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Abstract. It is possible to model avatars that learn to simulate object
manipulations and other complex actions. A number of applications
may benefit from this technique including safety, ergonomics, film
animation and many others. Current techniques control avatars man-
ually, scripting what they can do by imposing constraints on their
physical and cognitive model. In this paper we show how avatars in a
controlled environment can learn behaviors as compositions of sim-
ple actions. The avatar learning process is described in detail for a
generic behavior and tested in simple experiments. Local and global
metrics are introduced to optimize the selection of a set of actions
from the learnt pool. The performance for the learnt tasks is qualita-
tively compared with a human performance.

1 Introduction

Anthropomorphic avatars are useful in a number of applications, for
example to simulate object manipulations, but also interactions be-
tween individuals [13][12] [9][5]. Current research techniques in-
volve the modeling of avatars, including their physical and cogni-
tive features [7], and the modeling of the environment they inhabit
[8]. Simple to complex animations can then be staged by imposing
physical constraints, such as gravity, obstacle avoidance and above
all anthropomorphic limitations (for example the limited movements
of body limbs).

This paper shows that it is possible to devise automatic learning
of behaviors in terms of simpler elemental actions. An avatar can
learn how to achieve incrementally more difficult tasks by choos-
ing and executing actions, making mistakes and recovering from its
mistakes. The avatar learns to complete tasks by combining simple
actions in an optimal order, taking into consideration the internal
(physical/biomechanical) and external (environmental) constraints.
If an indication of the ideal behavior of solving a task is known,
then mistakes can be associated with rewards: the better the perfor-
mance of the avatar, the larger the rewards. Reinforcement Learn-
ing lends itself optimally to this purpose: avatars, or parts of their
physical and cognitive being, and a set of possible actions define a
state space which can be explored to find the best combination of
actions to satisfy a more or less complex goal. The paper is orga-
nized as follows: Section 2 introduces the avatar model drawing an
analogy from robotics, Section 3 recapitulates on the used Reinforce-
ment Learning techniques, in the light of the avatar task. Section 4
illustrates some examples of learning tasks. Section 5 discusses how
an optimal choice of actions can be made when more are available.
A number of metrics are introduced to calculate a distance between
sequences of actions, and an analogy to information theory is drawn.
Section 7 concludes the paper.
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2 The avatar model

The used avatar model borrows its biomechanical characteristics
from robotics. An avatar has a set of joints whose movements can
be either prismatic (movements constrained on a 3D plane) or rev-
olute (movements involving a rotation about an axis in 3D space).
Then the kinematics of manipulators [4] rules all possible move-
ments of joints as combinations of prismatic and revolute elemental
movements. Needless to say a large amount of literature exists which
explores a variety of methods to implement an optimal movement
of an ensemble of joints to perform simple and complex actions.
A standard goal usually includes more or less complex object ma-
nipulations. This paper demonstrates that using forward and inverse
kinematics for a simple but articulated avatar the optimal sequence
of actions can indeed be learnt. The forward kinematics (FK) solves
the motion of the end effector as a function of the joint angles, the
opposite task - generating the joint angle values knowing the position
of the end effector - is known as inverse kinematics (IK). Learning
is implemented by creating a suitable state space and applying Re-
inforcement Learning techniques to learn the optimal movements to
reach an object of interest. Figure 1 illustrates the concepts of for-
ward and inverse kinematics and the current model of the avatar.

Figure 1. Position of the end effector can easily be calculated when all
joint rotations are given (forward kinematics), the opposite task is the

problem of inverse kinematics.

3 Reinforcement Learning for autonomous avatars

All avatars presented in this paper are anthropomorphic. They can
perform a number of actions. The standard way of adding new ac-
tions and behaviors (seen as compositions of actions) to an avatar
repertoire is to manually script them. Ideally, an avatar should allow
for new actions but should also have a form of automatic generation
of new actions. The Reinforcement Learning technique lends itself
very well to the automatic acquisition of actions, and behaviors.

The implemented avatars use the Q-learning technique. All stan-
dard Reinforcement Learning techniques, and Q-learning in partic-
ular, do assume a scene evolving along a discrete time line, indi-
cated by the t variable. A suitable state space is defined as well as



all available actions for each defined state. The reader should refer to
[14],[10] for a detailed discussion on Reinforcement Learning tech-
niques. The quality of an action is kept up to date either using a table
of quality values Q(st, ai) or a neural network [2] or more stable
alternatives (for instance [1]).

Results on both deterministic and non-deterministic approaches
are described in the next sections. In all the experiments the state-
space and the goals of the agent are explicitly defined. The Q-
learning was implemented by discretising the space into states and
using a Q-table. The following list describes more details of the cur-
rent implementation:

• An avatar can perform a number of simple actions including arm,
forearm and hand motion illustrated in Figure 2 and textually de-
scribed in Table 1,

• The state-space is different for each mode of control but in both
cases it is discretised defining a number of degrees of freedom
for the used joints. In the case of forward kinematics the degrees
of freedom of the arm were defined as rotations around spatial
axes (see first four illustrations of Figure 2), all rotations were dis-
cretised and constrained to realistic physical movements. In the
case of inverse kinematics the state-space, the discretisation is per-
formed on the 3D space location of the end effector of the avatar,
that is its hand (see last illustration of Figure 2).

• In both forward and inverse kinematics, walking along one di-
mension is considered as an additional action. Descretisation here
is implemented along one axis in the two main directions of the
ground plane, where the avatar moves. Similarly grabbing an ob-
ject is considered to be an additional action.

• Other external objects (such as the door shown in the experiments)
were represented as additional variables.

• For each possible state-space dimension there are always two pos-
sible actions, indicating a movement of a body part (i.e. an arm,
a forearm, a hand etc.) along such dimension in the two oppo-
site directions. Examples include the avatar walking forward and
backwards or moving its hand along the vertical axis resulting in
lowering or raising the hand.

• Successful fulfilment of a goal is rewarded, collisions with the
environement and violence of the biomechanical constraints are
punished

Table 1. Low-level actions used to train the avatar

Forward Kinematics Inverse Kinematics
Rotate arm up/down by α Move palm by x
Rotate arm forward/backward by α Move palm by y
Rotate forearm by α Move palm by z
Rotate hand along Z axis by α
Rotate shoulder along Z by α
Perform the grabbing action Perform the grabbing action
Move forward/backward by x Move forward/backward by x

Although Q-learning convergence is not affected by the initial state,
for optimization reasons all animation experiments were biased to-
wards a realistic starting state (for instance with the avatar up-right
and both arms aligned with the body).

4 Learning Tasks

Two learning tasks have been defined and executed using Reinforce-
ment Learning. Each task was trained using both forward and inverse
kinematics control modes.

Figure 2. Avatar degress of freedom for the teapot task: FK (first four) and
IK (last) control

4.1 The door opening task

For this task the goal of the agent was to get through a locked door.
The door would be unlocked upon touching the door handle. The
avatar would then have to push the door and pass through it. The
agent was rewarded whenever its position was behind the door. The
simple actions available to the agent were selected from Table 1, for
the FK these were actions 1,2,3,7 (Experiment A) and 1,2,3,4,5,7
(Experiment B), α was set to 20 degrees, step size (x in action 7)
was 35 cm, in all experiments gamma = 0.95. Experiment B differed
from Experiment A in that two additional degrees of freedom for the
arm motion were added. Therefore the state space for the first exper-
iment consisted of approximately 12000 states distributed across 4
dimensions (2 degrees of freedom for the left arm, 1 for the left fore-
arm and 1 for backward/forward walk, the sizes of these dimensions
were 12, 16, 11 and 6 respectively). Eight simple actions were avail-
able to the agent at each time step. These were three rotations - two
for the arm and one for the forearm - in two opposite directions and
walk along one (2*3+2). The two additional degrees of hand free-
dom (hand and arm rotation around the z-axis, 13 different positions
for each) added for the second experiment made the total number of
states of over 2 million and 12 actions per state. In the first experi-
ment the solution was usually found in only about 250 iterations, the
second experiment required at least 1500 iterations. The lengths of
the shortest solutions in both experiments were 5 simple actions.

The task of a third experiment (Experiment C) was the same as
for the previous ones but the mode of control and the state and state-
action spaces were changed. The simple actions available to the agent
were 1,2,3 and 7 (Table 1, inverse kinematics column), x = 35 cm for
walk (the size of a single step) and x = y = z = 5 cm for the motion of
a hand gamma = 0.95. Thus a 3-dimensional cube of x,y,z positions
around the avatar’s hand has been defined, the last dimension was
walk along one axis. Therefore the agent could choose from 8 simple
actions - hand motion along 3 spatial axes in two opposite directions
for each axis plus walk (2*3+2). The total simulated state space was 1
296 000, however this initial number was highly redundant and could
be reduced to 6720 (8 states for the x-direction, 14 for y and 10 for
z, plus 6 positions for the walk). This reduction will be demonstrated
in the second task (see below). Similarly as before the solution was
usually found in a few hundred iterations.

4.2 The teapot lifting task

The goal here was to lift a teapot (z co-ordinate of the teapot position
had to increase). Therefore the agent was rewarded whenever the end
position of the teapot was higher than the start position. The simple
actions available to the agent were selected from Table 1, for the FK



these were actions 1,2,3,4,6,7 (Experiment D and E ). Unlike in the
previous task, the agent was assigned an additional action (action 6 -
grab an object) which improved the resulting animation and served as
a means of representing the state of the teapot (grabbed/not grabbed).
The learning parameters were set as follows: alpha was set to 20
degrees in Experiment D and to 10 degrees in Experiment E and
gamma = 0.95. The difference between experiments D and E was
not in the size of the state-space but in the sampling of it - the space
axes were sampled more densely and thus the state space size of the
second task was larger. Thus the state-space in the first experiment
consisted of about 13000 states, and for the second one was about
ten times bigger (121 000 states). The dimensionality of both tasks
was 5 - 2 degrees of freedom for the left arm, 1 for the left forearm,
1 for hand rotation and 1 for the state of the teapot. The respective
size of these dimensions were 7, 12, 11, 7, 2 for Experiment D and
12, 20, 18, 14, 2 for Experiment E . Ten simple actions were available
to the agent at each time step (2 for each state-space dimension, as
described earlier). The minimum number of iterations for the first
experiment was about 4 000 and 20 500 for the second one. Thus,
despite the tenfold growth of the state-space, the minimum number
of iterations increased by a factor of about 5. The lengths of the best
solutions were 9 and 14 respectively.

Similarly an experiment with biped control using inverse kinemat-
ics was also conducted (Experiment F). The simple actions available
to the agent in this case were actions from Table 1 (actions 1,2,3,7
of the inverse kinematics column), and x = y = z = 8 cm for the
motion of a hand, gamma = 0.95. Therefore the state-space was
4-dimensional and the agent could choose from 8 simple actions -
hand motion along 3 spatial axes in two opposite directions for each
axis plus the grabbing action. The total size of state space was 2240
(8*14*10*2). The algorithm needed about 800 iterations to find a
solution, and the best solution found was 10 actions long.

For both tasks the number of states across each dimension was
chosen to provide sufficient sensitivity but also to eliminate as many
unnecessary states as possible. Therefore only reasonable angles for
joint movements were selected, these were taken from human joint
constraints: forearm can only rotate by about 180 degrees around
the x-axis, arm 270 degrees around the x-axis (forward/backward)
and 180 degrees around the y-axis (up/down). Two additional states
were added for each joint to represent the illegal motions, so called
forbidden states (e.g. for the forearm rotation -20 degrees and 200
degrees would be the forbidden states). For walking only the route
through the door was represented as walking to the door could easily
be achieved within the underlying cognitive system (FreeWill [11]).
Finally in all experiments the Q-table was represented as a lookup
table and the values were initialized to 0 before the simulation.

Results of all experiments are summarized in Table 2 and 3, the
number of actions required to find a stable optimum solution would
normally be 1.5-2 times higher than those presented in the two tables.
The following two graphs show the convergence for both FK and IK
(Figure 3).

Table 2. State space details for FK

Task FK
State space Actions/state iterations

Door 1 296 000* 8 700
(6720)**

(4D)
Teapot 2240 8 800

(4D)

Table 3. State space detail for IK

Task
IK

State space Actions/state iterations

Door 12672 (4D) 8 200
2 141 568 (6D) 12 1500

Teapot 12936 (5D) 10 4000
120 960 (5D) 10 20500
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Figure 3. Convergence for forward and inverse kinematics examples

5 Metrics

The avatar learning task can be cast as an optimisation problem for-
mulated over the number of actions necessary to fulfil the goal. This
means that, apart from trying to find a set of transition states from the
starting position to the goal state, the avatar also optimises the num-
ber of actions necessary to achieve its goal. The learning process
might have more than one solution, all of which leading plausible
and comprising the exact same number of steps (imagine the action
of lifting a cup: many solutions are viable and plausible, all merely
constrained by the position of the cup and by the bio-mechanical
constraints of the arm). If the application is animation, and in any
case if the set of solutions ought to be analysed, then if the number
of such solutions is low, they can all be presented to a human opera-
tor who would select the ’best’ ones. The human user/operator might
use qualitative criteria, for instance how a specific sequence of ac-
tions might be perceived as realistic. On the other hand, when many



different solutions exist, it would be desirable to automate the com-
parison and selection process. The following sections describe valid
metrics that might serve this purpose.

5.1 Local distance metric

The local distance metric (LDM) selects a pair of animation se-
quences and generates a distance value depicting the similarity of
these sequences - the higher the distance value, the more dissimilar
the two sequences are. The distance, which is commutative, is cal-
culated on the basis of individual actions in the sequence, located
on corresponding positions within the string. Each two such actions
are compared and if they appear to be different the total distance
for the sequence is increased by one, otherwise it remains the same.
The resulting set of distance values for all permutations of the action
sequence pairs in the input solution set is then searched for the maxi-
mum and the resulting subset can be generated as pairs of sequences
for which the distance is equal to the maximum. It is also possible
to add other pairs with the distance value lower than the maximum
within a given margin, thus allowing the user to influence the size
of the presented subset. The formal definition of the metric is given
below.

Let us consider two learnt sequences of the same length N , A and
B, consisting of a number of low-level composite actions each:

A = a1, a2, ..., aM (1)

B = b1, b2, ..., bM (2)

The length of each sequence, that is their cardinality, is thus given as
N = card(A) = card(B). A distance between two sequences A
and B can be now defined (similar to the Hamming distance [3])as:

dAB = dBA =

M∑

i=1

|sign(ai − bi)| (3)

The local distance metric finds all pairs of sequences for which the
distance is equal to the maximum distance found between any two
sequences in a given set:

dmax = max{dab},∀a ∈ A, ∀b ∈ B, a �= b (4)

where A is a set of all sequences found for a given task.

5.2 Global distance metric

The local distance metric from the previous section finds sequences,
which substantially differ from each other, but it does not guarantee
that the resulting set will be well sampled. This is because one se-
quence very different from all other ones will affect the maximum
distance and cause this particular sequence to be paired with a num-
ber of other solutions which may nevertheless be mutually similar.
The global distance metric (GDC) relies on finding an average se-
quence, from which the distance of individual sequences can be as-
sessed following the model defined by the local distance metric. The
average sequence is created by finding, for each consecutive position
in the sequence, an action which appears most frequently on this po-
sition, considering all the action sequences from the input set. The
optimal sequence is thus defined as:

S = {argmax
i

(ha1(Si)), · · · , argmax
i

(haM (Si))} (5)

where the function haj (si) indicates the aj bin (and also the jth ac-
tion ∈ A available set) of the histogram of occurrence over all actions

in sequence Si. The optimal sequence is built by using the argmax
- over all available sequences (∀Si). Each argmax operator returns
the action a in the set A of available actions, yielding the maximum
among all histograms. If a histogram has more maxima, then one of
such actions is chosen at random.

5.3 Action similarity metric

This metric is similar to the local distance metric in that it consid-
ers pairs of action sequences. The number of occurrences of each
composite action within both sequences are counted and compared
between the two sequences, the resulting differences in occurrences
of each composite action are added up. The result is a scalar, which is
higher if the sequences consist of a larger number of different com-
posite actions. Thus the similarity metric for two action sequences
Sa and Sb is defined as:

dAB = dBA =
M∑

j=1

|haj (Sa) − haj (Sb)| (6)

where L is the number of all different low-level actions required to
train the avatar.

6 Results

Based on two result sets generated by the learning algorithm the Lo-
cal Distance Metric and the Global Distance Metric have been calcu-
lated. The first result set (Set 1) contained 651 sequences each con-
sisting of 14 actions obtained from experiment 2.2, the second set
contained 72 sequences (Set 2) with 11 actions each, generated by
experiment 2.3. LDC applied to Set 1 generated 120 sequences with
the maximum distance of 12. LDC applied to Set 2 generated 72 pairs
of sequences with the maximum distance of 8. GDC applied to Set
1 generated 40 sequences most distant from the averaged sequence,
the maximum distance was 8. GDC applied to Set 2 generated 4 se-
quences most distant from the averaged sequence, the maximum dis-
tance was 6. The four resulting sequences were:

2 4 1 1 4 2 2 0 4 6 0 (seq 25, see Fig. 4)
2 4 1 4 1 2 2 0 4 6 0 (seq 29)
4 4 1 1 2 2 2 0 4 6 0 (seq 60)
4 4 1 2 1 2 2 0 4 6 0 (seq 65)

Although these sequences are the most distant from the average, they
are relatively similar and therefore an extension of this approach has
been proposed. The resulting set proposed for addition to the plan
library should include sequences for which the GDC generates the
highest and the smallest values thus guaranteeing to include both
most average and most different sequences. Rerun of the GDC al-
gorithm with a distance of 0 resulted in further 4 sequences being
proposed for the action library:

1 1 4 4 4 2 2 2 0 6 0 (seq 8, see Fig. 4)
4 1 1 4 4 2 2 2 0 6 0 (seq 41)
4 1 4 1 4 2 2 2 0 6 0 (seq 46)
4 1 4 4 1 2 2 2 0 6 0 (seq 51)

This extension of the algorithm applied to Set 1 generated additional
10 sequences.

The results indicate that for large sets of sequences the sets of
sequence pairs generated by the LCD are too large to be analyzed



individually. The GDC metric reduces the amount of resulting se-
quences, however the most distant solutions appear to be very simi-
lar. The proposed extension of generating both most distant and most
average solutions and selecting a few examples from each set appears
to overcome this problem.

7 Final remarks

A filled Q-table contains optimum transitions from any state to the
goal state. Therefore the results of the learning tasks demonstrated in
this paper can be used to create animations from any starting position
of the agent thus adding more than one specific action to the plan
library at a time. It may even be possible to store the learnt Q-tables
rather than single action sequences and use them whenever the agent
needs to perform an action starting from a state present in the Q-
table and ending in a goal state defined for the specific learning task
for which the Q-table was generated.

Similarly the Q-learning technique may be used to learn the same
action for a different configuration of objects (for example the size of
the table or teapot may be different) and encode this different config-
uration as a set of varying preconditions for the same action. Equally
the size of the avatar itself can change and a new solution for a dif-
ferent character may be generated (see [6] for a different solution to
this problem).

Another benefit of using the learning technique for action acquisi-
tion is that the resulting sequence comes in a form of a script, which
can then easily be manipulated and parameterised and also incorpo-
rated into other animation tools. This is in strong opposition to the
key-framing and motion capture based approaches which although
easily portable and capable of delivering realistic motion, are never-
theless difficult to modify using automatic methods. This advantage
is also utilized when calculating the metrics presented in the previous
sections, as it is difficult to calculate metrics for motion sequences
without underlying semantic representation.

Finally the technique can be applied to other research domains
such as robotics, provided the robot can already perform basic ac-
tions such as walking.

The biggest limitation of this approach is currently fast increase in
the learning time with the size of the state space. Future research will
attempt to tackle this problem.
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