
Parsing Languages with a Configurator
Mathieu Estratat and Laurent Henocque1

Abstract. Recent evolution of linguistic theories heavily rely upon
the concept of constraint. Also, several authors have pointed out the
similitude existing between the categories of feature-based theories
and the notions of objects or frames. We show that a generalization
of constraint programs called configuration programs can be applied
to natural language parsing. We propose here a systematic transla-
tion of the concepts and constraints introduced by property grammars
to configuration problems representing specific target languages. We
assess the usefulness of this translation by studying first a recursive
(context free) language with semantics, then a natural language sub-
set with lexical ambiguities. Our proposal improves over property
grammars because the search procedure in our case is generic and
does not rely upon an ad-hoc solver. Configuration techniques also
extend constraint programming through object orientedness and set
variables. Even though dependency grammars exploit set variables
themselves, we foresee that the possibility of coupling the parser with
constrained object models describing the word semantics is at the ad-
vantage of configuration. It also provides natural (if not easy) parser
integration of natural language semantics. Our experiments show the
practical efficiency of this approach, which does not require the use
of ad hoc algorithms and can be freely used in analysis, generative,
or hybrid mode.

1 Introduction

Recent evolution of linguistic theories heavily rely upon the concept
of constraint [12, 2, 3, 4]. According to these formalisms, the va-
lidity of a syntactical construct is achieved when feature constraints
are satisfied. Two approaches at least make explicit claims of being
purely constraint based. The implementation of dependency gram-
mars in [4] exploits a generic CSP (Constraint Satisfaction Problem)
framework (within a concurrent constraint programming paradigm)
with set variables and selection constraints. The property grammars
[2, 3] are presented together with a specific parsing algorithm. Al-
though being very different in nature, these two viewpoints argue that
constraint propagation is an efficient tool for disambiguating natural
language. Furthermore, the general properties of feature grammars
[7] lead several authors to point the resemblance between these no-
tions and frames or objects, and also the need for multiple inheritance
[12]. Simultaneously, an evolution of constraint programming in the
direction of configuration problems has favored the emergence of ef-
ficient configurators with potential AI applications [9, 14]. A tool
like JConfigurator [9] heavily relies upon constrained set variables,
as does the implementation of dependency grammars in [4]. There,
parsing is explicitly referred to as a configuration task. It is worth

1 LSIS - UMR CNRS 6168, Faculté des Sciences et Techniques de Saint-
Jérôme, Avenue Escadrille Normandie-Niemen, 13397 Marseillecedex 20,
France, Université d’Aix-Marseille III, email : mathieu.estratat@lsis.org,
laurent.henocque@lsis.org

noting that the Mozart implementation of the Oz language comes
with built in feature constraints, with immediate application to nat-
ural language processing [16], which further confirms the proximity
of the concepts.

Configuring consists in building (a simulation of) a complex prod-
uct from components picked from a catalog of types. Neither the
number nor the actual types of the required components are known
beforehand. Components are subject to relations (this information is
called "partonomic"), and their types are subject to inheritance (this
is the taxonomic information). Constraints (also called well formed-
ness rules) generically define all the valid products. A configurator
expects as input a fragment of a target object structure, and expands
it to a solution of the problem constraints, if any. This problem is un-
decidable in the general case. Such a program is well described using
an object model (as illustrated by the figures 3 and 5), together with
well formedness rules. Technically solving the associated enumera-
tion problem can be made using various formalisms or technical ap-
proaches : extensions of the CSP paradigm [10, 6], knowledge based
approaches [15], terminological logics [11], logic programming (us-
ing forward or backward chaining, and non standard semantics) [14],
object-oriented approaches [9, 15]. Our experimentations were con-
ducted using the object-oriented configurator Ilog JConfigurator [9].

Configurators have proved their capacity to handle complex con-
strained object models in many industrial situations. By doing so,
they address the general goal of dealing with the semantics of some
field of knowledge. The dominating approach to natural language
parsing views syntax and semantics as two separate issues, addressed
by different formalisms (e.g. HPSG2 for syntax and lambda calcu-
lus plus logic for semantics). We relate here experiments conducted
with a radically different viewpoint, an answer to the question : can
a configurator deal with both the semantics and the syntax of a given
knowledge field? Our leading intuition is that the process of building
a parse tree is very similar to a configuration activity (since new con-
structs are introduced to group words in adequate categories like the
verb or noun phrases, and these constructs are linked by relations).
Among potential benefits are the fact that we may foresee to han-
dle exact semantics for languages dealing with specific knowledge,
and also that efficient cooperation between syntactic and semantics
constraints can be obtained.

We present here an application of configuration to the problem of
parsing languages, a work that originates from [5]. To this end, and
because we aim at parsing natural languages, we do not propose an
ad hoc formulation of the problem, but propose a systematic trans-
lation of property grammars [3] in terms of a configuration model.
As a means of assessing the validity of the proposed approach, we
detail two working examples : one is the parsing of the archetypal
context free grammaranbn, and the other is the parsing of a sim-
ple natural language subset. Theanbn grammar is recursive, which

2 Head-driven Phrase Structure Grammar [12]

despite its apparent simplicity addresses an inherent difficulty of nat-
ural language (noun phrases are recursive). In this example, a single
constrained object model describes both the syntax and the under-
lying simple semantics. The other example is a lexically ambiguous
subset of natural language. In both cases, we show that the configu-
rator used for parsing can be exploited in a mixed analysis/generative
fashion, and that object constraint propagation allows for solving the
parsing problems in little or no search.

There are several motivations for placing ourselves in the con-
text of property grammars (instead of dependency grammars for in-
stance), which highlight the original contribution of this work. Prop-
erty grammars use categories as do most CL theories since GPSG3

and HPSG. This gives access to a wide corpus of research and exist-
ing grammars. As such, [3] presents a grammar of french rich enough
for many serious applications. The seven kinds of constraints in prop-
erty grammars are very easy to translate as configuration constraints,
and are also much easier to read or understand than some of their
dependency grammar equivalents. Furthermore, some of the power
of a CSP based implementation of dependency grammars has to do
with the fact that no intermediate categories are needed, hence that
the total size of the problem is known at start. This turns out to be
a limitation when it makes the grammar constraints awkward to for-
mulate. Also, standard CSPs are long known as too limited for real
configuration tasks [10, 9, 8, 14, 1]. In particular, the dynamic nature
of configuration problems must be accounted for, at least with activ-
ity variables as in dynamic CSPs. In our case, when the semantics
of sentences refer to objects newly introduced in the discourse, no
CSP based approach will be suitable for dealing with them. Thus by
using a configuration viewpoint over both the semantics and syntax
of a language, we gain a unique possibility of intermixing both as-
pects of language parsing in a single framework. From a constraint
programming standpoint, this leads to potentially optimal constraint
propagation between both sub-problems, as well as built in mixed
analytic/generative parser operation.

1.1 Property grammars
Property grammars [2, 3] are a constraint-based linguistic formal-
ism. [3] both proposes a classification of feature constraints called
properties, and a parsing algorithm that attempts to exploit constraint
propagation (although in a rather "ad hoc" fashion since no "stan-
dard" constraint system is used) so as to solve syntactic ambigui-
ties as early as possible. Algorithms left aside, property grammars
involve two important notions :categoriesrepresent all recognized
syntactic units (either linked with an isolated word or a word group),
andproperties(a synonym for constraints) apply to these categories,
so as to specify well formedness grammar rules and phrase cohesion
rules. Categories are mapped to both the words and the phrases of a
sentence. For example, the figure 8 shows that "la porte" is anoun-
phrase where "la" is adeterminer and "porte" anoun. To each of
this three words or word groups is associated a category,NP , Det

andN respectively.

1.2 Categories and constraint programming
Categories are feature structures. A feature structure is a set of
(attribute, value) pairs used to label a linguistic unit, as figure 1
illustrates, wheresonis amasculine noun, at thesingular, 3rd pers.
This definition is recursive : a feature value can be another feature
structure, or a set of features.

Functionally, a feature can be mapped to a CSP variable, and a
feature structure can be seen as a binding of values to an aggregate

3 Generalized Phrase Structure Grammar [7]

















Cat: N
Phon: son

Agreement:





Gen : masc
Num : sing
Per : 3rd





Case : {Common}

















Figure 1. An instance of the category N

of feature variables. A feature value can be a constant from a specific
domain (for instance an enumeration as{Singular, P lural}, or an
integer as{1(st), 2(nd), 3(rd)}). A feature value can also be a (set
of, list of) feature structure(s) (asAgreement in figure 1). Hence
standard finite domain CSP variables cannot be used to model fea-
tures, and a notion of relations, or set variables must be used (as in
[9, 15, 4]). It is worth pointing that feature structures are available as
a language construct in Oz [13] and support feature constraints.

1.3 Properties vs. Constraints
Properties [3] are constraints that apply to categories, and specify
syntax well formedness rules and phrase cohesion rules. There are
seven kinds of properties :constituency, heads, unicity, requirement,
exclusion, linearity anddependencydetailed in section 2.2. That such
linguistic constraints can have a counterpart in a constraint system
seems obvious. For instance, linearity (or precedence) can be im-
plemented using an order relation among integers. Some constraints,
like constituency or heads, deserve a more object oriented translation
involving at least set variables.

1.4 Plan of the article
The section 2 describes a mapping from property grammars to con-
figuration problems. Sections 3 and 4 present examples. Section 5
concludes, and presents ongoing and future research.

2 From property grammars to configuration

2.1 An object model for categories

The structural elements of linguistic formalisms straightforwardly
map to configuration problems. A feature corresponds to aCSP vari-
able. Feature structures are aggregates well modeled usingclassesin
an object model. A category naturally maps to aclassin an object
model, inserted in a class hierarchy involvinginheritance(possibly
multiple [12]). For instance, the category in figure 1 is translated into
a class in an object model, as illustrated by figure 2.

Many features have (sets of) feature structures as their values,
which can be adequately modeled usingrelationsin an object model.
(When the configurator used is itself object-oriented [9], such re-
lations are implemented using set variables.) For instance, a noun
phrase may have a noun as its head4 : this relation between categories
can be adequately modeled using a relation in the corresponding ob-
ject model as illustrated in figures 3 and 5.

TerminalCat

−phon:string

N

−case:string

Agreement

−gen:String

−num:String

−pers:int
1

1

Figure 2. An object model for the category N

4 Informally speaking, the head is the core element in a phrase, the one that
governs its linguistic properties

2.2 Object model constraints for properties

Properties define both object model relations and constraints, ad-
joined to the object model built from a given property grammar. We
use uppercase symbols to denote categories (e.g.S, A, B, C . . .). We
also use the following notations : when an anonymous relation ex-
ists between two categoriesS andA, we denote ass.A the set ofAs
linked to a givenS instances, and as|s.A| their number. For simplic-
ity, and wherever possible, we will use the notation∀SF (S) (where
F is a formula involving the symbol S) rather than∀s ∈ SF (s). Class
attributes are denoted using standard dotted notation (as e.ga.begin

that represents thebegin attribute for objecta). IA denotes the set of
all available indexes for the categoryA.

• Constituents : Const(S) = {Am}m∈IA
specifies that an S may

only contain elements from{Am}. This property is described by
using relations betweenS and all{Am}, as shown in the object
models presented in figures 3 and 5.

• Heads: TheHeads(S) = {Am}m∈IA
property lists the possible

heads of the categoryS. The heads element is unique, and manda-
tory. For example,Heads(NP) = {N, Adj}. The word "door"
is theheadin theNP : "the door". TheHead relation is a subset
of Const. Such properties are implemented using relations as for
constituency, plus adequate cardinality constraints.

• Unicity : The propertyUnic(S) = {Am}m∈IA
specifies that an

instance of the categoryS can have at most one instance of each
Am, m ∈ IA as a constituent.Unicity can be accounted for using
cardinality constraints as e.g :∀S|{x : S.Const | x ∈ Am}| ≤ 1
which for simplicity in the sequel, we shall note|S.Am| ≤ 1. For
instance, in anNP , the determinerDet is unique.

• Requirement : {Am}m∈IA
⇒S {{Bn}n∈IB

, {Co}o∈IC
}

means that any occurrence of allAm implies that all the cate-
gories of either{Bn} or {Co} are represented as constituents. As
an example, in a noun phrase, if a common name is present, then
so must a determiner ("door" does not form a valid noun phrase,
whereas "the door" does). This property maps to the constraint

∀S(∀m ∈ IA |S.Am| ≥ 1) ⇒
((∀n ∈ IB |S.Bn| ≥ 1) ∨ (∀o ∈ IC |S.Co| ≥ 1))

• Exclusion : The property{Am}m∈IA
< {Bn}n∈IB

declares
that two category groups mutually exclude each other, which can
be implemented by the constraint :

∀S,







(∀m ∈ IA |S.Am| ≥ 1) ⇒ (∀n ∈ IB |S.Bn| = 0)
∧

(∀n ∈ IB |S.Bn| ≥ 1) ⇒ (∀m ∈ IA |S.Am| = 0)

For example, aN and aPro can’t cooccur in aNP . (Note that
in the formulation of these constraints,⇒ denotes logical impli-
cation, and not the requirement property.)

• Linearity : The property{Am}m∈IA
≺S {Bn}n∈IB

specifies
that any occurrence of an{Am}m∈IA

precedes any occurrence of
an{Bn}n∈IB

. For example, in anNP aDet must precede anN
(if present). Implementing this property induces the insertion in
the representation of categories in the object model of two integer
attributesbegin andend that respectively denote the position of
the first and last word in the category. This property translates as
the constraint :

∀S ∀m ∈ IA ∀n ∈ IB ,

max({i ∈ S.Am • i.end}) ≤ min({i ∈ S.Bn • i.begin})

• Dependency: This property states specific relations between dis-
tant categories, in relation with text semantics (so as to denote
for instance the link existing between a pronoun and its referent
in a previous sentence). For instance, in a verb phrase, there is a
dependency between the subject noun phrase and the verb. This
property is adequately modeled using a relation.

Properties can therefore be translated as independent constraints. It
is however often possible to factor several properties within a single
modeling construct, most often a relation and its multiplicity. For
instance, constituency and unicity can be grouped together in some
models where one relation is used for each possible constituent (we
made this choice in the forthcoming examples, in figures 3 and 5).

3 Application to the context free languagean
b
n

We now present an application of the previous translation to the de-
scription of the languageanbn, archetypal representative of context
free grammars. In [3] the langageanbn is defined using the following
properties :























Constituency : Const(S) = {S, a, b};
Heads : Heads(S) = {a};

Unicity : Unic(S) = {S, a, b};
Requirement : a ⇒ b;

Linearity : a ≺ b; a ≺ S; S ≺ b;

We implemented this grammar using the object model listed in figure
3 and its associated model constraints. In this model, the classesS,

Sentence Semantic

+n:int

Cat

+begin:int

+end:intTerminalCat S

A B

1..*

sub S

0..1

+0..1

next

0..1

+

first+

Figure 3. An object model foranbn

A, andB correspond to the categories introduced in [3]. The class
Cat is an abstraction for all the categories. It provides the attributes
begin and end required for the proper statement of linearity con-
straints. The classTerminalCat is an abstraction for the terminal
categories, hereA andB. The classSentence is related to its list of
"words" : instances of specific subclasses ofTerminalCat. It also
relates to the first word in this list. The word list is implemented us-
ing an extra attributenext in the classTerminalCat. Sentence is
related with itsSemantic and with anS (each sentence is linked
with both its syntax and semantic representation).S is related with
Semantic : each non terminal category has an associated semantic.
Linearity properties translate to additional constraints :







∀S , S.A.begin < S.B.begin;
∀S , (|S.S| == 1) ⇒ (S.A.end ≤ S.S.begin);
∀S , (|S.S| == 1) ⇒ (S.S.end ≤ S.B.begin);

3.1 Semantics

The semantics one can bind to a valid sentence of the languageanbn

is obviously the numbern of as andbs that can be counted. To
this end, the model classSemantic has an integer attributen. The
numberS.Semantic.n denotes the number ofAs in anS. The con-
straints that bind the syntax and the semantic are :






∀S (|S.S| == 1) ⇒ S.Semantic.n = 1 + S.S.Semantic.n

∀S (|S.S| == 0) ⇒ S.Semantic.n = 1
∀Sentence Sentence.Semantic = Sentence.S.Semantic;

These axioms recursively define the semantic of anS as the num-
ber of its enclosedAs, and the semantic of a sentence as that of its
toplevel non terminal category.

3.2 Parsing

The configurator is exploited as follows : it expects as input a group
of partially known objects (for example some instances of the cate-
gory TerminalCat), that are partially interconnected (via the rela-
tion next). It tries to complete this input by adding further objects
and interconnections, and by deciding for the actual type of all ob-
jects as well as for the actual value of all attributes so as to satisfy all
the model constraints.

The figure 4 illustrates several possible sessions with the
parser. In this table, the system states are described as triples
〈words, syntax, semantic〉 ("?" denotes an unknown object, and
"⋄" an unknown word), and the system behaviour is denoted using
input state 7→ output state rules. The first two lines correspond
to pure analysis use cases. In the second line, the sentence does not
belong to the language. The last two lines in figure 4 illustrate gener-
ative or hybrid uses of the the program.















〈aaabbb, ?, ?〉 7→ 〈aaabbb, S(a, S(a, S(a, null, b), b), b), 3〉
〈abbb, ?, ?〉 7→ false

〈⋄ a ⋄ b, ?, ?〉 7→ 〈aabb, S(a, S(a, null, b), b), 2〉
〈?, ?, 2〉 7→ 〈aabb, S(a, S(a, null, b), b), 2〉

Figure 4. Some parser sessions

3.3 Experimental results

Table 1 lists results obtained5 for both consistent and inconsistent
entries of various sizes. The first column lists the configurator in-
put and the sixth column the elapsed time in seconds. These results

Table 1. Experimental results

p #fails #cp #csts #vars #secs

aaabbb 0 29 370 143 0.48 s
⋄ a ⋄ b 0 22 469 119 0.39 s

a(10) b(10) 0 92 1672 430 0.77 s
a(20) b(20) 0 182 4892 840 1.33 s
a(50) b(50) 0 52 24152 2070 4.74 s
a(51) b(49) 1 0 1687 1417 3.92 s
⋄ a(50) b(49) 1 0 1684 1416 5.12 s

show the efficiency of constraint propagation which allows to reach
the solution with a very limited number of fails, specially in anal-
ysis mode. That the program exits with no choice point when the

5 PC used : P4 2,4GHz - 512 Mo DDR - Windows XP SP1 - Java 2 V.1.4.2 -
Ilog JConfigurator 2.1

entry is inconsistent (a(51) b(49) and⋄ a(50) b(49)) stems from the
fact that constraint propagation alone detects failure. This is so be-
cause most relations have a multiplicity of1, which triggers efficient
propagations. Natural like languages as illustrated in the forthcoming
example do not generally share this property. Note that this behavior
can be obtained thanks to a straightforward symmetry breaking con-
straint that removes symmetries artificially introduced in the JCon-
figurator model6: we make sure that the values of thebeginattributes
of all S instances are strictly increasing.

Computation times have been listed for information but are
strongly impacted by the cost of building the constrained object
model in Java.

4 Parsing a lexically ambiguous natural language

The figure 5 represents a fragment of the constrained object model
for a subset of french, where constituency and unicity are made ex-
plicit. The figure 6 illustrates some well formedness constraints. In
the figure 7 we define a small example lexicon.

N

Sentence

Word

−position:int

VP

Det

TerminalCat

Adj

Agreement

−gen:string

−numb:string

−person:int

Pro

Cat

−begin:int

−end:int

NP

Phrase

V

0..1 headN

firstWord

subject

Syntax

0..1

0..1

headAdj

0..1

0..1

accord

complement

*

wordsList

0..1

Figure 5. Object model used to parse our language

The language accepted by this constrained object model is made
of phrases constructed around a subject, a verb and a complement,
where both the subject and the verb are mandatory, and both the sub-
ject and the complement are noun phrases.

Head : |NP.headN | + |NP.headAdj| = 1;
Linearity : Det < N ; Det < Adj;
Exclusion : (|NP.N | >= 1) ⇒ (|NP.Pro| = 0) and
(|NP.Pro >= 1) ⇒ (|NP.N | = 0);
Requirement : (|NP.N | = 1) ⇒ (|NP.det| = 1)

Figure 6. Some NP constraints

Both constraints are stated straightforwardly within the object model
via relations and their cardinalities (as can be seen in the figure 6).
More constraints are required however, like the constraints stating
that a Head is a constituent, or the constraints ruling the value of the
begin andend attributes in syntagms.

6 the current version of JConfigurator does not implement creation by neces-
sity, and requires the preliminary creation of interchangeable "S" instances

4.1 Experimental results

We tested the object model with sentences involving variable levels
of lexical ambiguity, as from the lexicon listed in figure 7.

WORD CAT GEN NUM PERS
ferme N fem sing 3
ferme Adj - sing -
ferme V - sing 1,3
la Det fem sing 3
la Pro fem sing 3
mal N masc sing 3
mal Adj - - -
porte N fem sing 3
porte V - sing 1,3

Figure 7. A lexicon fragment

Sentence(1), "la porte ferme mal" (the door doesn’t close well) is
fully ambiguous. In this example, "la" can be apronoun(i.e. it as
in "give it to me !") or adeterminer(like the in "the door"), "porte"
can be averb (i.e. to carry) or a noun (door), "ferme" can be averb
(to close), a noun(farm) or an adjective (firm) and "mal" can be an
adjective(badly) or anoun(pain). Our program produces a labeling
for each word and the corresponding syntax tree (figure 8).

la porte ferme mal

syntax
SV

subject complement

NP V NP

Det N ferme Adj

la porte mal

Figure 8. Syntax tree for the french sentence "la porte ferme mal"

Sentence(2) is "la porte bleue possède trois vitres jaunes" (the blue
door has three yellow windows). Here "bleue" and "jaunes" aread-
jectives, "vitres" is anounand "trois" is adeterminer. The last sen-
tence(3), "le moniteur est bleu" (the monitor is blue) involves no
ambiguous word. The table 2 presents results obtained for the sen-
tences (1), (2) and (3). These results show that the correct labeling is

Table 2. Experimental results for french phrases

p #fails #cp #csts #vars #secs

(1) 4 40 399 220 0.55 s
(2) 3 50 442 238 0.56 s
(3) 1 35 357 194 0.52 s

obtained after very few backtracks (fails). The number of fails de-
pends on number of ambiguous words in the sentence. The execution
time also depend upon the sentence length. The remaining fail in(3)
stems form the fact that a default minimization search is performed.

5 Conclusion

We have described a translation of property grammars into a config-
uration problem. We also showed that a generic search procedure,
combined with built in constraint propagation not only allows one

to solve the problem very efficiently (the Java program can parse
in just a few seconds sentences up to a hundred words), but offers
all the possibly expected interaction modes. The capacity to achieve
sentence completion, or generation, has many practical applications.

Our proposal improves over property grammars because the search
procedure in our case is generic and does not rely upon an ad-hoc
solver. Configuration techniques also extend constraint programming
through object orientedness and set variables. Even though depen-
dency grammars exploit set variables themselves, we foresee that
the possibility of coupling the parser with constrained object mod-
els describing the word semantics is at the advantage of configura-
tion. Last, the truly logical formulation of configuration constraints
avoids the difficulties inherent to backward or forward chaining rule
based constraint programming. We expect our forthcoming results to
confirm those intuitions. Ongoing research involves the implementa-
tion of parser for a natural language subset of french dealing with the
semantics of three dimensional scene descriptions.

REFERENCES
[1] Jérôme Amilhastre, Hélène Fargier, and Pierre Marquis, ‘Consistency

restoration and explanations in dynamic csps—-applicationto configu-
ration’, Artificial Intelligence, 135(1-2), 199–234, (2002).

[2] P. Blache, ‘Property grammars and the problem of constraint satisfac-
tion’, in ESSLLI-2000 workshop on Linguistic Theory and Grammar
Implementation, (2000).

[3] P. Blache,Les Grammaires de Propriétés : des contraintes pour le
traitement automatique des langues naturelles, Hermès Sciences, 2001.

[4] Denys Duchier, ‘Axiomatizing dependency parsing using set con-
straints’, in Sixth Meeting on Mathematics of Language, Orlando,
Florida, pp. 115–126, (1999).

[5] Mathieu Estratat,Application de la configuration à l’analyse syntaxico
sémantique de descriptions, Master’s thesis, Faculté des Sciences et
Techniques de Saint Jérôme, LSIS équipe InCA, Marseille, France, sub-
mitted for the obtention of the DEA degree, 2003.

[6] G. Fleischanderl, G. Friedrich, A. Haselböck, H. Schreiner, and
M. Stumptner, ‘Configuring large-scale systems with generative con-
straint satisfaction’,IEEE Intelligent Systems - Special issue on Config-
uration, 13(7), (1998).

[7] G. Gazdar, E. Klein, G.K. Pullum, and I.A. Sag,Generalized Phrase
Structure Grammar, Blackwell, Oxford, 1985.

[8] Andreas Günter and Christian Kühn, ‘Knowledge-based configuration
- survey and future directions’, in5th Biannual German Conference
on Knowledge Based Systems, Würzburg, Germany, Lecture Notes in
Artificial Intelligence LNAI 1570, pp. 47–66, (March 1999).

[9] D. Mailharro, ‘A classification and constraint based framework for con-
figuration’, AI-EDAM : Special issue on Configuration, 12(4), 383 –
397, (1998).

[10] Sanjay Mittal and Brian Falkenhainer, ‘Dynamic constraint satisfaction
problems’, inProceedings of AAAI-90, pp. 25–32, Boston, MA, (1990).

[11] B. Nebel, ‘Reasoning and revision in hybrid representation systems’,
Lecture Notes in Artificial Intelligence, 422, (1990).

[12] C. Pollard and I.A. Sag,Head-Driven Phrase Structure Grammar, The
University of Chicago Press, Chicago, 1994.

[13] Gert Smolka and Ralf Treinen, ‘Records for logic programming’, The
Journal of Logic Programming, 18(3), 229–258, (April 1994).

[14] Timo Soininen, Ilkka Niemela, Juha Tiihonen, and Reijo Sulonen,
‘Representing configuration knowledge with weight constraint rules’,
in Proceedings of the AAAI Spring Symp. on Answer Set Program-
ming: Towards Efficient and Scalable Knowledge, pp. 195–201, (March
2001).

[15] Markus Stumptner, ‘An overview of knowledge-based configuration’,
AI Communications, 10(2), 111–125, (June 1997).

[16] Peter Van Roy, Per Brand, Denys Duchier, Seif Haridi, Martin Henz,
and Christian Schulte, ‘Logic programming in the context of multi-
paradigm programming: the Oz experience’,Theory and Practice of
Logic Programming, (2003). To appear.

