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Abstract. It is well-known that while strict admissibility of heuris-
tics in problem solving guarantees the optimality of the A* algo-
rithm, many problems cannot be effectively faced because of the
combinatorial explosion. In order to address this problem the notion
of ε-admissible search has been introduced, which yields solutions
with bounded costs [12].

In this paper, we introduce the related concept of likely-admissible
heuristics, where the admissibility requirement is relaxed in a prob-
abilistic sense. Instead of providing an upper-bound to the cost we
guarantee to end up with optimal solutions with a given probability.
Interestingly, likely-admissible heuristics can be obtained naturally
by statistical learning techniques such as artificial neural networks,
which can learn from examples the expected value of the cost to reach
the target. We used multilayered neural networks with a proper novel
cost function in order to bias the learning towards admissibility.

Our experiments with the 15-puzzle and IDA* show that the adop-
tion of likely-admissible sub-symbolic heuristics yield optimal solu-
tions in 50% of the cases, taking only 1/500 time (1/13000 space) of
classic Manhattan-based search.

1 Introduction

The classical rigid interpretation of admissibility has driven the opti-
mal search theory to a stalemate. Admissibility might not be required
in relevant practical problems and, moreover, admissibility is a suffi-
cient condition for optimal search (with A* algorithms), but it is not
necessary; there are in fact interesting cases in which non-admissible
heuristics yield optimal solutions.

Many studies have been carried out on the popular Sam Loyd’s
sliding-tile puzzle, which turns out to be complex enough to high-
light the most relevant problems. In fact, it has been proved that the
attempt to solve it optimally is intractable [13]. The Manhattan Dis-
tance heuristic (MD) is of historical and theoretical importance in op-
timal problem solving. It had a central role, along with IDA* search
algorithm, in finding the first 15-puzzle optimal solutions [7]; never-
theless no further improvements would have been achieved without
investigating new heuristic sources. Manhattan’s informative contri-
bution is not sufficient to face optimally more complex problems, as
Rubik’s Cube or the 24-puzzle. Computational brute force is pow-
erless in combinatorial settings, therefore the research on heuristics
is of crucial importance in problem solving. Recently the field has
been splitted into two guidelines each one referring to a different type
of heuristic source: “online” and “memory-based” heuristics.Online
heuristicsaim to overtake MD, by automatically inventing new tech-
niques [11], by generalizing it through a constraint addition process
(Higher-Order heuristics) [9] or by enhancing its informative output

with ad hoc corrections [5]. The main facet is that heuristic values are
computed within search, every time a node is explored. The informa-
tion bias of Manhattan’s algorithm is that it considers each piece of
the puzzle as independent, hence it ignores tile interactions and con-
flicts. The addition of corrective techniques can interestingly improve
performances: Conflict Deduction [3]1 reduces IDA* search tree by
nearly two order of magnitudes on the 15-puzzle. This achievement
is still insufficient to challenge bigger puzzles. Moreover, hand made
heuristic corrections tend to be strongly problem dependent: a more
appealing approach is to define a general theory that enables auto-
matic heuristic design. The first 24-puzzle solutions were encoun-
tered applying higher-order heuristics to IDA* [9]. The drawback of
this technique is that simultaneous tile analysis with more than two
tiles (i.e. Triple Distances) is NP-Complete, hence it cannot be fur-
ther extended.

On the contrary,memory-based heuristicspurpose is to map pre-
viously solved subproblems to their optimal path cost, thus using
memory resources heavily. These have been successfully used to
solve the Rubik’s Cube [10] and the 24-puzzle [8], for which Dis-
joint Pattern Databases were introduced. These sharpen the prelim-
inar technique (Pattern Databases [1]) ignoring the interactions be-
tween patterns: with this trick the distances obtained by all disjoint
sets can be summed together without any risk of inadmissibility.
DPDBs (with reflections) are actually the most powerful heuristic
sources. This excellence is impressive for the 15-puzzle: with the
same quantity of memory this technique speeded up non-additive
Pattern Databases [2] by a factor of 150 (2000 times faster than sim-
ple MD) and reduced the search tree by an order of magnitude. Not
the same can be said for 24-puzzle were DPDBs have displayed over
higher-order heuristics a relatively small speedup (between 1,1 and
21) and larger search trees.

The complexity of most of the problems attacked in the framework
of problem solving can be relaxed while looking for an approxima-
tion of the optimal solution. A nice formalization of approximate
solutions is given in [12], where the notion ofε-admissible search
is introduced. The developed theory makes it possible to establish
a bound of the cost of reaching the goal. In this paper, we intro-
duce the related concept oflikely-admissible heuristics, where the
admissibility requirement is relaxed in a probabilistic sense. Instead
of providing an upper-bound to the cost, we guarantee to end up with
optimal solutions with a given probability. In so doing, we provide a
framework which is somehow related to PAC-learning [14]: problem
solvers can be created that probably return optimal solutions in a cer-
tain portion of cases. Interestingly, likely-admissible heuristics can

1 This assembles and generalizes five MD-corrections: linear conflicts, last
moves, corner tiles, non-linear conflicts and corner deduction.



be obtained naturally by statistical learning techniques such as arti-
ficial neural networks, which can learn from examples the expected
value of the cost to reach the target. In the case of Manhattan Space
Problems (defined in section 2), like the sliding-tile puzzle, we prove
that the strict admissibility requirement for heuristic functionh can
be relaxed fromh < h∗ to h < h∗ + 2c, whereh∗ is the cost of
optimal path from the current state to the goal. Such a relax is prof-
itably exploited for the learning of the heuristics, which can in fact
end up with a given degree of error. We used multilayered neural net-
works with a proper design of the input coding and a linear output
so as to perform predictions of the distance. A novel cost function
is proposed, where the errors are given a different weight depending
on whether or not they overestimate the solution, so as to bias the
learning towards admissibility.

Our experiments with the 15-puzzle and IDA* are very promising
and show that the adoption of likely-admissible sub-symbolic heuris-
tics yield optimal solutions in 50% of the cases, taking only 1/500
time (1/13000 space) of classic Manhattan-based search.

2 Admissible overestimations in Manhattan Spaces

In the literature, there are a number of known cases of “admissi-
ble overestimations”. It is straightforward, for example, that overes-
timations outside the optimal solution pathπ∗ do not affect optimal-
ity [12]. Another obvious assertion is that overestimatingh∗(n) by a
fixed constantc for all statesn is influential for node expansion.

We shall call Atomic Manhattan Space (MS) Problemsthose
where: (i) the problem states are defined by a set of coordinates for
each atomic element of the problem (i.e. the tiles in the 15-puzzle),
(ii) the operators perform only over one single element at a time
and affect just one coordinate, (iii) this mono-dimensional successor
function has the constant costg(n, SCS(n)) = c ∀n. Two Atomic
MS Problems are Robot Navigation over a grid and the 15-puzzle.

It is easy to demonstrate that in such a context any wrong decision
requires (at least) the application of an operator and its “reverse”,
which leads to a path with a costg ≥ C∗ + 2c. Hence:

Theorem 1. Let P be anAtomic MS Problemwith transition cost
c. Leth be a non admissible heuristic inP (except for the goal state,
whereh(n) = 0) with an overestimation ofh∗ equal to a variables
smaller than twice the operator cost (0 ≤ s < 2c) so thath(n) <
h∗ + 2c. Heuristich leads an A* algorithm to optimal solutions.

Proof. The proof is given by contradiction. Letγ∗ ∈ Γ∗ be the opti-
mal goal node with a path costC∗ andγ2 ∈ Γ be a suboptimal goal
node. Assume thatn is on the optimal pathπ∗ to γ∗ and has not been
expanded. Hence, sinceh(n) < h∗ + 2c:

f(n) < C∗ + 2c. (1)

Assume thatγ2 is about to be expanded. To expand this node A*
requiresf(n) ≥ f(γ2). For problemP , as stated above,g(γ2) ≥
C∗ + 2c. Heuristich is admissible for the goal state, therefore:

h(γ2) = 0 and f(γ2) = g(γ2) ≥ C∗ + 2c. (2)

Equation 2 is in contradiction with 1:f(n) ≥ f(γ2) is impossible
if f(γ2) ≥ C∗ + 2c andf(n) < C∗ + 2c. As a consequence A*
will never expandγ2 and it will follow the optimal pathπ∗ until it
reachesγ∗.

Note that optimality might not be achieved if the overestimation
equals2c. In such a case we could havef(γ2)=f(n)=C∗+2c: A*

could chooseγ2 for expansion and a suboptimal solution would be
found. However optimality is assured even if: for each overestimation
s1≥2c of a noden∈π∗ there is at least one noden′ 6∈ π∗, for each
subpath of OPEN nodes (frontier), with an overestimations2>s1-2c.

Despite a strong and negative impact on search efficiency, “admis-
sible overestimations” still force to expand all nodes belonging to
the optimal solution path. We performed a simple test with A* on the
8-puzzle and noted that whilsts grows, the number of expansions in-
creases rapidly. In allowings=2, as expected, the search tree deflates
but non-optimal solutions start to appear. With IDA* the damage is
even more remarkable: ifs=1 time complexity doubles because over-
estimations in the search frontier trigger odd intermediate iterations.

More complex problems do not undergo this theorem, but still a
margin for overestimations can often be found. The Rubik’s Cube,
for example, is a non-Atomic MS Problem (operators move cubes in
groups, not singularly): the overestimation limit here isc, which is
proportionally even more promising than the 15-puzzle because of
its smaller solution depth.

3 The likely-admissible search framework

This framework considers a statistical dimension of optimality: the
capacity of a heuristic to lead to a certain amount of optimal solutions
given some specific initial conditions. This approach differs signifi-
cantly from theε-admissible search [12], since the relaxation of the
optimality requirement is seen in a different perspective.

An ε-admissible search encounters solutions that have a cost in-
ferior to a certain bound proportional to the optimal cost,g(γ) ≤
(1 + ε)C∗. On the contrary a likely-admissible search guarantees to
find optimal paths to the goal with a given probabilityp. The solu-
tions corresponding to probability(1−p) could also be bounded, but
this is not strictly necessary.

We believe that the approach proposed in this paper is very promis-
ing since it yields truly optimal solutions within reasonable compu-
tational efforts and, moreover, it is quite general and can be applied
to many different problems. It is also worth mentioning that the ap-
proach can take advantage of the adaptive power of general approxi-
mators like neural networks.

The likely-admissibility represents a more general framework than
ε-admissibility. The simplest case of A∗ε algorithm uses a cost func-
tion f(n) = g(n) + wh(n). WA* is a generalization of A* that
returns solutions with a path cost bounded bywC∗2 only if h(n) ≤
h∗(n), therefore the heuristic function needs to be previously proven
as admissible. On the contrary likely-admissibility can be applied to
any kind of available heuristics, the only element required is some
knowledge about overestimations frequency.

Let us denote withP (h ↓) the probability that heuristicsh under-
estimates the distance to the goal of any statex ∈ X. Only overes-
timations of nodes within the optimal pathπ∗ can affect optimality.
Hence the final probabilityp depends onP (h ↓) and on lengthd of
π∗. The probabilityph that an A* algorithm, guided by heuristich,
terminates any statex ∈ X with an optimal solution is:

ph = P (h ↓)d (3)

This result can be sharpened reformulating the definition of admis-
sibility ash(x) < h∗(x) + 2c (Theorem 1).

This has a great practical impact on neural heuristics (sec. 4) ad-
missibility, as it can be seen in Fig. 1. For example the best neural
net trained for the 8-puzzle overestimatedh∗ in 28,4% of the cases,

2 Solution costs of WA* are much smaller in practice:ε-admissible upper
bound is very inaccurate.
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Figure 1. X-axis: heuristic estimation error; Y-axis: probability of the
error. Non-admissible overestimations are highlighted in grey.Chart A :

neural estimations are accumulated around the target with equal probability
for under and overestimations.B: the effect of th. 1, the vertical line

indicates admissible overestimations.C: the curve is shifted to the left
because (section 4) it is possible to partially stress neural heuristics to
underestimations. The grey-tagged space has been sensibly reduced.

but it overestimatedh∗ + 2 in only 1,9%. We denote this probability
with P (h+2↑).

The likely-admissible framework can be enriched by using a fam-
ily H of j heuristics and choosing as final estimation the lowest out-
put. Hence, Equation 3 can be reformulated:

pHj =


1−

h=hj∏

h=h1

P (h + 2 ↑)



d

(4)

We shall ideally suppose that all heuristics have the sameP (h+2↓):
it emerges that the number of different sources needed to fulfil thep
requirement grows logarithmically with3 d and the desiredpH :

j ≈ dlogP (h+2↑)(1− d
√

pH)e (5)

For example: with a desiredpH=0, 999, for the 8-puzzle 3 or 4 neu-
ral heuristics withP (h+2↓)≈ 0, 95 would be sufficient (for a similar
accuracyn would have to grow only up to 5 for the 15-puzzle).

However, equation 4 and 5 imply a total independence between all
heuristics contained inH and eq. 3 implies a constant overestima-
tion probability, regardless ofh∗. In our experiments (table 1) these
assertions appeared to be optimistic. Hence, to provide some pre-
liminary results of optimality prediction we simply used eq. 3. This
turned out to be generically pessimistic4 (a desired condition for the
reliability of the framework), especially for predictions below 50%.
This is quite obvious because the equation does not consider the pos-
itive effect of the overestimations outside the optimal path, therefore
it can be considered as a statistical lower bound. WhenP (h ↑) de-
creases (column n. 5, 6 and 7 of the table) the prediction becomes
very precise.

4 Subsymbolic heuristics

Because of its generation process, unbind from the logical structure
of the problem, neural heuristics cannot be formally admissible. Nev-
ertheless the involvement of artificial neural networks with heuris-
tics can be well motivated if we consider that: memory requirement
grows exponentially, admissible search can tolerate a certain degree
of overestimations, admissibility can be targeted through a statistical
filter.

Subsymbolic heuristics can be regarded as “online heuristics”,
even though they require offline dataset generation and training
phase. Two observations can explain our assertion. First: the ideal

3 d can be reduced shifting from ap-admissible source to a fully admissi-
ble one while approaching the solution. In all experiments carried out we
shifted to Corner Deduction athm ≤ 5.

4 If P (h+2↑) is much higher for nodes that are distant from the goal than for
closer nodes we could occasionally have overoptimistic predictions; mainly
because if the lower part of the tree is void of overestimated frontier nodes
upper non-admissible overestimations harm more.

neural heuristics should be uncoupled from the puzzles dimensions5

so that learning over small puzzles can be generalized without limita-
tions. On the contrary, DB heuristics have to be generated “ex novo”
for each problem. Second: during search subsymbolic heuristics face
unseen configurations, whereas DB heuristics require a prior exhaus-
tive solving of all the subgoals of the puzzle.

Another important remark is that subsymbolic heuristics represent
a more general tool for heuristic generation than higher-order heuris-
tics, because they can be applied even when a problem cannot be
neatly described by its constraints or when database exhaustive pre-
processing is computationally impossible.

For this work a complete system for neural heuristic generation
and exploitation has been developed. Basically the model is that of
a multilayer perceptron that learns from examples (optimally solved
configurations), how to estimate the optimal cost from any state to
the target.

Neural network-based heuristics

Hidden Units. We generated various neural nets with a single
hidden layer and a number of HU varying between 3 and 20. Addi-
tional layers appeared to provide little learning power. Considering
the ratio between information quality and computational cost of the
heuristics, 15 emerged as the maximum number of useful units. For
all HU we used the hyperbolic tangent activation function.

Outputs and targets.All networks were provided with a single
output unit with linear activation. In order to avoid the risk of inner
neuron saturation the linear output and the target have to be normal-
ized, compressing the values between 0 and 1, for example using
the maximum possible output value (i.e. 31 for the 8-puzzle). Two
different targets have been designed. A)“direct” target function:
hANN (n)=h∗(n). The network has to produce the exact optimal dis-
tance between noden and the goal state. B)“gap” target function:
hANN (n)=h∗(n)-hm(n). Here the goal is to fill up the void between
hm (a Manhattan-type admissible heuristic) andh∗(n). This second
target represents a first step towards the integration between symbolic
and subsymbolic heuristic sources.

Inputs and coding.Given a puzzle withN squares the input cod-
ing is given by a vector ofN2 bits, where the bitN×k+t is high
if the squarek is occupied by the tile numbert, low in any other
case. This coding is very effective with the 8 and the 15-puzzle, but
its polynomial growth leads to a heavy computational cost for big-
ger dimensions. At present we are studying, with results, a coding
technique that grows nearly linearly with the number of tiles.

Learning Algorithm. The classical backpropagation algorithm
was adopted along with the introduction of a novel error attribution
function on the target neuron. Given an exampled, an outputod and
a targettd the error is computed asEd=(1+w)(od-td) if (od-td)>0
andEd=(1-w)(od-td) if (od-td)<0, instead of the classicEd=(td-
od). The coefficient of asymmetry has to undergo the following con-
straint:0≤w<1. With aw close to 1 the learning process forces the
network to underestimate the target, engendering a certain slowdown
of the global convergence. Ifw is set to 0 the basic backpropagation
is restored. The asymmetric learning technique that we designed is
general and can be used in any machine learning context where the
direction of the error, not just its amount, matters. In our case we
used a dynamicw that gently decreases during learning. To main-
tain the convergence smooth we used a momentum withα=0, 8 and
a dynamic learning rateη in a range between0,1 and1.

5 We are currently testing a recurrent ANN architecture, independent of the
number of tiles because the puzzle is represented as a graph, not a vector.



Dataset generation.Two important remarks. a) Optimal learn-
ing can be achieved with a very moderate number of examples in the
learning setL (around 20000 for the 15-puzzle:≈1/5006 of the prob-
lem space). b)L has to be representative of the configurations that are
encountered during search, hence the average solution depth of the
example has to be no more than half the average solution depth of
the problem. The ideal example distribution ofL for the 15-puzzle
requires an averaged≤26, 5 and more than 60% of examples with
d≤30 (only 0,1% of the state space has ad below this cutoff).

“A posteriori” optimality handling. Various techniques have
been tested to improve the admissibility of the heuristic evaluation
given by the network. Best performances have been given by: a) trun-
cating the estimation (IDA* is inefficient with a non-discretef(n));
b) adapting the output to the parity of Manhattan values, MD always
underestimatesh∗ by an even quantity (this technique can halve the
number of IDA* iterations); c) terminating the search with the use of
a symbolic heuristic (i.e. MD is perfectly informed whenh(n)<5).

Parallel neural heuristics. Neural networks that during learning
differ only in weight initializations lead to rather related heuristics. A
way of increasing independence is the use of multiple learning sets.
With theseL-independent neural heuristics optimality gets closer to
equation 4. The price to pay is a major cost of training set genera-
tion. The heuristic computational cost grows linearly with network
additions, with parallel computing this growth can be set to zero.

5 Experimental Results

Environment description

Network training and puzzle-solving tests were implemented on a
500MH PC with a Java application (256MB RAM occupation). The
speed of the machine can be observed by means of the number of
nodes per sec expanded in an IDA* search with MD: over 56000 for
the 15-puzzle; by comparison, Korf’s C application on Sun Ultra 10
run 135 times faster (over 7 million nodes/sec.). Neural heuristics
are more complex to compute (i.e. the forward phase of a 15-HU-net
is 15 times slower than MD). Nevertheless the system was able to
retrieve 15-puzzle optimal solutions in few seconds. Conflict Deduc-
tion was used to solve examples for training and test sets.

8-puzzle

In this preliminary test field neural heuristics have performed with
astonishing accuracy. Two learning sets were generated,L1 (12000
examples) andL2 (9500), a validation setV (2500), a test setT
(2000) with average solution depth 21,97. We trained four nets on
L1 and two onL2. Three adopted the “gap” target function.

Learning evaluation. Non-admissible overestimations overV
were contained between1, 9% and5, 2%, the average heuristic er-
ror varied between1, 3 and1, 7.

Test evaluation.A* performed better than IDA* because of the
strong search cutback. The best single-net heuristic reduced Manhat-
tan’s tree by a factor of 12 (just above 100 nodes) and time by4, 5,
giving solutions with average length22, 27: 15% were non-optimal
but only0, 005% needed more than 2 additional moves.

Parallel nets strongly improved accuracy. The combination of two
nets of the sameL more than halved the number of overestimations
onV . With two L-independent nets the number of optimal solutions
with A* was already over 94% and the size of the search tree surpris-
ingly decreased. The contemporary use of all six neural heuristics
lead to a 98% optimality degree (avg.d = 22, 014) whereas the
number of nodes generated grew gently, 133, still less than some of

the single heuristics, which is positively surprising. The choice of the
lowest value among nets estimations increases the average heuristic
error but this can, paradoxically, reduce search complexity. It is not a
contradiction: it indicates that a more efficient heuristic function has
been generated, as illustrated in [6]. This remarkable phenomenon
has occurred with the 15-puzzle too.

The capacity of equation 3 to predict factual optimality is very
interesting for the 8-puzzle: no optimistic forecasts were produced
and for estimations greater than 80% the gap never exceeded 4%.

15-puzzle

Learning evaluation. The learning environment comprehended two
training setsL1 andL2 with 25000 cases.V (5000) was generated
with the same example distribution ofL1 andL2, as specified in sec-
tion 4. We trained two nets onL1 and two onL2 (with a number of
hidden units between 5 and 15). The dataset generation process took
around 100 ours whereas the learning phase about 200. However it
has to be noted that this time requirement can be linearly reduced
with parallel computation. Despite the small number of examples the
training generated highly informed heuristics. The average estima-
tion error overV was settled between 2,3 and 2,6: the heuristics cap-
tured over 91% of the desired information (avg. 27 moves). This is
very encouraging because it improves the results obtained by learn-
ing over the 8-puzzle domain, where the information gain was 86%.
The percentage of non-admissible overestimations was contained be-
tween 4% and 6%, a gentle growth with respect to the 8-puzzle.
Learning and test evaluations can both be observed in table 1.

Test evaluation. We will present here plain IDA* results for a
clearer literature comparison. The test setT (700 examples) was gen-
erated randomly and produced an averaged of 52,62.

As it can be noticed in the table, all the four nets, singularly termi-
nated with optimal solutions in nearly one third of cases. These are
the first non database heuristic solutions that can challenge in perfor-
mance Disjoint Pattern DB results. The search tree contains between
24 and 33 thousand nodes. Neural heuristicA reduced Manhattan’s
space cost by a factor of 15000 and by three order of magnitude its
running time (better than DPDB, but slightly slower than DPDB with
reflection). These results are even more impressive if we consider
that admissible-overestimations (around 10% of cases with the out-
put truncament) have a great negative impact over search efficiency.

By combining twoL-independent neural heuristics we optimally
solved around 50% of configurations (95% withinC∗+2). The opti-
mality degree appeared to be nearly uniform among different solution
depths. This 0,5-admissible search was performed with non-growing
space complexity (still 20% better than DPDB with reflection). Fi-
nally, we wanted to stress the solution optimality. The full set of neu-
ral heuristics produced a quantity of optimal solutions close to two
thirds, with a 33% growth of node expansion. Further, an arbitrary
1-move-reduction was added tohANN . This tripled time and space
costs, but the optimality degree approached 90%.

Optimality predictions (third row of the table) have proved to be
rather accurate for parallel neural heuristics (the four columns on the
right) and in only one case the prediction was optimistic (heuristic
ABCD). To clarify this rare occurrence we are currently studying
how the heuristic error affects the effective optimality of search. On
the contrary theε-admissible framework provides a very inaccurate
prediction theory. For example WA* with MD andW=2 solves the
15-puzzle with an averaged of 63,5 [4], which is by far lower than
the predicted: 53×2=106. Plain A* with a single neural heuristic is
remarkably more efficient than WA* with Manhattan. In our tests A*
expanded 12492 nodes withd=54,7, whereas, WA* needs to expand



Neural Heuristics⇒ A(L1,15hu) B(L1,5hu) C(L2,12hu) D(L2,15hu) AB AC ABCD ABCD-1

V , Avg. Estimation Error 2,32 2,58 2,37 2,34 2,77 2,81 3,24 4,14
V , Overestimations (P (h+2↑)) 5,34% 4,15% 5,30% 5,77% 2,20% 1,65% 0,69% 0,26%
V , Optimality prediction (eq.3) 5,5% 10,6% 5,6% 4,3% 32,1% 41,4% 69,2% 86,9%
T , Factual Optimality 28,71% 29,14% 28,43% 26,0% 40,57% 48,86% 63,86% 89,14%
T , Avg. Solution Length (d) 54,45 54,38 54,47 54,52 54,00 53,75 53,40 52,83
T , Avg. Nodes Visited 24711 33874 29106 28489 34290 29189 43094 132895
T , Avg. Time (seconds) 7,38 5,36 7,45 8,51 16,81 14,32 36,47 111,39
T , ANN/MD: space cost ratio 1/15000 1/11000 1/12700 1/13000 1/11200 1/12700 1/8500 1/2800
T , ANN/MD: time cost ratio 1/1000 1/1400 1/1000 1/525 1/450 1/520 1/200 1/70

Table 1. Single neural heuristics are named by letters A, B, C and D. Their training set and their number of hidden units are between brackets. Heuristic AB
indicates the parallel neural heuristic obtained joining A and B. ABCD-1 indicates the introduction of an arbitrary 1-move-reduction on the final estimation. The
average error and the number of non-admissible overestimations (that produce he optimality prediction in row 3) were calculated over the validation setV . All
the others results were obtained over the test set with IDA*. Comparisons with Manhattan are approximated becauseT was solved with Conflict Deduction.

nearly 500 thousand nodes to preserved below 57 (Wg=2, Wh=3).
This gap is even more evident if we consider WIDA* performances.

6 Conclusions

We presented a novel approach to problem solving in a statistical per-
spective by introducing the concept of likely-admissible heuristics,
which allow one to discover optimal solutions in a fraction of the
problem instances, while saving significant computational resources
with respect to the A* algorithm equipped with strictly admissible
heuristics. The proposed general framework is very well suited for
subsymbolic heuristics that can be generated using machine learning
models, such as artificial neural networks, over a dataset of previ-
ously solved examples. We report experimental results for the Sam
Loyd puzzles (8 and 15 tiles). The results are very interesting and can
be read from two different perspectives.

1. Analysis of the informative power of neural heuristics.
The experiments stated that neural heuristics are the first online
sources capable to return a certain amount (29%) of optimal solu-
tions of the 15-puzzle with time and space costs lower than Dis-
joint Pattern Databases (non-reflected). When coupling two neu-
ral networks for the computation of the heuristics, the optimality
degree reached approximated 50% with non growing search com-
plexity. Compared to Manhattan Distance this search performed
over 500 times faster by using 1/13000 memory resources.

2. The competence of our predictive theory.
This gave a precise lower-bound of the effective optimality in 8-
puzzle solving. In the 15-puzzle context, an unwished optimistic
estimation has been observed, which means that the predictive
tools have to be sharpened more. Nevertheless the framework is
more precise thanε-admissibility, which greatly overestimates the
final solutions costs.

7 Further work

We have previously mentioned thatgeneralization of the input: the
neural network input coding should be uncoupled from puzzle’s di-
mensionality in order to exploit the learning performed on smaller
puzzles. Another main goal is to face the 24-puzzle, but this requires
the prior elimination of three obstacles: a) Currently neural heuristics
depend on external optimal sources for dataset generation. This ob-
stacle can be removed. A possible solution isauto-feed Learning:
first, networks are trained on small sets of simple configurations;

then they automatically generate their own training sets, solving au-
tonomously cases with increasing depth solutions. Suboptimal exam-
ples would be rare because of the strong underestimation tendency
that derives from previous training cycles over easier cases. b) Neu-
ral heuristic overestimations are not independent, this impedes the
use of equation 4. c) The admissibility ofh dependends on the solu-
tion cost. This defect could be softened by partitioning the training
set in small subsets and performing anetwork specializationtraining
over a certain class of configurations. This would produce less over-
estimations, requiring considerably less examples and learning time.
This technique also enables to analyze howh∗ affects the admissi-
bility of the heuristic, hence it should help to sharpen the optimality
prediction.

Likely-admissibility depends on the solution depth of the problem
and not on the branching factor. For this reason, likely-admissible
neural heuristics should display their best results over puzzles with
big branching factors, like Rubik’s Cube.
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