
Improvements on Automatic Word Codification for
Connectionist Machine Translation*

Gustavo A. Casañ and M. Asunción Castaño1

Abstract. Encouragingly accurate translations have recently been
obtained using a connectionist translator called RECONTRA (Recur-
rent Connectionist Translator). In order to deal with tasks of medium
or large vocabularies, distributed representations of the lexicons are
required in this translator. A simple connectionist model has been
recently designed to automatically obtain word distributed represen-
tations. In this paper several learning algorithms were used to train
this connectionist encoder aiming to improve the translation rates
achieved with the corresponding obtained codifications of the vo-
cabularies involved.

1 INTRODUCTION

In comparison with traditional knowledge-based Machine
Translation (MT) systems, in recent years example-based
techniques (so called inductive techniques) have led to suc-
cessful limited-domain applications. In this paradigm, systems
are automatically built from training sets of examples which
are large enough, resulting in lower development costs. In this
direction, Neural Networks can be considered an encouraging
approach to MT, as the translation schemes presented in [9]
and [18] have empirically shown.

Other connectionist translator, called RECONTRA (Recur-
rent Connectionist Translator), has been recently designed [5]
to tackle text-to-text limited domain applications. It directly
carries out the translation between both the input and the out-
put languages and, at the same time, automatically learns the
semantics and syntax implicit in both languages. In this ap-
proach the vocabularies involved in the translations can be
represented according to (simple and clear) local codifications.
However, in order to deal with large vocabularies, local repre-
sentations would lead to networks with an excessive number
of connections to be trained in an admissible time. Conse-
quently, distributed representations (more compact than local
codifications) of both source and target vocabularies are re-
quired. This problem was initially approached in [5] and [3],
where it was shown how certain types of distributed codifica-
tions (which were manually generated) could carry out MT
tasks with larger vocabularies. Later a simple connectionist
model presented in [4] was designed to automatically create
adequate and compact distributed codifications for the vo-
cabularies. The sizes of these codifications were automati-

* Partially supported by the Spanish Fundación Bancaja, project
P1.1B2002-1.

1 Dpto. Ingeniería y Ciencia de Computadores Universidad Jaume I.
Castellón, Spain. {ncasan,castano}@icc.uji.es

cally obtained by successively pruning the neural model. In
this paper several different learning algorithms have been used
to train the encoders in order to compare the translation rates
achieved with the corresponding extracted codifications of the
vocabularies involved.

The rest of the paper is organized as follows: Section 2 de-
scribes the architecture of the RECONTRA translator, as well
as the procedure used to train it. Section 3 shows the connec-
tionist architecture of the encoders and describes the learning
algorithms used to train them. Section 4 presents the task to be
approached in the experimentation and Section 5 reports the
translation performances obtained. Finally, Section 6 discusses
the conclusions of the experimental process.

2 THE RECONTRA TRANSLATOR

The basic neural topology of the RECONTRA translator is a
network presented by Elman in [6]. An Elman network is a
simple Recurrent Neural Network in which the activations of
the preceding step in the hidden units of the networks are
fedback as inputs in the hidden layer. The architecture of
RECONTRA includes time delays in the input layer of an
Elman network, in order to reinforce the information about
past and future events. Figure 1 illustrates the resulting con-
nectionist topology.

Figure 1. The RECONTRA Translator
In relation to the running of the connectionist architecture,

the words of the sentence to be translated are sequentially
presented to the input of the network, while the net has to
provide the successive words of the corresponding translated
sentence.

The RECONTRA translator is trained by using a version of
the Backward-Error Propagation algorithm [17]. The weights
of the net are modified after each input is processed and the
corresponding error generated is computed. Consequently an
“on-line” algorithm is used (the updating of the weights only
after each presentation of the complete learning corpus would
lead to a “batch” training algorithm). A sigmoid function (0,1)
is assumed as the non-linear activation function and context
activations are initialized to 0.5 at the beginning of every
input-output pair. The choice of the learning rate term and the

CONTEXT UNITS

copy
HIDDEN UNITS

OUTPUT UNITS

INPUT UNITS

momentum term is carried out inside the unitary bidimen-
sional space which they define, by analyzing the residual
mean squared error of a network trained for 10 random pres-
entations of the learning corpus (10 epochs). Training contin-
ues for the learning rate and momentum which led to the low-
est mean squared error. And the training process stops after a
certain number of training epochs is reached.

With regard to the translated message provided by the
RECONTRA model, the network continuously generates
output activations. In order to interpret the activations pro-
vided at a given time cycle, the word associated to the pre-
established codification of the target vocabulary which is
nearest to such activations is searched for. Word Error Rate
(WER) is computed by comparing the obtained and expected
translations corresponding to every source sentence in the test
sample using a conventional Edit-Distance procedure [10]. In
this way, the number of insertions, deletions and substitutions
errors required to transform a sentence into the other are ob-
tained. The WERs reported here correspond to the ratio of the
total number of errors with respect to the total number of edit
(total error+non-error) operations.

3 THE CODIFICATIONS GENERATOR

In our MT experimentation, we should represent the words of
the vocabularies involved. In order to get distributed lexicons
representations for the RECONTRA translator automatically,
several neural techniques could be employed [5] [14] [2] [11].
The method adopted in this paper was a simple but effective
one presented in [4] which is described immediately after.

The codifications obtained by this encoder are subsymbolic
distributed codifications in which the units have continuous-
valued activations, in the range [0,1]. A distributed represen-
tation is defined [8] as one in which each concept or element
is represented over several units, and in which each unit
participates in the representation of several concepts. When no
meaning can be assigned to any particular unit these represen-
tations are called subsymbolic distributed codifications.

3.1 Network architecture

The encoder used to code the vocabularies of the MT task is a
Multilayer Perceptron (MP) trained to produce the same out-
put as the input (a word of the vocabulary). In order to take
into account the context in which a word appears, the corre-
sponding previous and following words in a sentence are also
shown at the output of the MP, resulting the topology that can
be seen in Figure 2. When the MP is trained enough, the acti-
vations of the hidden units have developed its own representa-
tions of the input/output words and can be considered the
codifications of the words in the vocabulary, taking into ac-
count the context in which each word appears. Consequently,
the size of the (unique) hidden layer of the MP decides the
size of the distributed codifications obtained.

To automatically determine an adequate size of these codi-
fications and not being dependent on a human expert, a prun-
ing algorithm is applied on the hidden layer. It consists of

removing the units which are not necessary for the representa-
tion of the vocabularies. The pruning algorithm used is the
Skeletonization algorithm [13]. After pruning the network, a
word is presented to the MP and the activations of the hidden
units are extracted. These activations are assumed to be the
representations developed by the MP encoders for the words
of the vocabulary.

Figure 2. A Multilayer Perceptron with output delays

As the results shown in [4] revealed, when the input word
has less importance at the output than its contexts, the codifi-
cations of similar part of speech words are too similar to be
adequate for translation purposes; that is because the translator
can not differentiate between the different nouns or verbs, for
instance. Thus, the emphasis in the codification process
should be (equated or) put on the input word over its context.
This is achieved by repeating the input word several times at
the output window of the encoder. According to this a possi-
ble output window format of size 4 for the x-th input word, wx,
of a sentence w1 w2 w3 …could be wx-1 wx wx wx+1 , where wx-1
is the previous word in the context of this sentence and wx+1,
the following word. To simplifly the nomenclature, from now
on, we will refer to such example as x-1 x x x+1.

3.2 Training procedures

In previous experiments with the MP encoder described in the
above subsection [4], it was trained using the classical Back-
ward-Error Propagation algorithm. In order to obtain better
codifications which led to higher translation rates with
RECONTRA, other learning methods could be adopted for the
encoders of the vocabularies. To this end, in this paper three
supervised training algorithms were tried:
 Backward-Error Propagation (BEP) algorithm [17]: It is
the most common learning algorithm to train MPs. This al-
gorithm was also adopted to train the RECONTRA transla-
tor. At this time, we also used a momentum term and a learn-
ing rate term for updating the values of the connections. The
choice of these parameters was carried out inside the bidi-
mensional space which they defined, by analyzing the resid-
ual mean squared error of a network trained for 10 random
presentations of the complete learning corpus (10 epochs).
The (on-line) updating of the weights continued for the
learning rate and momentum that led to the lowest mean
squared error over the learning corpus.
 Resilient back PROPagation (RPROP) [16]: It is a local
adaptive batch learning scheme. The basic principle of
RPROP is to eliminate the harmful influence of the size of
the partial derivative on the weight step. As a consequence,
only the sign of the derivative is considered to indicate the

HIDDEN UNITS

INPUT UNITS

OUTPUT UNITS OUTPUT UNITS OUTPUT UNITS

direction of the weight update. Every time the partial deriva-
tive of the corresponding weight changes its sign, which in-
dicates that the last update was too big and the algorithm has
jumped over a local minimum, the 'update value' is de-
creased (in our case using a fixed value). If the derivative
retains its sign, the 'update-value' is slightly increased in or-
der to accelerate the convergence in shallow regions.
 Scalated Conjugate Gradient (SCG) [12]: It is a conju-
gate gradient method; that is, a general purpose second order
technique that helps minimize goal functions of several vari-
ables. Like standard BEP, SCG iteratively tries to get closer
to the minimum, but not down the gradient of the error func-
tion as BEP. A SCG will proceed in a direction which is
conjugate to the directions of the previous steps. Thus the
minimization performed in one step is not partially undone
by the next, as it is the case with standard BEP and other
gradient descent methods.
In order to automatically obtain a possible size of the codi-

fications of the lexicons, the encoder network was pruned
using the Skeletonization algorithm [13] to remove the least
necessary hidden neurons. The pruning mechanism consisted
on training the MP for 10 epochs and selecting a hidden unit
to be removed. The new pruned MP was trained for 10 more
epochs and pruned again. The pruning process was repeated
until there were no more hidden units to be removed. After
this, the pruned MP which had the minor residual mean
squared error was selected for further training. This additional
training was required since experimental results (not reported
here) showed that the codificactions of the different words of
the vocabulary extracted at this time from the pruned encoders
were very similar.The training process (usually) stopped after
3,000 epochs and a sigmoid function (0,1) was assumed as the
non-linear function.

If the learning algorithms described above were adopted for
both training and pruning the MPs, at the same time, the final
trained MPs could have different numbers of pruned hidden
neurons. Consequently, the results achieved in the translation
process could not be exactly compared. Comparisons among
translation rates should be made, for instance, after training a
given pruned encoder with different learning algorithms.

4 THE MACHINE TRANSLATION TASK

The task chosen in this paper to test the encoders of the vo-
cabularies required for the RECONTRA translator was a sub-
task of the Spanish-to-English text-to-text Traveller MT task,
called the Mini-Traveller task. It was designed within the first
phase of the EuTrans project [1] and is restricted to a limited
semantic domain. The task approaches typical situations of a
traveller at the reception of a hotel in a country whose lan-
guage he/she does not speak. It includes sentences in which
the traveller notifies his/her departure, asks for the bill, asks
and complains about the bill and asks for his/her luggage to be
moved. Some examples of this task are shown in Table 1. It
has 178 different Spanish words, and 140 English words. The
best WER obtained with other inductive methods was around
2% (see [5] and [15] for more details).

Table 1. Pairs of sentences from the Mini-Traveller task

Spanish: ¿ Está incluido el recibo del teléfono en la factura ?
English: Is the phone bill included in the bill ?
Spanish: He de marcharme el día veintisiete de febrero a las siete y

media de la tarde .
English: I should leave on February the twenty-seventh at half past

seven in the afternoon .

The corpora adopted in the translation task were sets of
text-to-text pairs which consisted of a sentence in the Spanish
source language and the corresponding sentence in the English
language. They were automatically built by using a set of
stochastic syntax-directed translation schemata [7]. A learning
set of 5,000 pairs of sentence and a test set of 1,000 sentences
were adopted. The average size of the sentences in Spanish
was 8.6 and 8 for the English sentences.

The corpora used for the training of the MP encoders were
sets of text-to-text pairs, each of them consisting of an input
word and the same input word together with its context (the
preceding and following words in a sentence) as output. All
pairs were extracted from sentences which appeared in the
training corpus employed for the translation task. All the re-
peated pairs extracted from the translation corpus appeared
only once in the training set of the MP. There were no test
corpora for the codification process; it was indirectly evalu-
ated later in the translation process.

5 EXPERIMENTAL RESULTS

We used MP encoders with different output windows (of 4 up
to 8 word delays) with the adequate changes in the number of
input and output units due to the different sizes of the English
and Spanish vocabularies. The initial number of hidden units
at the beginning of the pruning process was set to 25 or 100
neurons. Non-pruned MP with 25 hidden neurons were also
used.

With regard to the topology of the RECONTRA, previous
experiments on this task [5] suggested to adopt 180 hidden
units and an input window of 8 delayed words (with format
3+1+4) for the RECONTRA translators, since they led to
adequate translation rates. The number of hidden units of the
pruned or non-pruned encoders determined the size of the
input and output layer of the RECONTRA translator. The
training of these translators was always stopped after 3000
epochs. All these experiments were done using the Stuttgart
Neural Network Simulator [19].

5.1 Results training the MPs with the BEP algorithm

First the task was approached using codifications extracted
from MPs in which the hidden layer had a pre-established
fixed-size of 25 neurons to code each vocabulary. An output
window of size 6 and 4 repetitions of the input word at the
output was adopted. These encoders were trained using the
BEP algorithm.

The learning set of the translation task was codified accord-
ing to the codifications extracted from the above trained MP

encoders. A RECONTRA translator was trained and evalu-
ated. The test translation eror rate obtained is shown in Table
2. For comparison purposes, the results for an experiment with
(binary) manual codifications of the vocabularies and the same
topology for RECONTRA are also shown. The sizes of the
codifications adopted for the Spanish and English vocabular-
ies (expressed by |Spanish| and |English|, respectively) are
displayed, too. As we can see, the translation WER obtained
using automatic codifications is slightly higher than that ob-
tained with the (best) manual ones. It should be noted that
these hand-made codifications corresponded to coarse repre-
sentations in which similar codifications were assigned to
words that were semantically near. On the other hand, the
automatic codifications used in the experiments were more
compact holistic representations, which increased the com-
plexity of the translation process.

Table 2. Translation WERs using manual codifications and
automatic codifications of fixed size 25 extracted from MPs with

output window format x-1 x x x x x+1

Codifications Translation
Type | Spanish| / | English | WER

Automatic 25/25 4.26%
Manual 61/52 1.40%

In a second series of experiments, the pruning method was
applied to the hidden layer of the encoders. Different output
window formats for the MPs (from 4 up to 8 word delays)
were tried. MPs initially had 25 hidden neurons and were
successively pruned after each 10 epochs. Then, the topology
of the pruned MPs which had led to the least error was se-
lected. The resulting encoders were later trained for 3,000
more epochs. Codifications were later extracted for the result-
ing MPs. The translation process was carried out using these
codifications. Table 3 shows the translation WERs achieved
on the test set. The sizes obtained for the codifications of the
vocabularies are also specified. The results revealed that the
WERs were slightly higher than those achieved without prun-
ing the encoders.

Table 3. Translation WERs using automatic pruned codifications
from MPs with different features

MP Encoders Translation
Output window format | Spanish | / | English | WER

x-1 x x x+1 11/9 9.38%
x-1 x x x x x+1 11/11 8.11%

x-2 x-1 x x x x x+1 x+2 14/13 7.83%
x-1 x x x x x x x+1 11/9 9.16%

New experiments (not reported here) were repeated using
translators with larger hidden layers. However, the test trans-
lation WERs obtained were just slightly lower but at the cost
of more computationally expensive networks.

5.2 Results training the MPs with other algorithms

The task was later approached using the two other learning
algorithms presented in point 4 (RPROP and SCG) to train
(for 3,000 more epochs) the pruned MPs which had provided

the best pruned codifications in the previous section. Codifica-
tions were extracted from the resulting trained encoders (at
1,000 and 3,000 epochs) and evaluated on the translator. The
test translation WERs obtained are shown in Table 4.

The results show how the RPROP algorithm did not pro-
duce a significant improvement over BEP, and also that SCG
was definitely a worse learning method. Looking at the evolu-
tion (not reported in the paper) of the mean squared error
obtained during the MPs training, we noticed that SCG had
found a local minimum very soon. And we also observed that
the mean squared error achieved with the SCG algorithm was
bigger than that found using BEP. But BEP seemed to move
around this minimum, increasing and decreasing the mean
squared error in a short range. Combining BEP to approach a
better local minimum (with minor mean squared error) and
SCG to find exactly this minimum could be a good solution to
the problem. The translation results achieved training pruned
MPs for 100 epochs with BEP and continuing the training
with SCG until 3,000 epochs can be also seen in Table 4. As
expected, the final mean squared error was reduced and the
translation results obtained (even after only 1000 epochs)
were better than those obtained using only BEP to train the
encoders. The pruned encoders were also trained using a com-
bination of BEP (for 100 epochs) and RPROP (up to 3,000
epochs). However, the WERs achieved were higher than those
achieved combining the BEP and SCG algorithms.

Table 4. Translation WERs using automatic codifications (of size 14
for Spanish and 13 for English) extracted from pruned MPs with

output format x-2 x-1 x x x x x+1 x+2 and 25 initial hidden units trained
with different algorithms

Training method | Epochs |
BEP+Other

Translation
 WER

BEP 1,000 + 0 6.90%
 3,000 + 0 7.83%
RPROP 0 + 1,000 7.02%
 0 + 3,000 6.06%
SCG 0 + 1,000 14.04%
 0 + 3,000 10.77%
BEP+RPROP 100+900 7.31%
 100+2,900 6.98%
BEP+SCG 100+900 4.9%

 100+1,900 5.56%

5.3 A different starting point

The results obtained at this point using automatic codifications
were not as good as those obtained using manual codifica-
tions. One possible reason could be that we were being too
demanding on the codifications, and that we could need more
units to code the vocabularies. Consequently, we began the
pruning process with MPs encoders which had 100 initial
hidden units instead of the 25 units used in the above sections.
They had an output window format x-2 x-1 x x x x x+1 x+2.
The resulting pruned hidden layers had 49 neurons for the
Spanish encoder and 72 neurons for the English one. The
training of these encoders continued for 3,000 more epochs
using the BEP algorithm. The pruned encoders were also

trained for 100 and 500 epochs with the BEP algorithm and
afterwards up to 3,000 epochs with the SCG algorithm.

After the training of the PM encoders, codifications were
extracted and used to train RECONTRA models. Table 5
shows the translation WERs obtained on the test corpus. Most
of them were better than those reported in Table 4 when
smaller decoders were used. And these translation results were
almost equal to those achieved with the best manual codifica-
tions, shown in Table 2. With regard to the mechanism for
training the pruned MP encoders, we again observed (by look-
ing at the evolution –not reported here- of the mean squared
error obtained during the MPs training) that after training the
encoder for 100 epochs with the BEP algorithm, the SCG
method found a local minimun and stopped the learning. Be-
ginning with MPs trained for 500 epochs with the BEP algo-
rithm, the translation results were better. However, quite simi-
lar WERs were obtained using only BEP for the training of
the pruned encoders.

Table 5. Translation WERs using automatic pruned codifications (of
size 49 for Spanish and 72 for English) extracted from MPs with output

window format x-2 x-1 x x x x x+1 x+2 and 100 initital hidden units

MP Encoder Translation
Training method | Epochs |

BEP + Other
WER

BEP 1,000 + 0 2.28%
 3,000 + 0 1.85%
BEP+SCG 100+900 10.06%
 100+2,900 10.35%
BEP+SCG 500+500 2.58%

6 CONCLUSIONS AND FUTURE WORK
A method for automatically extracting word distributed rep-

resentations for the RECONTRA translator [5] from a simple
neural architecture was recently presented [4]. In this paper
several learning algorithms were used to train this connection-
ist encoder aiming to improve the quality of the extracted
codifications and, consequently, the corresponding translation
results with RECONTRA: Backward-Error Propagation
(BEP) [17], Resilient back PROPagation (RPROP) [16] and
Scalated Conjugate Gradient (SCG) [12]. These algorithms
were tested on a limited-domain MT task called the Mini-
Traveller task [1]. The experimentation showed that, on the
one hand, BEP and RPROP obtained similar translation
WERs; SCG was clearly the worst algorithm since it fell quite
soon into a local minima which did not leave. On the other
hand, the combination of BEP and SCG led to translation
results which were as good as those obtained using only BEP
but ussually spending less training time. However, the method
could be improved in the future and it would probably led to
still better translation results.

A method for helping the exploration of the adequacy of
the automatic codifications, provided by the encoders, could
be also convenient. New algorithms for training the translators
could be tried. And more complex MT tasks with larger vo-
cabularies and higher semantic domains, which were nearer to

real MT tasks, should be approached with this method.

REFERENCES
[1] Amengual, J.C., Castaño, M.A., Castellanos, A., Llorens, D., Marzal, A.,

Prat, F., Vilar, J.M., Benedí, J.M., Casacuberta, F., Pastor, M. & Vidal, E.
(2000). The Eutrans-I Spoken Language System. Machine Translation
(Vol. 15, pp. 75—102). Kluwer Academic Publishers.

[2] Bengio, Y., Ducharme, R., Vincent, P. & Jauvin, C. (2003). A Neural
Probabilistic Language Model. Journal of Machine Learning Research
(Vol. 3, pp. 1137-115). Mit Press.

[3] Casañ, G.A. & Castaño, M.A. (1999). Distributed Representation of Vo-
cabularies in the RECONTRA Neural Translator. In Procs. of the 6th
European Conference on Speech Communication and Technology. (Vol. 6,
pp. 2423—2426). Budapest, Hungary.

[4] Casañ, G.A. & Castaño, M. A. (2003). Automatic Word Codification for the
RECONTRA Connectionist Translator. In F.J. Perarles, A.J.C. Campilho,
N. Pérez de la Blanca, A. Sanfeliú (Eds.). Lecture Notes in Computer Sci-
ence: Pattern Recognition and Image Analysis (Vol. 2652, pp. 168—175).
Springer-Verlag.

[5] Castaño, M.A. (1998). Redes Neuronales Recurrentes para Inferencia
Gramatical y Traducción Automática. Ph.D. dissertation, Universidad Po-
litécnica de Valencia, Spain.

[6] Elman, J.L. (1990). Finding Structure in Time. Cognitive Science (Vol. 2,
no. 4, pp. 279—311).

[7] González, R.C. & Thomason, M.G. (1978). Syntactic Pattern Recognition,
An Introduction. Addison-Wesley.

[8] Hinton, G.E., McClelland, J.L. & Rumelhart, D.E. (1986). Distributed
Representations. In Rumelhart, D.E. and McClelland, J.L. (Eds.). Parallel
Distributed Processing: Explorations in the Microstructure of Cognition.
Volume 1: Foundations. MIT Press. Cambridge, MA.

[9] Koncar, N. & Guthrie, G. (1994). A Natural Language Translation Neural
Network. Procs. of the Int. Conf. on New Methods in Language Processing
(pp. 71—77). Manchester, UK.

[10] Marzal, A. & Vidal, E. (1993). Computation of Normalized Edit Distance
and Applications. IEEE Transactions on Pattern Analysis and Machine In-
telligence (Vol.15, no. 9).

[11] Miikkulainen, R.P. & Dyer, M.G. (1991). Natural Language Processing
with Modular Neural Networks and Distributed Lexicon. Cognitive
Science (Vol. 15, pp. 393—399).

[12] Möller, M.F. (1993). A Scaled Conjugate Gradient Algorithm for Fast
Supervised Learning. Neural Networks (Vol. 6, pp. 525—533).

[13] Mozer, M.C. & Smolensky, P. (1990). Skeletonization: a Technique for
Trimming the Fat from a Network via Relevance Assessment. In D.S.
Touretzky, Morgan Kaufmann (Eds.). Advances in Neural Information
Processing (Vol. 1, pp. 177-185).

[14] Pollack, J.B. (1990). Recursive Distributed Representations. Artificial
Intelligence (Vol. 46, pp. 77—105).

[15] Prat, F., Casacuberta F. & Castro, M.J. (2001). Machine Translation with
Grammar Association: Combining Neural Networks and Finite-State Mod-
els. Procs of The Second Workshop on Natural Language Processing and
Neural Networks (pp. 54-64). Tokyo, Japan.

[16] Riedmiller, M. & Braun, H. (1993). A Direct Adaptative Method for Faster
Backpropagation Learning: The RPROP Algorithm. In Proceeding of the
IEEE International Conference on Neural Networks 1993.

[17] Rumelhart, D., Hinton, G. & Williams, R. (1986). Learning Sequential
Structure in Simple Recurrent Networks. In D.Rumelhart, J.L. McClelland
and the PDP Research Group (Eds.) Parallel Distributed Processing: Ex-
periments in the Microstructure of Cognition (Vol. 1). MIT Press.

[18] Waibel, A., Jain, A.N., McNair, A.E., Saito, H., Hauptmann, A.G. &
Tebelskis, J. (1991). JANUS: A Speech-to-Speech Translation System us-
ing Connectionist and Symbolic Processing Strategies. Procs. of the Inter-
national Conference on Acustic, Speech and Signal Processing (pp. 793—
796).

[19] Zell, A. et al. (1995). SNNS: Stuttgart Neural Network Simulator. User
manual, Version 4.1. Technical Report no. 6195, Institute for Parallel and
Distributed High Performance Systems, University of Stuttgart, Germany.

