�ODP	J�Q%R�VIS�N ODP	J1Q%R�V$W , where ODP	J�Q%R and TUP	J1Q%R are input
and output variables ranging over dice faces.

However, perfect data and complete sets of examples are assump-
tions that do not hold in our setup. In the experiments conducted
during this research, noise in the data was present as misclassifica-
tion of the objects perceived. A typical generalisation set of actual
vision data3 contained formulae such as:

�!�1�����3��
 78��9>���
 7?�#�D@CBD�������6�3��
 :Y��7Z���.
 7Z�#�����������6�3��
 :Y�%9>���.
 :E�#���
�������6�3��
 9F�%[\����
 [\�#��- (2)

�!�1�����3��
 78�%9>���.
 7Z�#�A@CBD�������6�3��
 9F��7?���
 7Z�]��- (3)

�����^���3��
 7=��98���
 9>�]�A@^BD�����^���3��
 7=��7?���
 7?�#�������������	��
 78��9>���.
 :E�#��- (4)

The expected transitivity rule was obtained from some data sets,
amongst other (potentially spurious) rules such as (2) and (4) above.
It is worth pointing out that the compressibility measurements pro-
vided by PROGOL were of an equivalent order for each data set, even
though the formulae generated by PROGOL largely differed from one
set to another. Moreover, the transitivity rule (when obtained) was
not always given as the first rule in the results of PROGOL generalisa-
tions4. Another point worth noting is that some interesting formulae
(initially not expected) were also obtained, such as a rule represent-
ing symmetry in the relation �!�1������;,< (rule (3) above).

An obvious possible solution to enhancing the accuracy of the for-
mulae obtained would be to consider a large data set and use the lay-
ered learning5 feature in PROGOL to obtain the generalisations [12].
The results produced in this way (rules 5, 6 and 7 below) were bet-
ter than the previous answers. However, the expected transitivity rule
could not be constructed, instead we obtained a rule that is too gen-
eral to be applied in practice (Formula 5). It is worth pointing out
that running PROGOL on the same large data set, but without using
layered learning, resulted in CPU elapsed-time failure.

�������6�3��
 7=��98���
 9>�#�D@CBD�����^���3��
 :Y��7?���
 7Z�]���!�����^���3��
 :Y�%98���
 [\�#��- (5)

�!�1�����3��
 78��9>���
 7?�#�D@CBD�������6�3��
 9F��7?���
 7Z�]��- (6)

�����^���3��
 7=��98����
 98�#�_@`BD�!�1�����3��
 7=�%:E����
 [\�#�����������6�3��
 :Y��ab���
 98�#��- (7)

In effect, we wish to develop a method that automatically selects
the most interesting formulae while keeping the potential spurious
generalisations in a lower rank. Comparing the PROGOL answer from
many different data sets, we noticed that particular spurious formulae
were less frequent in the generalisation sets than the actual formu-
lae sought. The meta program was then extended with a method for
combining the resulting answers from multiple PROGOL processes
(multiple experiments). The proposed method also ranks each result-
ing formula according to the number of times it subsumed, or was
subsumed by, other formulae in the multiple results proposed by the
PROGOL processes. The next section formalises this method.

4 Combining multiple ILP processes

The general problem in ILP is to generate the simplest consistent
hypothesis c , given a background theory 9 and a set of examples
a , such that 9F�%ced fgah-

However, as discussed in the previous section, if only (potentially
noisy) positive examples constitute a , the simplest consistent hy-
pothesis that best generalises the set of examples may not be the

4 Using the same mode declarations as for (1) above.5 PROGOL orders its output from the formula that most compresses the data
set.i
Briefly, layered learning constructs an initial rule (from a subset of the ex-
ample set) that is further tested and improved in further data subsets.

best formula for representing interesting concepts about a particu-
lar application domain. In order to obtain such formulae, we ap-
ply ILP to multiple example sets about a particular concept, vari-
ous distinct mode declarations were also used for each example set.
Formally, let j�
 � ��
1���.- -.-.�%
�k`l be a collection of example sets and
j � � ��� � �.- -.-����.mbl a set of mode declarations defining distinct search
settings for a particular concept. Therefore, we have multiple ILP
procedures each of which may be denoted as:

�.���%n`��o phd fq
�p3- (8)

Thus, the symbol n ��o p represents the generalisation set provided by
running PROGOL with the data set
�p (
�pr's

 � ��-.- -.�%
 k �) and mode
declarations �.� (�.�>'t
 � � �.-.- -.���.m?�). The result of this procedure is,
therefore, a collection of generalisations about a particular concept.
The problem now is to combine each one of the n ��o p into one single
final answer set.

Let IAS (read as intermediate answer set) be the union of
all generalisation sets n ��o p , i.e., u�7bvwf x �Io p n �Io p . Let also
�.yz�.�.yz{\|`�!&�}1� / nz
 /�~ �I���%��� be a binary relation that checks
whether the formula � is more general than the formula � . The
procedure for ranking the multiple possible generalisations is de-
scribed as follows. Each formula � in u�7Yv is checked for whether
�.yz�.�.yz{\|`�!&�}1� / nz
 /�~ ���`���C� or �.yz�.�.yz{\|`�!&�}1� / nz
 /�~ �]������� hold for
every other formula � in u�7Yv . If a formula subsumption is detected,
the most general formula of the two is deleted from the intermedi-
ate answer set. Therefore, only the least general generalisation is
kept. When there are no more formulae to be checked against � ,
� is deleted from u�7bv and inserted in the final answer set aug-
mented with an annotation representing the number of subsumptions
detected. This process is repeated until there are no remaining formu-
lae in u�7bv . The last step in this algorithm is to sort the final answer
set in terms of the formula annotations.

Instead of using formula subsumption, the process of ranking mul-
tiple possible generalisations could be done by counting the number
of times a particular formula appears in the generalisation sets. How-
ever, due to noise in the data, PROGOL produces over-generalisations
of the data (i.e. formulae that include – as particular cases – inter-
esting concepts but, in general, predict incorrect data). Therefore, we
decided to rank the rules by the number of times they subsume (or
are subsumed by) others, keeping only the most specific, rather than
the most general (usually over-general) ones. In this way, the over-
general rules add in the selection of interesting formulae, but only
the most specific formulae are output.

The motivation behind the method of combining the answers of
multiple ILP processes proposed above, is to give more value to small
but precise experiments than to large and noisy ones. Moreover, dif-
ferent aspects of a particular problem can be shown in different ex-
periments. Combining the generalisation sets in the way proposed
will keep the results of these particular experiments in the final an-
swer set. This method also provides the opportunity to evaluate the
multiple generalisations according to an interestingness criteria [2].
This possibility, however, is outside the scope of this paper.

5 Basic mathematics from visual information

In this section we recall the example domains introduced in Section
1 and discuss the results obtained by applying the ideas proposed
above. Both domains involve exposing to the vision system pairs of
objects that satisfy a particular relation. Having no previous knowl-
edge about the object pair or about the possible relation between

them, the system has to induce axioms about this relation by con-
sidering the transitions in the game.

Experiment 1: learning a transitivity rule
An example of some rounds of the first game considered is shown
in Figure 2; typical outputs of the vision system are represented in
the subfigure captions. In order to obtain a transitivity rule, the meta

(i)
state([a,b],t1).

(ii)
state([b],t2).

(iii)
state([b,b],t3).

(iv)
state([],t4).

(v)
state([d],t5).

Figure 2: Five states of the dice game.

program was set to select the transitions between pairs of states,
each containing at least one object. Thus, assuming Figure 2, PRO-
GOL is input with statements of the form: ���������	��
 ���������
 ���#��- and
�������6�3��
 �����
 �������#� .

Eight distinct data sets were used in this experiment, each con-
taining an average of 50 rounds of the game. Recalling the discus-
sion in Section 3.1, the results of running PROGOL for individual
data sets generated one distinct set of answers for each set. Within
the obtained answers the symmetry and transitivity axioms for the
�������6��;1< relation were amongst a large set of spurious formulae gen-
erated by PROGOL (29 formulae in total). In contrast, the result of
running PROGOL on the union of the eight sequences of data resulted
in CPU elapsed time failure. Using the layered learning feature in
PROGOL we obtained the Formulae 5, 6 and 7, which did not contain
the transitivity axiom as discussed above.

By using the method described in Section 4, however, we obtained
the symmetry axiom ranked as the most voted for formula (4 votes),
a rule representing the transitivity axiom was ranked as the second
formula (with 2 votes) along with one spurious formula, the remain-
der formulae received one vote each. Therefore, not only has our
method given a better rank to the expected formulae but it avoided
both rejecting interesting formulae (as occurred when applying lay-
ered learning), and the excessive time complexity of applying PRO-
GOL on a large data set.

Experiment 2: learning an equivalence relation
In order to allow the system to learn the axioms of equivalence, an
over classification of the paper-scissors-stone figures was assumed.
The three objects of the game were classified into 15 distinct classes.
From the symbolic learning standpoint, this assumption is equivalent
to showing, at each round of the game, one of 15 different shapes of
papers, scissors and stones. Therefore, the axioms of equivalence are
obtained from analysing the states in which a draw occurs, i.e., states

(i)
state([ci,cj],t1).

(ii)
state([],t2).

(iii)
state([ck,cr],t3).

(iv)
state([],t4).

(v)
state([cs,cw],t5).

(vi)
state([cn],t5).

Figure 3: Six states of the paper-scissor-stone game.

containing pairs of objects that are followed by an empty state. It is
worth noting that, in this experiment, we are not interested in induc-
ing the rules of the game in question, but in obtaining characteristics
of the equivalence between objects in this context.

Eight data sets (containing an average of 30 examples each) were
utilised in this experiment. In contrast with the previous domain, the
objects assumed in the present case were richer in textures than the
dice faces. Therefore, the classification provided by the vision mod-
ule was considerably more accurate in this domain than in the exper-
iment 1. Therefore, fewer formulae were proposed as output of run-
ning PROGOL on the provided data sets. Moreover, in most cases, the
sought axioms of equivalence were obtained as the first rules output.
We could not find suitable mode declarations, however, that would
allow PROGOL to find, on a single run, the reflexivity, symmetry and
transitivity axioms. The method proposed in Section 4 was used to
guarantee that the three expected rules are always given as results
when implicit in the data sets. As a result, the following formulae
(and their respective annotations) were obtained from our PROLOG

meta program:

�]�!�1�����3��
 7=��9>���
 �#�D@CB �!�1�����3��
 78��:E���
 �#���
�!�1�����3��
 :Y�%9>���
 �#�����3� (9)

�]�������6�3��
 7=��7?���
 �#�����	� (10)

�]�!�1�����3��
 7=��9>���
 :E�#�D@CB �!�1�����3��
 78�%[\����
 :E�]���
�!�1�����3��
 9F�%7Z���.
 :E�#�����,� (11)

�]�!�1�����3��
 7=��9>���
 �#�D@CB �!�1�����3��
 9F�%7Z���.
 �#����<1� (12)

�]�!�1�����3��
 7=��9>���
 �#�D@CB �!�1�����3��
 :Y�%7Z���
 �]���
�!�1�����3��
 :Y�%9>���
 �#����<,� (13)

�]�!�1�����3��
 7=��9>���
 �#�D@CB �!�1�����3��
 :Y�%7Z���
 �]���
�!�1�����3��
 9F��:E����
 �#����<,� (14)

�]�!�1�����3��
 78��7Z���.
 9>�#�D@^B �!�1�����3��
 78��:E���
 98�#��� * � (15)

�]�!�1�����3��
 7=��9>���
 :E�#�D@CB �!�1�����3��
 78�%[\����
 :E�]���
�!�1�����3��
 9F�%[\����
 :E�#��� *���- (16)

This answer set shows that a transitivity rule (Formula 9) was
the most scored formula (6 votes) followed by the reflexivity axiom
(Formula 10). The symmetry axiom (Formula 12) came in fourth,
preceded by a spurious rule (Formula 11). Therefore, the ranking
method does not guarantee that the most scored formulae are always
the most meaningful, nor does it guarantee that a meaningful formula
will not be lower ranked at the end of the process. What the ranking

method actually gives is an indication of a smaller set of formulae
which might be the interesting ones among a large set of possibili-
ties.

Formula 13 and 14 and the final rule, (16), are three rules express-
ing the transitivity of ����������;1< that are equivalent to (9). They were
not counted in the annotation in (9) because the symmetry of the
predicate �!�1������;,< was not a priori assumed in the learning process,
but obtained as a result. It is unclear to this author how potentially
interesting formula (such as the symmetry axiom) could influence in
the ranking process. Finally, (15) seems to be the result of the gener-
alisation of a noisy portion of the data.

In addition, the process of constructing the axioms of equivalence
produced a minimal set of examples of ground atomic formulae rep-
resenting the equivalence between symbols in the given data set.
With this minimal set, and the transitivity and symmetry axioms, a
complete set of equivalences may be determined.

6 Discussion and future work
To create consists precisely in not making useless combinations
and in examining only those which are useful but which are only
a small minority. Invention is discernment, choice.6

Investigating the possibility of the automatic learning of simple
general mathematical rules from computer vision data, this work was
confronted with an essential issue in knowledge discovery in gen-
eral, namely the selection of the most interesting explanations among
equally plausible competing solutions. We proposed a simple method
for ranking potentially interesting formulae according to a voting cri-
teria. With this method, axioms for transitivity, symmetry and reflex-
ivity were obtained from visual data. Future research will consider
how the framework proposed could be used to discover more com-
plex mathematical structures from the observation of incrementally
more complex domains.

In this work, multiple ILP processes were used in order to obtain
the axioms sought. This practice places the method described in the
class of ensemble methods for machine learning. More, specifically,
the algorithm introduced in Section 4, has characteristics of bayesian
voting (as the possible answers are ranked according to a voting cri-
teria over the set of hypotheses) and of bagging (since the input sets
are manipulated to generate multiple hypotheses. A summary and
comparison of these methods can be found in [4]. In particular, [15]
presents a similar algorithm (so called PLCG) to the meta-program
presented in the present paper. That algorithm learns multiple propo-
sitional models, from positive and negative examples, using a stan-
dart rule learning algorithm. The main purpose of PLCG is to find
the simplest rules from complex data. In contrast the algorithm pro-
posed in this paper is used to find rules from noisy (positive-only)
examples.

Future research should include the design of an algorithm for au-
tomatically suggesting suitable PROGOL mode declarations and set-
tings withing the meta-program proposed in this paper. This is an
essential step towards closed-loop inductive logic programming.

In this paper, transitivity, reflexivity and symmetry axioms were
induced from computer vision data obtained from the observation of
two simple game playing scenarios. It is worth pointing out that the
simplicity of the scenarios does not compromise the importance of
these findings. The application of these axioms is not constrained to
the scenarios where they were inferred, but they are general rules
�

From Poincaré’s lecture Mathematical Invention given at the Société de
Psychologie de Paris in 1908.

that are present in a variety of reasoning processes. The further use
of these rules on diverse domains is an issue to be taken into account
by future investigations. Moreover, the method for ranking anwers
presented in this paper is not restricted to the application domain
where it was developed.

7 Conclusion
This paper showed how general mathematical rules can be induced
from the noisy data provided by a vision system. Axioms of
transitivity, symmetry and reflexivity were obtained by combining
the result of multiple processes of an inductive logic programming
system (PROGOL) by means of a ranking method that selects the
most interesting formulae according to a voting criteria. This
method is part of a meta program whose task is to automatically
set, run and evaluate multiple PROGOL experiments. The final aim
of this research is to close the loop between data acquisition and
data generalisation as one step towards the development of fully
autonomous systems immersed in the real world.

Acknowledgments
Thanks to the two anonymous reviewers for the constructive
comments.

REFERENCES
[1] P. Bryant and S. Squire, ‘Children’s mathematics: Lost and found in

space’, in Spatial Schemas and Abstract Thought, ed., M. Gattis, 175–
200, MIT Press, (2001).

[2] S. Colton, A. Bundy, and T. Walsh, ‘On the notion of interestingness in
automated mathematical discovery’, International Journal of Human
Computer Studies, 53(3), 351–375, (2000).

[3] Simon Colton, Alan Bundy, and Toby Walsh, ‘Automatic identification
of mathematical concepts’, in Proc. 17th International Conf. on Ma-
chine Learning, pp. 183–190. Morgan Kaufmann, San Francisco, CA,
(2000).

[4] T. G. Dietterich, ‘Ensemble methods in machine learning’, in First In-
ternational Workshop on Multiple Classifier Systems, eds., J. Kittler and
F. Roli, volume 1857 of Lecture Notes in Computer Science, pp. 1–15.
Springer Verlag, (2000).

[5] A. Fern, J. M. Siskind, and R. Givan, ‘Learning temporal, relational,
force-dynamic event definitions from video’, in Proc. of AAAI/IAAI,
pp. 159–166, (2002).

[6] R. J. Howarth and H. Buxton, ‘Conceptual descriptions from monitor-
ing and watching image sequences’, Image and vision computing, 18,
105–135, (2000).

[7] D. Lenat, ‘Eurisko: A program which learns new heuristics and domain
concepts’, Artificial Intelligence, 21, 61–98, (1983).

[8] D. Magee, ‘Tracking multiple vehicles using foreground, background
and motion models’, Image and Vision Computing, 20(8), 581–594,
(2004).

[9] B. McGonigle and M. Chalmers, ‘Are monkeys logical?’, Nature, 267,
694–696, (1977).

[10] S. Muggleton, ‘Inverse entailment and Progol’, New Generation Com-
puting, Special issue on Inductive Logic Programming, 13(3-4), 245–
286, (1995).

[11] S. Muggleton, ‘Learning from positive data’, in ILP96, ed., S. Muggle-
ton, volume 1314 of LNAI, pp. 358–376. SV, (1996).

[12] S. Muggleton and J. Firth, ‘CProgol4.4: a tutorial introduction.’, in
Relational Data Mining, eds., S. Dzeroski and N. Lavrac, 160–188,
Springer-Verlag, (2001).

[13] H-H. Nagel, ‘Image sequence evaluation: 30 years and still going
strong’, in Proc. of ICPR, pp. 1149–1158, Barcelona, Spain, (2000).

[14] A. Stehl and J. Ghosh, ‘Cluster ensembles – a knowledge reuse frame-
work for combining multiple partitions’, Journal of Machine Learning
Research, 3, 583–617, (2002).

[15] G. Widmer, ‘Discovering simple rules in complex data: A meta-
learning algorithm and some surprising musical discoveries’, Artificial
Intelligence, 146, 129–148, (2000).

