
Interleaving Execution and Planning for
Nondeterministic, Partially Observable Domains

Piergiorgio Bertoli and Alessandro Cimatti and Paolo Traverso
�

Abstract. Methods that interleave planning and execution are a
practical solution to deal with complex planning problems in non-
deterministic domains under partial observability. However, most of
the existing approaches do not tackle in a principled way the impor-
tant issue of termination of the planning-execution loop, or only do
so considering specific assumptions over the domains.

In this paper, we tackle the problem of interleaving planning and
execution relying on a general framework, which is able to deal with
nondeterministic, partially observable planning domains. We pro-
pose a new, general planning algorithm that guarantees the termi-
nation of the interleaving of planning and execution: either the goal
is achieved, or the system detects that there is no longer a guarantee
to progress toward it.

Our experimental analysis shows that our algorithm can efficiently
solve planning problems that cannot be tackled with a state of the art
off-line planner for nondeterministic domains under partial observ-
ability, MBP. Moreover, we show that our algorithm can efficiently
detect situations where progress toward the goal can be no longer
guaranteed.

1 Introduction

Planning in nondeterministic domains under partial observability is
one of the most significant and challenging planning problems. Sev-
eral approaches have been proposed in the past [15, 18, 3, 2, 1]. How-
ever, the problem has been shown to be hard, both theoretically and
experimentally, and building plans purely off-line still remains un-
feasible in most realistic applications. Methods that interleave plan-
ning and execution, see, e.g., [13, 11, 17] are the practical alternative
to the problem of planning off-line with large state spaces. In safely
explorable domains [11], i.e., domains where execution cannot get
trapped in situations where plans that lead to the goal no longer exist,
it is possible to devise methods that are complete, i.e., that guaran-
tee to reach the goal if there exists a solution, and that guarantee the
termination of the planning/execution loop if no solution exists.

In this paper, we tackle the problem of interleaving planning and
execution in the general case of nondeterministic domains and partial
observability. We define an architecture for interleaving plan genera-
tion and plan execution, where a planner generates conditional plans
that branch over observations, and a controller executes actions in
the plan and monitors observations to decide which branch has to be
executed. This extends an off-line approach to planning in nonde-
terministic, partially observable domains, based on symbolic model
checking [2, 1]; the framework exploits the same data structures used
in off-line planning to generate plans, to execute them and to moni-
tor their execution. The plan generation component exploits a novel

�

ITC-Irst, Trento, Italy. E-mail: [bertoli,cimatti,traverso]@itc.it

“embedded” algorithm that, at each plan generation step, generates a
plan that, though possibly partial, makes a progress toward the goal.
Clearly, this has the advantage that the algorithm does not necessar-
ily need to consider all possible contingencies, and can thus scale up
to large state spaces. In addition, the algorithm deals nicely with the
case of non safely-explorable domains — i.e. where execution can
get trapped in situations where no strong plan, guaranteed to reach
the goal, exists anymore. Even though it is in general impossible to
guarantee that a goal state will be reached, the embedded algorithm
guarantees that the planning/execution loop always terminates: either
the goal is reached, or it is recognized that a state has been reached
from which there is no chance to find a strong plan 2.

We evaluate experimentally the proposed solution and compare
the new planner with a state-of-the-art off-line planner based on sym-
bolic model checking, MBP [2, 1]. The experimental results show
that the new planner can scale up to much harder problems than
the off-line techniques, and efficiently detect conditions where no
progress can be guaranteed anymore toward the goal.

The paper is organized as follows. We first describe the problem of
planning with nondeterminism and partial observability. We then for-
malize the framework for interleaving planning and execution, and
discuss the embedded planning algorithm. Finally, we describe the
experimental results and discuss some related work.

2 Planning with Nondeterminism and Partial
Observability

A nondeterminstic, partially observable domain can be thought of
as an automaton whose internal state evolves, starting from some
initial value, on the basis of actions given as input to the domain.
The domain provides observations whose values are related to the
domain state, and which are the only mean for an external agent to
acquire knowledge over the actual domain status.

Consider the simple robot navigation example presented in Fig. 1,
upper left corner. A robot can move in a 2x2 room square, and is
equipped with sensors that perceive the walls around it. The state of
this domain consists of the robot position; the actions are the move-
ment commands issued to the robot; the observations describe which
is the current wall configuration around the robot. Notice that the ob-
servation may be not sufficient to achieve perfect knowledge on the
domain status; for instance, since rooms NW and SW have the same
wall configuration, it is impossible to distinguish whether the robot
is in one or the other.

�

Notice that considering weak plans, that may not reach the goal, would
remove the guarantee of termination. Nondeterministic behaviors of the
domain might in fact cause endless planning/execution loops where weak
plans always exist, and every time fail to reach the goal.

G

O

A

L

I

I

T

N

SW SE

NW NE

L
O
O
P

B
A
C
K

L
O
O
P

B
A
C
K

G

O

A

L

L
O
O
P

B
A
C
K

GoSouth

N4

N5

N7

N8

N9

GoEast

N11

GoEast

Bs 3

Bs 4

Bs 4

Bs 6

Bs 5

Bs 3

WallN?

GoWest

GoWest

GoSouth

WallN?

N1 N2

WallW?

N3 N6

Bs 2Bs 1

Bs 1 Bs 1

GoWest GoNorth

GoEast

N10

N11

N12

Bs 3

Bs 6

Bs 4

GoNorth

GoWest

Figure 1. A simple robot navigation domain

The way actions evolve the domain status, and observations are
related to the current status, can be described by means of nondeter-
ministic functions; more formally:

Definition 1 A nondeterministic planning domain with partial ob-
servability is a tuple ���������	�
���
��
����
����� , where:� � is the set of states.� � is the set of actions.� � is the set of observations.�
���� is the set of initial states; we require
����� .� �����! "�$#&%
'��)(is the transition function; it associates to each
current state * and action + the set �,'�*-�	+.(/�0� of next states.� �1�2�3#4%
'��5(is the observation function; it associates to each
state * the set of possible observations �6'�*7(8�9� .
Action + is executable in state * if �,'�*:�;+.(<��=� ; it is executable in
a set of states > iff it is executable in every state *@?9> . We require
that in each state *A?B� there is some executable action. Also, some
observation must be associated to each state *C?@� , i.e., �6'�*�(����� .
This model allows for uncertainty in the initial states and in the out-
come of action execution. Also, since the observation associated to
a given state is not unique, it is possible to model noisy sensing and
lack of information.

In the domain of figure 1, the actions are GoNorth, GoSouth,
GoWest and GoEast. We have four states, corresponding to the
four positions of the robot in the room. It is in general possible to
present the state space by means of state variables, where each state
is presented by a truth assignment to the state variables. In the ex-
ample, the state variables might be E and S. In state NW they would
be both associated with a false value (D), while in SE they would
be associated with E . We have 16 observations, each corresponding
to one of the possible configurations of walls around the robot. The
space of observation can also be presented by means of observations
variables, (e.g. WallN, WallS, WallW and WallE). Each obser-
vation associates a truth value to each observation variable. In the
following, we will assume a variable-based presentation for � and
� . We define �/FHG ECI to denote the set of states that are compatible
with a E assignment to the observation variable J ; � F G D�I is inter-
preted similarly. In partially observable domains, we consider plans
that branch on the value of observation variables.

Definition 2 ((Conditional) Plan) A plan for a domain � is either
the empty plan K , an action +�?�� , the concatenation +ML�N of an
action and a plan, or the conditional plan OQPRJRSUTWV2XYN � V2Z�[\V,N � ,
with J an observation variable of the domain.

For instance, OQP)]2^:_-_�`"SUTWV2X6aHb-c:b�dHe-f"V2Z�[\V"a:b�]hghi�e corresponds to
the plan “if you see a wall north, then move south, otherwise move
west”.

A plan N is executable on a set of states > if > is empty, if Nj��K ,
or if one of the following holds:

� Nk�l+ML�N � , + is executable on > , and N � is executable onmUnMmUo 'p>q�;+.(r�ts5u�v:wx�
'�*-��+.(� NB��OQPyJrSUTWV2X5N � V2Z�[\V�N � , and the plans N � and N � are executable
over >rz@�8FHG E�I and >rz@�8FHG D�I , respectively.

Intuitively, given a domain � , a set of initial states { and a set
of goal states | in � , a plan N is a strong solution for the planning
problem �p�
��{x��|"� iff it is executable on { , and every execution on
the states of { results in | [2].

During the execution of a plan, in general the executor has to
consider a set of states which are equally plausible given the ini-
tial knowledge, and given the informations acquired through current
and past observations. We call this set a belief state; it represents the
current knowledge about the domain status. The search space then
can be seen as an and-or graph whose nodes are belief states, con-
sidering that actions transform belief states into new belief states,
and observations identify subsets of the current belief state. Search
for a plan can be performed by visiting and-or graph representing the
search space; given its size, a convenient “lazy” approach recursively
constructs the graph from the initial belief state, expanding each en-
countered belief state by every possible combination of applicable
actions and observations. The graph is possibly cyclic; in order to
rule out cyclic plan behaviors, however, its exploration – at planning
time – can be limited to the acyclic prefix of the graph.

The initial belief state in Figure 1 is }7~B�j���y��� ; our goal is to
reach the condition }��y��� . In the example, the actions are determin-
istic, with the exception of moving GoSouth from }�~@�5� , which
may cause the robot to slip in one of two states.

Figure 1 depicts a portion of the finite prefix of the search space
for the described problem. The prefix is constructed by expanding
each node in all possible ways, each represented by an outgoing arc.
Single-outcome arcs correspond to simple actions (action execution
is deterministic in belief space). For instance, N4 expands into N7 by
the action GoSouth. Multiple outcome arcs correspond to observa-
tions. For instance, node N2 results in nodes N4 and N5, correspond-
ing to the observation of WallN.

3 Interleaving Planning and Execution

Rather than searching the and-or graph of belief states off-line, tak-
ing into account all possible contingencies that can arise, we pro-
pose a framework where a planner searches the graph partially, and
a controller executes the partial plan and monitors the current state
of the domain. The process is iterated until the goal is (hopefully)
reached. The top level algorithm for interleaving planning and exe-
cution, called PLANEXECMONITOR, is the following:

PLANEXECMONITOR(>* , |)
1 if (>U*C�9|)
2 return ��� o o\m *7* ;
3 N := PROGRESSIVEPLAN(>U* , |);
4 if (N =

� +������	� m)
5 return

� +������	� m ;
6 else
7
 m�� >U* := EXECUTEMONITORING(>* , N);
8 PLANEXECMONITOR(
 m�� >* , |);

PLANEXECMONITOR is initially invoked by passing to it the set {
of possible initial states, and the set of goal states | . We assume the
domain representation to be globally available. PLANEXECMON-
ITOR recursively implements a loop, that alternatively calls PRO-
GRESSIVEPLAN, which generates a plan, and the monitored executor
EXECUTEMONITORING, that executes the plan, and at the same time
reports the new belief resulting from execution. PLANEXECMONI-
TOR stops either when given a belief > such that the goal is known to
be reached (that is, >��9|), or when the planner returns failure.

EXECUTEMONITORING(>U* , N)
1 MARKEXECUTED(>U*);
2 if 'pNB��K�(
3 return >* ;
4 if 'pNB��
/L�N���(
5 ACTUATE(
);
6
 m�� >U* := mUnMmUo 'p>*:��
y(;
7 EXECUTEMONITORING(
 m�� >U* , N �);
8 if 'pNB� if J then N � else N � (
9 if CURRENTVALUE 'pJ-(
10 returnEXECUTEMONITORING (>U*8z@� FHG ECI , N �);
11 else
12 returnEXECUTEMONITORING (>U*8z@� F G DCI , N �);

The executor EXECUTEMONITORING recursively applies the plan
actions to the domain, via ACTUATE. The plan execution is driven by
the observations in the plan: it branches over the actual observation
values, retrieved from the domain via CURRENTVALUE. Parallel to
this, EXECUTEMONITORING uses a domain model, namely � andmUnMmUo , to propagate the initial belief consistently with the execution.
Each belief state traversed during the monitored execution is marked
as traversed via MARKEXECUTED. We call a sequence of beliefs
traversed by the plan during its monitored execution a run of a plan;
several runs are possible from a starting belief state >�� , depending on
the behavior of the domain:

Definition 3 (Runs of a plan) Let N be a plan for a domain � . The
set of runs of N from an initial belief state > � � � is inductively
defined as follows.� If N is K , then >�� is a run of N from >�� .� If N is +ML�N � , then the sequence > � ��� is a run of N from > � , where �
is a run of N � from mUnMmUo 'p> � ��+.(.� If N is O P J SUTWV2X@N � V2Z�[\V N � , then the sequences >������ � and >��-��� �

are runs of N from > � , where � � is a run of N � from > � z6� F G ECI , and
� � is a run of N � from > � z@� F G D�I .

PROGRESSIVEPLAN({ , |)
1 ���q+���� := MKINITIALGRAPH({ , |);
2 while (� ISSUCCESS(GETROOT(����+����)) �
3 � ISEMPTYFRONTIER(���q+����) �
4 � (ISPROGRESS(GETROOT(���q+����)) �
5 TERMINATIONCRITERION(���q+����)))
6
 J � m := EXTRACTNODEFROMFRONTIER(���q+����);
7 if (SUCCESSPOOLYIELDSSUCCESS(
 J � m , ����+����))
8 MARKSUCCESS(
 J � m);
9 NODESETPLAN(
 J � m ,RETRIEVEPLAN(
 J!� m , ����+����));
10 PROPAGATESUCCESS(
 J!� m ,����+ �	�);
11 else
12 mUn � := EXPANDNODE(
 J � m);
13 EXTENDGRAPH(m7n � ,
 J!� m , ����+ �	�);
14 if (� ISEXECUTED(
 J!� m))
15 MARKPROGRESS(
 J � m , ����+����);
16 PROPAGATEPROGRESS(
 J!� m , ����+ �	�);
17 end while
18 if (ISSUCCESS(GETROOT(����+����)))
19 return EXTRACTSUCCESSPLAN(����+����);
20 if (REACHEDTERMINATION)
21 return EXTRACTPARTIALPLAN(���q+����);
20 if (ISPROGRESS(GETROOT(����+ �	�)))
21 return EXTRACTPROGRESSINGPLAN(���q+����);
22 return

� +������	� m ;

Figure 2. The planning algorithm

4 Planning for Interleaving

Consider the planning algorithm depicted in Figure 2, disregard-
ing the lines with boldfaced labels. This is a slight modification for
strong planning under partial observability described in [1]. The al-
gorithm takes as input the initial belief state and the goal belief state,
and proceeds by incrementally constructing a finite acyclic prefix of
the search space, implemented as a ����+ �	� . In the graph, each node

 is associated with a belief state >-'"
 (; a directed connection be-
tween a node
 � and a node
 � results either from an action
 such
that � nMmUo '"
/�;>-'"
 � (�(
� >-'"
 � (, or from an observation J such that
>q'"
 � (z � F G #:Ir� >q'"
 � (, with #6� E or #B��D . We call
 � the fa-
ther of
 � and
 � the son of
 � ; we call “brothers” all the nodes that
result from the same observation expansion of the same node. The
graph is annotated with a frontier of the nodes that have not yet been
expanded, and with a success pool, containing the nodes for which a
strong plan has been found.

The algorithm has its core in a search loop (lines 2-21), iteratively
selecting and expanding a node in the graph. Namely, at each itera-
tion, a node is extracted from the frontier, and evaluated for success
against the success pool (lines 6-7). If the node successful, a strong
plan is extracted and associated to it, the success pool is expanded,
and success is propagated backward on the graph (lines 8-10). Oth-
erwise, the node is expanded by applying every executable action,
and non-trivial observation to it, resulting into a graph expansion
(lines 12-13). The expansion routine avoids generating ancestors of
the expanded node, inhibiting the presence of loops in the graph.
The search loop terminates either when (a) the root of the graph is
signaled as a success node, (b) the graph frontier is empty, or (c) a
termination criterion is met. Condition (a) signals that a strong plan
has been found; condition (b) indicates that no strong plan exists;
condition (c) is responsible for the search being stopped while only
partial plans have been expanded.

Notice that the criterion defining condition (c) is the only distinc-
tion with the original off-line approach, for the purpose of integrat-

ing the planner within the interleaving framework, added to generate
possibly partial plans rather than searching the whole search space.
(Different termination criteria could be envisaged, e.g. partial suc-
cess, number of nodes, run times. The specific details are not relevant
here.) Unfortunately, this simple minded approach does not guaran-
tee termination of the overall interleaving loop, even if a solution ex-
ists. The problem is that the planner should guarantee that, for every
possible run, at least a new belief state is reached during execution.
If this is not so, plan-execution loops are possible that keep visiting
the same beliefs over and over, never terminating. If instead the guar-
antee is achieved, termination of plan-execution loops follows from
the fact that belief states are finitely many. (Notice that weakening
the condition, and accepting plans which only might result in beliefs
never been visited before, does not guarantee termination.) The no-
tion that guarantees the termination of the top level is what we call
progressiveness of the planner: each plan must guarantee that at least
one belief state (not just a state) is traversed that has not been previ-
ously encountered during execution.

Definition 4 (Progressive Plan) Let � be a run > � �������\��> � . Let N be
a plan for � . The plan N is progressive for the run � iff, for any run
��� of N from > � , there is at least one belief state in ��� that is not a
belief state of � .

Let us consider again the statements in Figure 2 (with lines 20 and
21 bold, replacing the non-bold counterparts). In order to obtain a
progressive planning algorithm, we consider all the plans originating
from a node, to make sure that at least for one of them, execution
will visit a belief state, which has never been visited during previ-
ous executions. The graph is therefore extended in order to maintain
up-to-date information on progress of nodes. In order to guarantee
progressiveness, at line 14, we check if >q'"
 J � m (has already been
visited at execution time. If not, we mark
 J!� m as a “progress” node
(line 15) (we remark that a successful node has surely not been vis-
ited by a previous run, and as such it is marked as progress). In that
case, the progress information is recursively propagated bottom-up
on the tree (PROPAGATEPROGRESSONTREE, line 16): if the node is
the result of the application of an action, then its father is marked
as progress. If the node is the result of an observation, in order to
propagate its progress backward it is necessary to check that all of its
brothers are also marked as progress nodes.

Finally, when the loop is exited, either a strong plan has been
found, and is returned by EXTRACTSUCCESSPLAN; or, a progress-
ing plan exists in the graph, and is extracted by EXTRACTPRO-
GRESSINGPLAN; or, failure is returned. While extracting the success
plan is simple (it is associated with { by the bottom-up propaga-
tion), the progressing plan might not be unique: several such plans
may exist. The selection operated by EXTRACTPROGRESSINGPLAN

may affect the overall performance. Our implementation privileges,
amongst progressing plans, the ones performing more observations.

5 Experiments

We implemented a planner called MBPP (Model Based Planner with
Progressiveness) which extends the offline MBP [2] planner with
the algorithm shown in Section 3, and is equipped with a simulator
to trace executions. MBPP, just as MBP, relies on symbolic data
structures to represent the search; these are based on Binary Decision
Diagrams (BDDs), also exploited within planners such as UMOP [9].

We compare the interleaved approach of MBPP with the state of
the art (offline) MBP; comparison with UMOP is not possible since

it does not handle partially observable domains. The tests were run on
a Pentium III, 700 MHz with 6GB RAM, running Linux. The mem-
ory limit was set to 512MB, and CPU timeout was set at 180 sec.
For each problem instance, we collect the planning time for MBP.
For MBPP, the information is statistical, since its performance de-
pends on the actual domain behavior chosen by the simulator: there-
fore, for each problem instance, 100 runs were generated, with initial
states and nondeterministic outcomes selected randomly. We report
average times for the total of MBPP planning and randomized plan
execution.

For our experiments, we considered three classes of experiments.
The first is a robot navigation problem in a maze, with nondetermin-
istic action effects. The robot may start at any position in the maze,
and has to reach the top left corner. The robot may move in the four
directions, and is equipped with reliable wall-presence sensors in the
four directions. The robot may nondeterministically slip on the floor
while trying to move, in which case it stays in the same position; this
can occur at most 20% of the times. We consider a set of randomly
generated mazes of increasing sizes.

The second set of test cases is taken from the Power Supply
Restoration (PSR) domain, recently proposed as a significant bench-
mark for planning under partial observability [16]. In PSR, a network
of electricity supply lines, which can be reconfigured by turning (pos-
sibly unreliable) switches, are fed by a set of generators. Possible
faults on the lines cause reopening of switches connected to genera-
tors. Direct observation of line faults is not available; it is only possi-
ble to detect, for each line, whether it has been de-connected due to a
fault to lines below in the electricity flow. The PSR problem consists
in feeding all possible lines within a given set, for a set of possible
fault configurations, in spite of the limited sensing available. We con-
sider a set of 16 PSR problems over a network featuring 3 generators,
5 switches and 6 lines. The problems have 0 to 3 unreliable switches,
and four different set of possible faults configurations. We present
the problems sorted by growing complexity.

Finally, we consider a robot navigation problem where the robot is
in a cilindric tower of ~ floors, and can only move around the floor
he’s in. Inside any floor, every tenth room has a writing on the wall
which indicates the floor number, and can be read by the robot. The
robot has to reach a given room in floor 1; it starts not knowing the
floor he’s in, and is uncertain on the room also. We consider towers
of increasing height, and 100 rooms per floor.

The average MBPP times and the MBP times for the three test
cases are reported in Fig. 4. For the maze and PSR problems consid-
ered, a strong solution exist. However, due to the enormous number
of contingencies introduced by nondeterminism (the robot slipping in
the maze, faults and unreliable switches in the PSR), offline search
becomes practically unfeasible for large/complex problem instances,
while the on-line progressive search performed by MBPP scales up
smoothly, dealing with contingencies as they arise. For the tower
problem, the goal can never be reached: the robot might be in the
wrong floor, and in any case it cannot detect precisely in which room
it is situated. Once more, MBPP is able to effectively exploit the
knowledge gathered by observations performed during executions,
restricting the search and promptly discovering after a few runs that
no progressive plan exists. The time spent to achieve this is basically
independent of the domain size, since anyway after a few short runs,
the robot gets to know the floor it is in, achieving the better knowl-
edge possible given the situation. On the opposite, the larger the do-
main, the more MBP finds it complex to discover the absence of
a solution. We experimentally verified that when the progressiveness
check is disabled, MBPP fails discovering that no solution exists, and

0.1

1

10

100

5 10 15 20 25 30 35

C
P

U
 S

ea
rc

h
tim

e
(s

ec
)

size

Slippery Maze

MBPp: avg
MBP

0.1

1

10

100

2 4 6 8 10 12 14

C
P

U
 S

ea
rc

h
tim

e
(s

ec
)

problem instance

PSR network

MBPp: avg
MBP

0.1

1

10

100

5 10 15 20 25

C
P

U
 S

ea
rc

h
tim

e
(s

ec
)

height

Tower

MBPp: avg
MBP

does not terminate. In this setting, termination can only be achieved
by adding a termination criteria that constraints the minimum length
of the partial plans searched at each run to (at least) the number of
rooms in a floor. On top of being problem specific, this strongly de-
grades the search, since it forces visiting off-line a vast portion of the
search space at each planning run.

The experimental evaluation shows that the approach is very
promising: despite being fully general, the interleaved approach by
MBPP scales up much better, and is capable of efficiently dealing
with very complex problem instances, that cannot be dealt by the
state-of-the art planner MBP. The last experiment confirms the ca-
pability of MBPP to terminate when there is no more chance to find
a strong solution to the planning problem. Regarding plan quality, we
remark that neither MBP nor MBPP grant optimal (average) length
of execution. Since both planners rely on the same node extraction
heuristics, and progressiveness check only prevents looping behav-
iors, we do not expect relevant differences; however, a more accurate
evaluation of this aspect is in our agenda.

6 Conclusions and Related work

The idea of interleaving planning and execution is certainly not new
and has been around for a long time, see, e.g., [6]. In particular,
some approaches exist that address the problem of interleaving plan-
ning considering nondeterministic domains and partial observability,
defined similarly to here. Amongst those works, the most notable
are [12, 13, 11], which propose different techniques based on real-
time heuristic search. These algorithms rely on the existence of dis-
tance heuristics for the search space; in some case [11] they have the
nice property that they can amortize learning over several planning
episodes. These algorithms only guarantee termination (and reaching
the goal) under the assumption that the domain is safely explorable,
i.e. that the plan executor can never find himself in a position where it
may be impossible to reach the goal due to unlucky nondeterministic
action outcomes. By providing the notion of progressiveness, we are
able to guarantee termination in a more unconstrained setting, where
assumptions on safe explorability and admissible heuristic evalua-
tions are not involved.

Other approaches, still based on real-time heuristic search, address
the problem of planning in stochastic domains with probability distri-
butions on action outcomes, like in POMDP (see, e.g., [3, 10, 4, 5]).
Our technique is very different, and relies on symbolic model check-
ing techniques and on an efficient, BDD-based representation.

The maze domain presented in the experiments is inspired by the
work by Koenig ([11]), where it has been tested extensively in the
problem of robot navigation and localization. However, the experi-
mental domain of Section 5 is much harder than the one used in [11],
which assumes that there is no uncertainty in actuation and sensing.
It would be interesting an in depth experimental comparison in dif-
ferent domains of the two different approaches.

Somehow related to our work, even if very different in scope and
objective, are the works that propose architectures for interleaving
planning and execution, reactive planning and continuous planning,
see, e.g., [14]. Among them, CIRCA [8, 7] is an architecture for real-
time planning and execution where model checking with timed au-
tomata is used to verify that generated plans meet timing constraints.

REFERENCES
[1] P. Bertoli, A. Cimatti, and M. Roveri, ‘Conditional planning under par-

tial observability as heuristic-symbolic search in belief space’, in Proc.
of ECP’01, (2001).

[2] P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso, ‘Planning in non-
deterministic domains under partial observability via symbolic model
checking’, in Proc. of IJCAI 2001, (2001).

[3] B. Bonet and H. Geffner, ‘Planning with incomplete information as
heuristic search in belief space’, in Proc. of AIPS’00, (2000).

[4] A. Cassandra, L. Kaelbling, and M. Littman, ‘Acting optimally in par-
tially observable stochastic domains’, in Proc. of AAAI94, (1994).

[5] T. Dean, L. Kaelbling, J. Kirman, and A. Nicholson, ‘Planning Under
Time Constraints in Stochastic Domains’, Artificial Intelligence, 76(1-
2), 35–74, (1995).

[6] M. Genereseth and I. Nourbakhsh, ‘Time-saving tips for problem solv-
ing with incomplete information’, in Proc. of AAAI93, (1993).

[7] R. P. Goldman, D. J. Musliner, and M. J. Pelican, ‘Using model check-
ing to plan hard real-time controllers’, in Proc. of the AIPS2k Workshop
on Model-Theoretic Approaches to Planning, (2000).

[8] R.P. Goldman, M. Pelican, and D.J. Musliner. Hard Real-time Mode
Logic Synthesis for Hybrid Control: A CIRCA-based approach. Work-
ing notes of the 1999 AAAI Spring Symposium on Hybrid Control.

[9] R. M. Jensen, M. M. Veloso, and M. H. Bowling, ‘OBDD-based op-
timistic and strong cyclic adversarial planning’, in Proc. of ECP’01,
(2001).

[10] L. Kaelbling, M. Littman, and A. Cassandra, ‘Planning and acting in
partially observale domains’, Artificial Intelligence, 1-2(101), 99–134,
(1998).

[11] S. Koenig, ‘Minimax real-time heuristic search’, Artificial Intelligence,
129(1), 165–197, (2001).

[12] S. Koenig and R. Simmons, ‘Real-time search in non-deterministic do-
mains’, in Proceedings of IJCAI-95, (1995).

[13] S. Koenig and R. Simmons, ‘Solving robot navigation problems with
initial pose uncertainty using real-time heuristic search’, in Proc of
AIPS-98, (1998).

[14] K. L. Myers, ‘Towards a framework for continuous planning and exe-
cution’, in Proc. of the AAAI Fall Symposium on Distributed Continual
Planning, (1998).

[15] L. Pryor and G. Collins, ‘Planning for Contingency: a Decision Based
Approach’, J. of Artificial Intelligence Research, 4, 81–120, (1996).

[16] S. Thiebaux and M. O. Cordier, ‘Supply Restoration in Power Distribu-
tion Systems: a Benchmark for Planning Under Uncertainty’, in Proc.
of ECP-01, (2001).

[17] S. Thiebaux and J. Hertzberg, ‘A semi-reactive planner based on a pos-
sible models action formalization’, in Proc. of AIPS-92, (1992).

[18] D. S. Weld, C. R. Anderson, and D. E. Smith, ‘Extending graphplan to
handle uncertainty and sensing actions’, in Proc. of AAAI-98), (1998).

