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Abstract.  One of the best known techniques for multidimensional 
data analysis is the Principal Components Analysis (PCA). A 
number of local PCA neural models have been proposed to 
partition an input distribution into meaningful clusters. Each 
neuron of these models uses a certain number of basis vectors to 
represent the principal directions of a particular cluster. Most of 
these neural networks are unable to learn the number of basis 
vectors, which is specified a priori as a fixed parameter. This leads 
to poor adaptation to input data. Here we develop a method where 
the number of basis vectors of each neuron is learned. Then we 
apply this method to a well known local PCA neural model. 
Finally, experimental results are presented where the original and 
modified versions of the neural model are compared. 

1   INTRODUCTION 
The Principal Components Analysis is a multispectral data analysis 
technique, which is aimed to obtain the principal directions of the 
data, i. e., the maximum variance directions (see [6], [8]). Hence, if 
we have a D-dimensional input space, the PCA computes the K 
principal directions, where K<D. This allows important 
dimensionality reductions by selecting K<<D. It has been proved 
that PCA is an optimal linear technique for dimensionality 
reduction, in the mean sense (see [6]). 

The original method, sometimes called Karhunen-Loève (KL) 
transform or global PCA, considers the entire input distribution as 
a whole. A number of local PCA methods have been proposed to 
partition the distribution into meaningful clusters (see [7], [11], 
[14]). These methods have been widely used in the context of 
transform coding to compress multispectral and multilayer images 
(see [12], [15]). Furthermore, they are used in visualization of 
high-dimensional data, which requires mapping to a lower 
dimension (typically, K≤3).  Nonlinear extensions of PCA [2] have 
also been used for this task. Nevertheless, local PCA procedures do 
not address the problem of selecting the correct number of basis 
vectors K. This problem has been studied in the context of global 
PCA by several authors (for example, [1] and [9]). The lack of a 
clear criterion to select K leaves this value as a parameter to be 
adjusted a priori by the human operator. Our goal here is to 
propose a solution for this issue, when a local PCA neural model is 
used. 

This paper is organized as follows. Section 2 presents a method 
to estimate the number of basis vectors. The application of this 
method to a local PCA neural model is developed in Section 3.  

 
 
 

Section 4 is devoted to the proofs of some important properties 
of the method. We make a short discussion of the advantages of 
our proposal in Section 5. Sections 6 and 7 are devoted to 
experimental results and conclusions, respectively. 

2   THE EXPLAINED VARIANCE METHOD 
 
The PCA method uses the covariance matrix to analyze the input 
distribution. The covariance matrix of an input vector x is defined 
as 
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where E[·] is the mathematical expectation operator and we 
suppose that all the components of x are real random variables. In 
addition, the mean vector e=E[x] is also used. PCA methods form 
a vector base B={bh | h=1,...,K} with the eigenvectors bh 
corresponding to the K largest eigenvalues of R, where K is a 
parameter which is specified before the start of the learning 
process. This vector base encomprises the K principal directions of 
the input distribution corresponding to R. In the case of local PCA 
neural models, each neuron j has a covariance matrix Rj and a 
mean vector ej. 

The method considers a variable number of basis vectors Kj(t), 
which is computed independently for each neuron j. This number 
reflects the intrinsic dimensionality of the data in the receptive 
field of neuron j (i. e., the set of inputs for which the neuron j is the 
winner). There are several algorithms to approximate the intrinsic 
dimensionality of the data ([5]; [16]). Most of them are based in the 
analysis of the eigenvalues λj

p(t) of the covariance matrix Rj(t), 
p=1,…,D. 

Each neuron of a local PCA network represents a cluster of 
data, where ej and Rj are estimations of the mean and the 
covariance matrix of the cluster, respectively. If the cluster of data 
were represented only by its sample mean, i.e., K=0, then the mean 
squared error corresponding to this representation would be: 
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Let bi be the ith principal direction of neuron j, with ||bi||=1 (the 

index j is dropped for simplicity). If we use a vector base 
BZ={b1,..., bZ}, where Z is the number of basis vectors, the mean 
squared error associated with this representation is given by: 
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where Orth means orthogonal projection: 
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Note that if Z=0 we get the maximum possible mean squared 

error. The goal here is to select a number of basis vectors K which 
ensures that at least a fraction α of the maximum mean squared 
error is removed, 
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where α∈[0,1]. Next we show how this can be achieved. First we 
rewrite (3) in terms of projections on the principal directions: 
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Since the principal directions are orthonormal, this means that  
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From (7) and the definition of variance,  
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On the other hand, we also know from PCA that the variance of 

the projection of the input minus its mean onto the ith principal 
direction bi equals the pth largest eigenvalue of R: 
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Substitution of (9) into (8) yields 
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If we remember that ejp=E[xp], equation (2) can be rewritten in 

terms of variances: 
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From PCA we know that the sum of variances equals the trace 
of R: 
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Finally, we substitute (10) and (12) into (5): 
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This can be simplified as follows: 
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Note that there is no need to compute all the eigenvalues of Rj, 

but only the Kj largest ones. If we add the time instant t we get the 
equation to be used in practice: 
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The quotient between λj

p(t) and the trace of Rj(t) is the amount 
of variance explained by the pth principal direction of Rj(t). So, we 
can see the parameter α as the amount of variance which we want 
the neurons to explain. Hence, we select Kj(t) so that the amount of 
variance explained by the directions associated to the Kj(t) largest 
eigenvalues is at least α. 

3   APPLICATION TO LOCAL PCA 
In this section we apply the explained covariance method to the 
local PCA model by Kambathla and Leen [7]. This model uses a 
fixed number M of neurons. At each time instant t, the neuron j 
stores a mean vector ej(t) and a covariance matrix Rj(t). The values 
corresponding to the next time instant ej(t+1) and Rj(t+1) are 
obtained as follows. First of all, the input distribution is partitioned 
into M regions Cj  (j=1,2,…,M): 
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where di(x) is the reconstruction distance (i.e., the projection error) 
for neuron i, 
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and Bi(t) is the vector base associated with the principal directions 
of Rj(t). Then the mean vectors and the covariance matrices are 
recomputed with respect to the regions Cj: 
 

 ( ) ∑
=

=+
jn

p
p

j
j n

t
1

11 xe  (18) 

 

 ( ) ( )( ) ( )( )T
jp

n

p
jp

j
j tt

n
t

j

1111
1

+−+−=+ ∑
=

exexR  (19) 

 
where nj is the number of input samples in Cj. 



The application of the explained variance method consists in the 
addition of a final step where the number of basis vectors Kj(t+1) is 
computed for each neuron j by using equation (15). That is, the 
vector base Bj(t+1) will have Kj(t+1) basis vectors. Hence the size 
of the vector bases is controlled by the explained variance method, 
while in the original approach by Kambathla and Leen the number 
of basis vectors is fixed and it is the same for all the neurons. 

The algorithm can be stated as follows: 
1. Obtain initial estimations ej(0) and Rj(0) for all the neurons j. 

This is achieved by computing the mean vectors and covariance 
matrices of clusters of data chosen randomly. 

2. Use (15) to compute the initial numbers of basis vectors 
Kj(0). 

3. Partition the input distribution by using (16). 
4. Compute ej(t+1) and Rj(t+1) with (18) and (19), respectively. 
5. Use (15) to compute the new numbers of basis vectors 

Kj(t+1). 
6. If convergence has been reached, or the error is below some 

threshold, stop the algorithm. Otherwise, go to step 3. 

4 PROPERTIES 
Next we prove some important properties of the presented method. 
First of all, two bounds of the projection errors are considered. In 
particular, the bound obtained in Proposition 2 allows to perform a 
fast check of the mean squared error without the need to compute 
the error for all the input samples. The third result expresses how 
the number of basis vectors Kj is controlled by the parameter α. 
Finally, it is shown that the model developed here reduces to the k-
means algorithm ([3], [4]) when α=0. 
 
Proposition 1 For every time instant t and every neuron j, the sum 
of squared errors of the input samples assigned to neuron j is 
bounded as follows: 
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Proof: From equation (2) and the definition of mean we know that  
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nj is the number of input samples in Cj. Also, from equation (3) and 
the definition of mean,  
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We recall from equation (5) that 
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Then we rearrange the inequality: 
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Next we multiply both sides by nj: 
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By substitution of equations (21) and (22) into (25) we get (20), 

as required. 
 
Proposition 2 For every time instant t, the sum of squared errors 
of the samples of the input distribution C  is bounded as follows: 
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where e is the overall mean of the input distribution. 
 
Proof: First we expand the summation of the squared errors by 
considering each neuron separately: 
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On the other hand, we can sum equation (20) for all neurons j to 
get 
 

 

( )( ) ( )∑ ∑∑ ∑
= ∈= ∈

−−≤
M

j Cp
jp

M

j Cp
pj

jj

d
1

2

1

2 1 exx α

 

(28) 

 
It is well known ([13]) that: 
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Then we substitute (29) into (28): 
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Finally, we substitute (27) into (30) to get (26), as desired. 
 
Proposition 3 Let z∈{0,1,…,D}. If α∈[0,z/D], then for every 
neuron j and every time instant t, it holds that 0≤Kj(t)≤z. 
 
Proof: As the eigenvalues are sorted in decreasing order, it holds 
that: 
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By the hypoteses, we have that α∈[0,z/D], so: 
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Then by (12), (15) and (35) we have: 

 
  ( ) ztK j ≤≤0  (36) 
 
Corollary 1 If we take α=0, the local PCA model with the 
explained variance method reduces to the k-means algorithm. 
 
Proof: We use z=0 in the previous proposition, and we get α=0 ⇒ 
Kj(t)=0 for every neuron j. Then the covariance matrices are not 
used in the competitive phase, so it reduces to that of k-means. The 
estimated mean vectors ej(t) play the role of the k-means. 

5 DISCUSSION 
The proposed model has the following advantages: 

a) It learns the number of basis vectors which are needed to 
represent the input distribution with a specified accuracy. That is, 
the basis vectors are selectively removed or added to the neurons as 
needed. 

b) Proposition 2 can be used to perform a fast check of the mean 
squared error. It is not necessary to compute the projection error of  
the input samples, but only to compute the differences between the 
mean vectors of the different neurons ej and the overall mean e (see 

equation 26). It must be noted that the term ∑
∈

−
Cp

p
2

xe  can be 

precomputed prior to the initialization of the neural network, so 
there is no computational load associated to it. This way to bound 
the mean squared error would be useful when it must be ensured 
that the error falls below some fixed quantity. For example, in a 
multispectral image compression application we would control the 
termination of the algorithm (step 6) with this technique, if a 
prespecified quality is required in the compressed image. 

c) The learned number of basis vectors can be used to obtain 
intrinsic dimensionality information. Low values of Kj mean that 
the region represented by neuron j has a low dimensionality, and 
vice versa. 

d) It is a generalization of the k-means algorithm, as proven in 
the previous section. 

6 EXPERIMENTAL RESULTS 
We have designed a set of experiments to test the dimensionality 
reduction performance of our method. This unsupervised task has 
been used to compare our proposal with the original approach by 
Kambhatla and Leen [7] and the Probabilistic Principal 
Components Analysis (PPCA) neural model by Tipping and 
Bishop [14]. The PPCA networks consider a fixed number of basis 

vectors K for all neurons, like Kambathla and Leen. Both are 
aimed to reduce the projection error, as our approach. Hence we 
use the mean normalized squared projection error (MNSE) to 
measure the performance of the three systems with independence 
from the scale of the input vectors: 
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In order to reduce the dimensionality of the input distribution, 

the projection error minimization must be achieved with the 
minimum possible number of basis vectors. So, we are interested in 
the relation between these two values. 

Our experiments have used a freely-accessible data set from the 
NASA Earth Observatory [10]. This data set is made up of climatic 
images taken every month by satellites. We have selected 6 months 
(from January 1988 to June 1988), and 14 parameters for each 
month. So we have 14 images per month, each with 360x180 
pixels. These 14 images are combined to form a single multisensor 
image, where every pixel is a vector with 14 components. The 
values of the components are real numbers in the interval [0,1]. 
Each of the vectors is an input sample. Every experiment starts by 
presenting the input samples of a month to a network. When the 
training is finished, the projection error is computed for all the 
input samples of the month. Then these projection errors are used 
to compute the mean error of the month. Finally, the mean errors 
from the 6 months are averaged to yield the final mean error. 

 
Table 1.     Average CPU time used to train the original local PCA network 

(fixed K), in seconds. 
# neurons K=1 K=2 K=3 K=4 K=6 K=8 

2  6070 7762 8822 7928 9063 9325
4  7520 8358 8695 10172 11625 13166
8  10347 12304 14686 16336 19058 21875

16  18343 22056 26096 33357 35891 41261
 
Table 2.     Average CPU time used to train the proposed local PCA 

approach (dynamic K), in seconds. 
# neurons α=0.5 α=0.6 α=0.7 α=0.8 α=0.9 

2 6783 8371 7956 8974 9336
4 8835 8725 9381 10911 11937
8 13429 13464 14224 15698 16575

16 21466 22547 23639 25939 29081
 
The parameters of the local PCA network have been selected as 

follows. We have run 20 iterations of the method, i.e., we have 
presented the data of the considered month 20 times to the 
network. The original approach needs the number of basis vectors 
K to be specified, so we have carried out experiments with K=1, 2, 
3, 4, 6 and 8. All these values of K have been used with 2, 4, 8 and 
16 neurons. Our approach has been tested with α=0.5, 0.6, 0.7, 0.8 
and 0.9, and the same numbers of neurons. 

For the PPCA model, we have run 10 iterations of the method, 
i.e., the data of the considered month has been presented 10 times 
to the network. We have selected this reduced number of iterations 
because further processing showed no improvement. The values of 
K  and the numbers of neurons have been the same as in the 
original local PCA approach. 

The plots of the error MNSE versus the number of basis vectors 
K is shown in Figs. 1 to 4. The number of basis vectors K has been 
averaged over all the neurons (this is the reason because fractional 
values appear). Please note that nearer to the coordinate origin is 
better. For our approach (‘dynamic K’), the results corresponding 



to lower α appear to the left, because a smaller amout of variance 
can be explained with fewer basis vectors. We can see that our 
dynamic approach has better performance than the original local 
PCA with fixed K and the PPCA in all the tests. 

 
Table 3.     Average CPU time used to train the PPCA networks, in 

seconds. 
# neurons K=1 K=2 K=3 K=4 K=6 K=8 

2  967 1007 1051 1049 1074 1092
4  1844 1928 2090 2106 2088 2119
8  3458 3636 3852 3940 3993 4079

16  8270 8394 9084 9142 9420 9122
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Figure 1.     Network performance results with 2 neurons. 
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Figure 2.     Network performance results with 4 neurons. 
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Figure 3.     Network performance results with 8 neurons. 
 
The CPU time required by the three approaches can be seen on 

Tables 1 to 3. Our proposal is slightly faster than the original PCA, 
due to the removal of unnecesary basis vectors, while PPCA is the 
fastest (but only at the expense of a very reduced performance, as 
seen before). 
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Figure 4.     Network performance results with 16 neurons. 

7 CONCLUSIONS 
We have presented the explained variance method to select the 
number of basis vectors in local PCA neural networks. With this 
method, every neuron is able to modify its behaviour to adapt to 
the local dimensionality of the input distribution, leading to greater 
plasticity. This learning is controlled by a parameter which 
specifies the desired amount of explained variance. Some 
important properties of this method have been proved and 
discussed, including bounds of the mean squared errors. Finally, 
experimental results have been presented, which show that our 
approach outperforms two well-known models with a fixed number 
of basis vectors. 
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