Parsing Languages with a Configurator

Mathieu Estratat and Laurent Henocque'

Abstract. Recent evolution of linguistic theories heavily rely upon noting that the Mozart implementation of the Oz language comes
the concept of constraint. Also, several authors have pointed out theith built in feature constraints, with immediate application to nat-
similitude existing between the categories of feature-based theoriagal language processing [16], which further confirms the proximity
and the notions of objects or frames. We show that a generalizatioof the concepts.
of constraint programs called configuration programs can be applied Configuring consists in building (a simulation of) a complex prod-
to natural language parsing. We propose here a systematic translaet from components picked from a catalog of types. Neither the
tion of the concepts and constraints introduced by property grammarnsumber nor the actual types of the required components are known
to configuration problems representing specific target languages. Waeforehand. Components are subject to relations (this information is
assess the usefulness of this translation by studying first a recursiwalled "partonomic”), and their types are subject to inheritance (this
(context free) language with semantics, then a natural language suls the taxonomic information). Constraints (also called well formed-
set with lexical ambiguities. Our proposal improves over propertyness rules) generically define all the valid products. A configurator
grammars because the search procedure in our case is generic agects as input a fragment of a target object structure, and expand
does not rely upon an ad-hoc solver. Configuration techniques alsibto a solution of the problem constraints, if any. This problem is un-
extend constraint programming through object orientedness and sdecidable in the general case. Such a program is well described using
variables. Even though dependency grammars exploit set variablem object model (as illustrated by the figures 3 and 5), together with
themselves, we foresee that the possibility of coupling the parser witkvell formedness rules. Technically solving the associated enumera-
constrained object models describing the word semantics is at the atlen problem can be made using various formalisms or technical ap-
vantage of configuration. It also provides natural (if not easy)grars proaches : extensions of the CSP paradigm [10, 6], knowledge based
integration of natural language semantics. Our experiments show tregpproaches [15], terminological logics [11], logic programming (us-
practical efficiency of this approach, which does not require the uséng forward or backward chaining, and non standard semantics) [14]
of ad hoc algorithms and can be freely used in analysis, generativebject-oriented approaches [9, 15]. Our experimentations were con-
or hybrid mode. ducted using the object-oriented configurator llog JConfigurator [9].
Configurators have proved their capacity to handle complex con-
. strained object models in many industrial situations. By doing so,
1 Introduction they address the general goal of dealing with the semantics of some
tfield of knowledge. The dominating approach to natural language
parsing views syntax and semantics as two separate issues, addressed
y different formalisms (e.g. HPSGor syntax and lambda calcu-
s plus logic for semantics). We relate here experiments conducted
vith a radically different viewpoint, an answer to the question : can

mars in [4] exploits a generic CSP (Constraint Satisfaction Problemz conlf |%ura':c9rlg§a(djwnlh bgth thet s.?ma.ntlt(k:]s ?tr;]d the syntaxf%f a.llgllven
framework (within a concurrent constraint programming paradigm) nowledge helds Lurieading ntuition Is that thé process ot burlding

with set variables and selection constraints. The property grammau%IOarse wree is very similar to a configuration activity (since new con-
structs are introduced to group words in adequate categories like the

[2, 3] are presented together with a specific parsing algorithm. Al- b h d th truct linked by relati
though being very different in nature, these two viewpoints argue tha €rb ornoun phrases, and these conslructs are linked by reta ions).
mong potential benefits are the fact that we may foresee to han-

constraint propagation is an efficient tool for disambiguating natura . .) oo
propag v g le exact semantics for languages dealing with specific knowledge,

language. Furthermore, the general properties of feature gra&mma?| - : : .
[7] lead several authors to point the resemblance between these n%[ld also that efficient cooperation between syntactic and semantics

tions and frames or objects, and also the need for multiple inheritanc((‘éo\r;\ftrf’“nts C?’;} be obtalne:j_. i f fi tion to th bl f
[12]. Simultaneously, an evolution of constraint programming in the € present here an application ot configuration to the problem o

direction of configuration problems has favored the emergence of eigarsmg Ianguggest, a quk tha: orltg:nates from [5]';—0 th'ts end, and
ficient configurators with potential Al applications [9, 14]. A tool ecause we aim at parsing natural languages, we do not propose an

like JConfigurator [9] heavily relies upon constrained set variablesad. hoc formulation of the proble.m, but propose a.syste.matlc trans-
as does the implementation of dependency grammars in [4]. Ther(lz"’,‘t'on of property grammars [3] in terms of a configuration model.

parsing is explicitly referred to as a configuration task. It is worth As a means of assessing the Va“d'Fy of the pr_oposed approach, we
detail two working examples : one is the parsing of the archetypal

1 SIS - UMR CNRS 6168, Faculté des Sciences et Techniques ide Sa context free grammaa™b™, and the other is the parsing of a sim-
Jérébme, Avenue Escadrille Normandie-Niemen, 13397 Marswmitlex 20, ple natural language subset. T&&"™ grammar is recursive, which
France, Université d’'Aix-Marseille 1ll, email : mathieu.etht@lIsis.org,
laurent.henocque@lsis.org 2 Head-driven Phrase Structure Grammar [12]

Recent evolution of linguistic theories heavily rely upon the concep
of constraint [12, 2, 3, 4]. According to these formalisms, the va-
lidity of a syntactical construct is achieved when feature constraint:
are satisfied. Two approaches at least make explicit claims of bein
purely constraint based. The implementation of dependency gra

despite its apparent simplicity addresses an inherent difficulty of nat- Cat: N

ural language (noun phrases are recursive). In this examplegle sin Phon: son

constrained object model describes both the syntax and the under- Gen: masc
lying simple semantics. The other example is a lexically ambiguous Agreement: Num: sing
subset of natural language. In both cases, we show that the configu- Per : 3rd
rator used for parsing can be exploited in a mixed analysis/generative Case: {Common}

fashion, and that object constraint propagation allows for solving the
parsing problems in little or no search.

There are several motivations for placing ourselves in the con-
text of property grammars (instead of dependency grammars for in-
stance), which highlight the original contribution of this work. Prop- of feature variables. A feature value can be a constant from a specific
erty grammars use categories as do most CL theories since IEPsdomain (for instance an enumeration{g&ingular, Plural}, or an
and HPSG. This gives access to a wide corpus of research and exiétfeger as{1(st), 2(nd), 3(rd)}). A feature value can also be a (set
ing grammars. As such, [3] presents a grammar of french richgimou ©f, list of) feature structure(s) (adgreement in figure 1). Hence
for many serious applications. The seven kinds of constraints in propstandard finite domain CSP variables cannot be used to model fea-
erty grammars are very easy to translate as configuration constrainfires, and a notion of relations, or set variables must be used (as in
and are also much easier to read or understand than some of thé$ 15, 4]). Itis worth pointing that feature structures are available as
dependency grammar equivalents. Furthermore, some of the pow&rl@nguage construct in Oz [13] and support feature constraints.
of_ a CSP based |mplgmentat|9n of depen_dency grammars has to (103 Properties vs. Constraints
with the fact that no intermediate categories are needed, hence that
the total size of the problem is known at start. This turns out to be”roperties [3] are constraints that apply to categories, and specify
a limitation when it makes the grammar constraints awkward to for-Syntax well formedness rules and phrase cohesion rules. There are
mulate. Also, standard CSPs are long known as too limited for reaf€ven kinds of propertieconstituencyheads unicity, requirement
configuration tasks [10, 9, 8, 14, 1]. In particular, the dynamic natureéexclusionlinearity anddependencgletailed in section 2.2. That such
of configuration problems must be accounted for, at least with activlinguistic constraints can have a counterpart in a constraint system
ity variables as in dynamic CSPs. In our case, when the semantic&€ems obvious. For instance, linearity (or precedence) can be im-
of sentences refer to objects newly introduced in the discourse, nBlémented using an order relation among integers. Some constraints,
CSP based approach will be suitable for dealing with them. Thus byke cqnstituency or heaQs, deserve a more object oriented translation
using a configuration viewpoint over both the semantics and synta¥volving at least set variables.
of a language, we gain_a u_nique_ possibility of intermixing both 851 4 Plan of the article
pects of language parsing in a single framework. From a constraint) .)
programming standpoint, this leads to potentially optimal constraint! "€ Séction 2 describes a mapping from property grammars to con-

propagation between both sub-problems, as well as built in mixediguration problems. Sections 3 and 4 present examples. Section 5
analytic/generative parser operation. concludes, and presents ongoing and future research.

1.1 Property grammars 2 From property grammars to configuration

Figure 1. An instance of the category N

Property grammars [2, 3] are a constraint-based linguistic formal2.1 An object model for categories
ism. [3] both proposes a classification of feature constraints calleq_ L . .
. : . . . _The structural elements of linguistic formalisms straightforwardly
properties and a parsing algorithm that attempts to exploit constralntma to confiauration problems. A feature correspondsGSR vari
propagation (although in a rather "ad hoc" fashion since no "Stanéblz Featurgstructurgs are a . regates well mogeled akisgesn
dard" constraint system is used) so as to solve syntactic ambigui- . ggreg . g€
. ; . . an object model. A category naturally maps telassin an object
ties as early as possible. Algorithms left aside, property grammar%odel inserted in a class hierarchy involvimdperitance(possibl
involve two important notions categoriesrepresent all recognized ' Y P y

syntactic units (either linked with an isolated word or a word group),mumple. [12]) qu instance, thg category in flgure Lis translated into
andproperties(a synonym for constraints) apply to these categoriesa class in an object model, as illustrated by figure 2.
' _Many features have (sets of) feature structures as their values,

so as to specify well formedness grammar rules and phrase cohesioq1iCh can be adequately modeled usielationsin an object model

les. i h th he ph) L . :
rules. Categories are mappe_d o both the words"andt e"p rases Ofxﬁlhen the configurator used is itself object-oriented [9], such re-
sentence. For example, the figure 8 shows that "la porte’hisua-

o ; " " lations are implemented using set variables.) For instance, a noun
phrase where "la" is adeterminer and "porte" anoun. To each of P 9)

this three words or word groups is associated a cate@oFy, Det phrase may have a noun as its h“eadls re"i‘“"?‘ between catego_rles
. can be adequately modeled using a relation in the corresponding ob-
andN respectively.

ject model as illustrated in figures 3 and 5.
1.2 Categories and constraint programming

Categories are feature structures. A feature structure is a set of

(attribute, value) pairs used to label a linguistic unit, as figure 1 Agreement | TerminalCat N
illustrates, wheresonis amasculine nounat thesingular, 3’ d pers fﬁ”mss‘;:?ngg | phon:sting <case:string
This definition is recursive : a feature value can be another feature persiint

structure, or a set of features.
Functionally, a feature can be mapped to a CSP variable, and a

feature structure can be seen as a binding of values to an aggregate
4 Informally speaking, the head is the core element in a phraeeprie that
3 Generalized Phrase Structure Grammar [7] governs its linguistic properties

Figure 2. An object model for the category N

2.2 Object model constraints for properties e Dependency. This property states specific relations between dis-
tant categories, in relation with text semantics (so as to denote
Properties define both object model relations and constraints, ad- for instance the link existing between a pronoun and its referent
joined to the object model built from a given property grammar. We in a previous sentence). For instance, in a verb phrase, there is a
use uppercase symbols to denote categoriesfe4). B, C ...). We dependency between the subject noun phrase and the verb. This
also use the following notations : when an anonymous relation ex- property is adequately modeled using a relation.
ists between two categorigsand A, we denote as. A the set ofds
linked to a givenS instances, and ags. A| their number. For simplic- ~ Properties can therefore be translated as independent constraints. It
ity, and wherever possible, we will use the notatit$F (S) (where is however often possible to factor several properties within a single
Fis a formula involving the symbol S) rather thén € SF(s). Class ~ modeling construct, most often a relation and its multiplicity. For
attributes are denoted using standard dotted notation (astegn instance, constituency and unicity can be grouped together in some
that represents thegin attribute for object). 14 denotes the set of models where one relation is used for each possible constituent (we
all available indexes for the categasy made this choice in the forthcoming examples, in figures 3 and 5).

e Constituents: Const(S) = {Am }mer, specifies that an S may o
only contain elements frofiA., }. This property is described by 3 Application to the context free languagen”b™
using relations betweefi and all{A,,}, as shown in the object

models presented in figures 3 and 5. We now present an application of the previous translation to the de-

o Heads: The Heads(S) = {Am tmer, property lists the possible scription of the language™b”, archet.ypal represe.ntative of coptext
heads of the categoi§. The heads element is unique, and manda-'€€ grammars. In [3] the langag€b™ is defined using the following
tory. For exampleHeads(NP) = {N, Adj}. The word "door" ~ Properties :
is theheadin the N P : "the door". TheH ead relation is a subset
of Const. Such properties are implemented using relations as for
constituency, plus adequate cardinality constraints.

e Unicity : The propertyUnic(S) = {Am }mer, Specifies that an
instance of the category can have at most one instance of each
A,,,m € I4 as a constituentJnicity can be accounted for using
cardinality constraints as e.yS|{z : S.Const |z € A} <1
which for simplicity in the sequel, we shall notg. A,.| < 1. For
instance, in arlV P, the determineDet is unique.

e Requirement : {Am}tmer, =s {{Bn}nerg,{Colocic}

Constituency : Const(S) = {S,a, b};
Heads: Heads(S) = {a};
Unicity : Unic(S) = {S,a,b};
Requirement: a = b;
Linearity : a <bja<S5;5 < b;

We implemented this grammar using the object model listed in figure
3 and its associated model constraints. In this model, the cl&sses

means that any occurrence of all,, implies that all the cate- :

gories of eithe{ B, } or {C, } are represented as constituents. As Sentence | Semante
. . . +n:int

an example, in a noun phrase, if a common name is present, then 1 =

+first

so must a determiner ("door" does not form a valid noun phrase, o
whereas "the door" does). This property maps to the constraint

+begin:int
+end:int

TerminalCat

VS(VYm € 14 |S.An| > 1) =
((Yn € I |S.Bya| > 1) V (Yo € Ic |S.Co| > 1))

e Exclusion : The property{ A, }mer, ¥ {Bn}ner, declares
that two category groups mutually exclude each other, which can
be implemented by the constraint :

Figure 3. An object model fora™b™

(Ym €14 |S.An| >1)= (Vn € Ip|S.Bn| =0)
VS, A o .
(Vn € I |S.Bn| > 1) = (Vm € I |S.Am| = 0) A, and B correspond to the categories introduced in [3]. The class
Cat is an abstraction for all the categories. It provides the attributes
For example, aV and aPro can’t cooccur in aVP. (Note that begin andend required for the proper statement of linearity con-
in the formulation of these constraints; denotes logical impli- straints. The clas%erminalCat is an abstraction for the terminal
cation, and not the requirement property.) categories, herd and B. The classSentence is related to its list of
e Linearity : The property{ A, }mer, <s {Bn}nei, Specifies "words" : instances of specific subclassegef-minalCat. It also

that any occurrence of gmm}mGIA precedes any occurrence of relates to the first word in this list. The word list is implemented us-
an{B, }ncr,. For example, in aiN P a Det must precede aiv ing an extra attributeext in the classl'erminalCat. Sentence is
(if present). Implementing this property induces the insertion inrelated with itsSemantic and with anS' (each sentence is linked
the representation of categories in the object model of two integewith both its syntax and semantic representatishjs related with
attributesbegin andend that respectively denote the position of Semantic : each non terminal category has an associated semantic.
the first and last word in the category. This property translates akinearity properties translate to additional constraints :

the constraint :
VS, S.A.begin < S.B.begin;

VSVm € IaVn € Ip, VS, (|S.8| ==1) = (S.A.end < S.S.begin);
maz({i € S.A, ei.end}) < min({i € S.B,, ®i.begin}) VS, (|S.5] ==1) = (S.S.end < S.B.begin);

3.1 Semantics entry is inconsistenia(51) b(49) ando a(50) b(49)) stems from the

) . . fact that constraint propagation alone detects failure. This is so be-
The semantics one can bind to a valid sentence of the langfdde 5,56 most relations have a multiplicitylofwhich triggers efficient
is obviously the number of as andbs that can be counted. To ,.onaqations. Natural like languages as illustrated in the forthcoming
this end, the model clasSermantic has an integer attribute. The gy 516 do not generally share this property. Note that this behavior
numberS. Semantic.n denotes the number ofs in anS. The con- 5 he ohtained thanks to a straightforward symmetry breaking con-
straints that bind the syntax and the semantic are : straint that removes symmetries artificially introduced in the JCon-
figurator modél: we make sure that the values of theginattributes
of all S instances are strictly increasing.

Computation times have been listed for information but are

strongly impacted by the cost of building the constrained object
model in Java.

VS (]S.8| == 1) = S.Semantic.n = 1+ S.S.Semantic.n
VS (|S.S| == 0) = S.Semantic.n =1
VSentence Sentence.Semantic = Sentence.S.Semantic;

These axioms recursively define the semantic ofSaas the num-
ber of its enclosedis, and the semantic of a sentence as that of its

toplevel non terminal category. 4 Parsing a lexically ambiguous natural language

32 Parsi The figure 5 represents a fragment of the constrained object model
: arsing for a subset of french, where constituency and unicity are made ex-

The Conﬁgurator is exploited as follows : it expects as input a grouﬁ)licit. The figure 6 i"ustrates some We” formedneSS ConStl’aintS. In
of partially known objects (for example some instances of the catethe figure 7 we define a small example lexicon.

gory TerminalCat), that are partially interconnected (via the rela-

tion next). It tries to complete this input by adding further objects

and interconnections, and by deciding for the actual type of all ob-

jects as well as for the actual value of all attributes so as to satisfy a frstwora | Syntax
the model constraints.
The figure 4 illustrates several possible sessions with the Word wordstist _ca Agreement
-position:int N -begin:int accord -gen:string

-end:int -numb:string
7 -person:int

parser. In this table, the system states are described as tripl
(words, syntax, semantic) ("?" denotes an unknown object, and
"o" an unknown word), and the system behaviour is denoted usin
input state — output state rules. The first two lines correspond
to pure analysis use cases. In the second line, the sentence does
belong to the language. The last two lines in figure 4 illustrate gener
ative or hybrid uses of the the program.

TerminalCat

FW

subject complement

(aaabbb, ?,7) — (aaabbd, S(a, S(a, S(a,null,b),b),b),3)
{abbb,?,7) — false

(¢0a ¢ b,?7,7) — (aabb, S(a, S(a,null,b),b),2)

(7,7,2) — (aabb, S(a, S(a,null,b),b),2) Figure 5. Object model used to parse our language

Figure 4. Some parser sessions

_ The language accepted by this constrained object model is made
3.3 Experimental results of phrases constructed around a subject, a verb and a complement,

Table 1 list its obtainidor both istent and | istent where both the subject and the verb are mandatory, and both the sub-
able 1 lists results obtainedor both consistent and inconsisten ject and the complement are noun phrases.

entries of various sizes. The first column lists the configurator in-
put and the sixth column the elapsed time in seconds. These resulfgc,q : | N P.headN| + | N P.headAdj| = 1;
Linearity : Det < N; Det < Adj;

Table 1. Experimental results Ezclusion : (NP.N| >=1) = ([NP.Pro| = 0) and

P #fails | #cp | #cests | #vars | #secs (|INP.Pro>=1) = ([NP.N| = 0);
aaabbb 0 29 370 143 0.48s Requirement : ((NP.N| =1) = (|[NP.det| = 1)
oa ob 0 22 469 119 0.39s
a(10) b(10) [9] 92 1672 430 0.77s . .
(20) b(20) 0 187 7890 840 1335 Figure 6. Some NP constraints
a(50) b(50) 0 52 | 24152 | 2070 | 4.74s
Oaaiég)bégg) i 8 1221 iﬁg gig 2 Both constraints are stated straightforwardly within the object model

via relations and their cardinalities (as can be seen in the figure 6).
show the efficiency of constraint propagation which allows to reachMore constraints are required however, like the constraints stating
the solution with a very limited number of fails, specially in anal- that a Head is a constituent, or the constraints ruling the value of the
ysis mode. That the program exits with no choice point when theegin andend attributes in syntagms.

5 PC used : P4 2,4GHz - 512 Mo DDR - Windows XP SP1 - Java 2 V.1.4.2 -6 the current version of JConfigurator does not implement anedty neces-
llog JConfigurator 2.1 sity, and requires the preliminary creation of interchahe&S" instances

4.1 Experimental results

to solve the problem very efficiently (the Java program can parse
in just a few seconds sentences up to a hundred words), but offers

We tested the object model with sentences involving variable Ievelgl” the possibly expected interaction modes. The capacity to achieve

of lexical ambiguity, as from the lexicon listed in figure 7.

WORD CAT GEN NUM PERS
ferme N fem sing 3
ferme Adj - sing -
ferme \% - sing 1,3

la Det fem sing 3

la Pro fem sing 3

mal N masc sing 3
mal Adj - - -

porte N fem sing 3
porte \% - sing 1,3

Figure 7. A lexicon fragment

Sentencg1), "la porte ferme mal"the door doesn’t close wglls
fully ambiguous. In this example, "la" can bepsonoun(i.e. it as
in "give it to me !") or adetermine(like thein "the door"), "porte"
can be averb (i.e. to carry) or a noun oor), "ferme" can be aerb
(to closg, anoun(farm) or an adjectivef{rm) and "mal" can be an

adjective(badly) or anoun(pain). Our program produces a labeling

for each word and the corresponding syntax tree (figure 8).

la porte ferme mal

syntax‘
SV
Swp'emem
NP Y Nf
/\
D‘et I‘\l ferme Adj
|

la porte mal

Figure 8. Syntax tree for the french sentence "la porte ferme mal”

Sentence?2) is "la porte bleue posséde trois vitres jaungke blue
door has three yellow windoysHere "bleue" and "jaunes" agal-

jectives "vitres" is anounand "trois" is adeterminer The last sen-
tence(3), "le moniteur est bleu"tfie monitor is bluginvolves no

ambiguous word. The table 2 presents results obtained for the sepy)
tences (1), (2) and (3). These results show that the correct labeling is

sentence completion, or generation, has many practical applications.

Our proposal improves over property grammars because thésearc
procedure in our case is generic and does not rely upon an ad-hoc
solver. Configuration techniques also extend constraint programming
through object orientedness and set variables. Even though depen-
dency grammars exploit set variables themselves, we foresee that
the possibility of coupling the parser with constrained object mod-
els describing the word semantics is at the advantage of configura-
tion. Last, the truly logical formulation of configuration constraints
avoids the difficulties inherent to backward or forward chaining rule
based constraint programming. We expect our forthcoming results to
confirm those intuitions. Ongoing research involves the implementa-
tion of parser for a natural language subset of french dealing with the
semantics of three dimensional scene descriptions.

REFERENCES

[1] Jérdme Amilhastre, Hélene Fargier, and Pierre Marquisn&istency
restoration and explanations in dynamic csps—-applicati@onfigu-
ration’, Artificial Intelligence 1351-2), 199-234, (2002).

[2] P. Blache, ‘Property grammars and the problem of condtsaitisfac-
tion’, in ESSLLI-2000 workshop on Linguistic Theory and Grammar
Implementation(2000).

[3] P. Blache,Les Grammaires de Propriétés : des contraintes pour le
traitement automatique des langues naturelldsrmes Sciences, 2001.

[4] Denys Duchier, ‘Axiomatizing dependency parsing usirgd son-
straints’, in Sixth Meeting on Mathematics of Language, Orlando,
Florida, pp. 115-126, (1999).

[5] Mathieu EstratatApplication de la configuration a I'analyse syntaxico
sémantique de descriptionMaster’s thesis, Faculté des Sciences et
Techniques de Saint Jérdbme, LSIS équipe INCA, Marseilleyderasub-
mitted for the obtention of the DEA degree, 2003.

[6] G. Fleischanderl, G. Friedrich, A. Haselbock, H. Schegj and
M. Stumptner, ‘Configuring large-scale systems with genezatbn-
straint satisfaction’lEEE Intelligent Systems - Special issue on Config-
uration, 13(7), (1998).

[7] G. Gazdar, E. Klein, G.K. Pullum, and |.A. Sa@eneralized Phrase
Structure GrammarBlackwell, Oxford, 1985.

[8] Andreas Gunter and Christian Kiihn, ‘Knowledge-basexfigaration
- survey and future directions’, iBth Biannual German Conference
on Knowledge Based Systems, Wirzburg, Germany, Lectues Mot
Artificial Intelligence LNAI 1570pp. 47—-66, (March 1999).

[9] D. Mailharro, ‘A classification and constraint basedfiework for con-

figuration’, AI-EDAM : Special issue on Configuratiph2(4), 383 —

397, (1998).

Sanjay Mittal and Brian Falkenhainer, ‘Dynamic consttaatisfaction

problems’, inProceedings of AAAI-9@p. 25-32, Boston, MA, (1990).

[11] B. Nebel, ‘Reasoning and revision in hybrid represgotasystems’,
Table 2. Experimental results for french phrases Lecture Notes in Artificial Intelligenc&22, (1990).
[12] C. Pollard and I.A. Sagiead-Driven Phrase Structure Grammdathe
D H#fails | #cp | #csts | #vars | #secs University of Chicago Press, Chicago, 1994.
() a 40 399 220 0555 [13] Gert Smolka and Ralf Treinen, ‘Records for logic programgni The
2) 3 50 442 538 056s Journal of Logic ProgrammindlL8(3), 229-258, (April 1994).
3) 1 35 357 194 052s [14] Timo Soininen, llkka Niemela, Juha Tiihonen, and ReijoldBen,

obtained after very few backtrackgdils). The number of fails de-

‘Representing configuration knowledge with weight conistraules’,
in Proceedings of the AAAI Spring Symp. on Answer Set Program-
ming: Towards Efficient and Scalable Knowledgp. 195-201, (March

pends on number of ambiguous words in the sentence. The execution

time also depend upon the sentence length. The remaining f&} in [15]

stems form the fact that a default minimization search is performed.
[16]

5 Conclusion

We have described a translation of property grammars into a config-
uration problem. We also showed that a generic search procedure,
combined with built in constraint propagation not only allows one

2001).

Markus Stumptner, ‘An overview of knowledge-based ogunfation’,
Al Communicationsl0(2), 111-125, (June 1997).

Peter Van Roy, Per Brand, Denys Duchier, Seif HaridirtwiaHenz,
and Christian Schulte, ‘Logic programming in the context of tiaul
paradigm programming: the Oz experiencEheory and Practice of
Logic Programming(2003). To appear.

