
Planning with Numeric Variables in Multiobjective
Planning

Antonio Garrido1 and Derek Long 2

Abstract. The purely propositional representation traditionally
used to express AI planning problems is not adequate to express
numeric variables when modeling real-world continuous resources.
This paper presents a heuristic planning approach that uses a richer
representation with capabilities for numeric variables, including du-
rations of actions, and multiobjective optimisation. The approach
consists of two stages. First, a spike construction process estimates
the values of the variables associated with propositions/actions, with-
out relaxing numeric effects in the calculus of the estimation. Sec-
ond, a heuristic search process generates a relaxed plan according to
the estimations of the first stage, and then performs search in a plan
space. The relaxed plan and the heuristic estimations help the process
find a plan while trying to optimise the multiobjective criterion.

1 INTRODUCTION

Planning problems have been traditionally expressed by means of a
purely propositional representation based on STRIPS and its suc-
cessors. However, this representation is not always enough to ex-
press real-world problems, particularly in problems which involve
time, i.e. actions with duration, and continuous resources [7, 10]. Al-
though in a propositional representation planning graphs have be-
come tremendously useful to estimate when propositions/actions are
given [1, 7, 11], when dealing with time and numeric variables (i.e.
fuel level, energy, profit, etc.), where the domain of the variables
is usually continuous, the convenience of these graphs decreases.
First, the role of the levels becomes unclear as they are not longer
equidistant [5]. Second, a traditional planning graph cannot be di-
rectly used when actions impose complex constraints (inequalities)
on the variables: i) conditions such as (fuel plane)≥100 or
(free-space truck)>50, and ii) effects such as decrease
(fuel plane) 10 or scale-up (profit) 1.5.

We present a heuristic planning approach with capabilities for nu-
meric variables, including duration on actions, and multiobjective
optimisation to manage level 3 durative actions of PDDL2.1 [4].
Level 3 of PDDL2.1 allows a combination of logical (propositional)
and numeric features on actions, which have local conditions and ef-
fects. In addition, this work extends and stresses on the initial ideas
for heuristic search in PDDL2.1 temporal planning of TPSYS [5],
and attempts to solve its main inefficiencies and limitations.

2 A BRIEF REVIEW OF TPSYS

TPSYS is a Graphplan-based temporal planner that manages the
non-conservative model of durative actions of PDDL2.1 and consists

1 Universidad Politecnica de Valencia (Spain), email: agarridot@dsic.upv.es
2 University of Strathclyde (UK), email: derek.long@cis.strath.ac.uk

of three stages [5]. The first stage is a preprocessing stage that calcu-
lates the action/action and proposition/action static mutex relations,
which always hold. Although this calculus speeds up the remaining
stages, it entails an important inefficiency. In problems with hun-
dreds or thousands of actions, a lot of effort is wasted calculating the
mutex between actions which in the plan never interact.

The second stage incrementally extends a temporal planning
graph, alternating proposition and action levels, and calculates the ac-
tion/action, proposition/action and proposition/proposition dynamic
mutex. A lot of effort is wasted again in the mutex calculus between
actions which will not interact in the plan. A new indication of inef-
ficiency arises because of the size of the planning graph, which may
contain many temporal levels when the greatest common divisor of
the durations is 1, thus increasing the complexity of the second stage.

The third stage performs the search of a temporal plan in two steps.
First, a relaxed plan (without taking any mutex into consideration)
is generated in a backward chaining way. Second, this relaxed plan
is used as a skeleton to generate the temporal plan and as the ba-
sis for calculating heuristic estimations in a forward chaining way.
This stage may extend the temporal graph as much as necessary until
finding a plan, with the cost associated to the mutex calculus. In ad-
dition, this search entails a limitation: plans are optimised only w.r.t.
makespan. No other criteria, such as resource consumption or action
cost can be used, thus limiting the capabilities of the planner.

3 NUMERIC VARIABLES IN ACTIONS

In this paper, we use durative actions as defined in PDDL2.1,
with three types of conditions: SCond(a), Inv(a) and ECond(a),
with the conditions to be guaranteed at the start, over the ex-
ecution, and end of a, respectively. In a numeric approach,
each condition can be either a classical propositional condi-
tion or a numeric condition that expresses a constraint as a tu-
ple 〈f-exp1,binary-comp,f-exp2〉, where f-exp1 and
f-exp2 represent functional expressions (which may contain
numeric variables), and binary-comp ∈ {<,≤, =, >,≥} is
a binary comparator. Additionally, durative actions have two
types of effects: SEff(a) and EEff(a), with the effects to
be asserted at the start and end of a, respectively. Each ef-
fect can be either a positive (SAdd(a), EAdd(a)) or negative
(SDel(a), EDel(a)) propositional effect or a numeric effect as a
tuple 〈f-head,assign-op,f-exp〉, where f-head represents
a numeric variable, and assign-op ∈ {:=, + =,− =, ∗ =, / =}
is an assignment operator which updates the value of f-head ac-
cording to the functional expression f-exp.

Figure 1 shows an example with three actions of the
zenotravel domain with numeric conditions and effects used in

(:durative-action board
:parameters (?p - person ?a - aircraft ?c - city)
:duration (= ?duration (boarding-time))
:condition (and (at start (at ?p ?c))

(over all (at ?a ?c)))
:effect (and (at start (not (at ?p ?c)))

(at end (in ?p ?a))))

(:durative-action fly
:parameters (?a - aircraft ?c1 ?c2 - city)
:duration (= ?duration (/ (distance ?c1 ?c2)

(slow-speed ?a)))
:condition (and (at start (at ?a ?c1))

(at start (>= (fuel ?a)
(* (distance ?c1 ?c2) (slow-burn ?a)))))

:effect (and (at start (not (at ?a ?c1)))
(at end (at ?a ?c2))
(at end (increase total-fuel-used
(* (distance ?c1 ?c2) (slow-burn ?a))))
(at end (decrease (fuel ?a)
(* (distance ?c1 ?c2) (slow-burn ?a))))))

(:durative-action refuel
:parameters (?a - aircraft ?c - city)
:duration (= ?duration (/ (- (capacity ?a) (fuel ?a))

(refuel-rate ?a)))
:condition (and (at start (> (capacity ?a) (fuel ?a)))

(over all (at ?a ?c)))
:effect (at end (assign (fuel ?a) (capacity ?a))))

Figure 1. Actions with numeric capabilities used in IPC–2002.

IPC–20023. For instance, action fly requires the plane to be in
the origin (propositional condition), but also to have enough fuel
to perform the flight (numeric condition). On the other hand, fly
makes the plane to be in the destination (propositional effect), in-
creases the variable total-fuel-used and decreases the level
of fuel of the plane (numeric effects). By default, we include the
variable (total-time), modified by the field :duration, that
represents the makespan of the plan. Note that this allows us to
treat the duration as any other numeric variable. Different actions
may present different numeric effects: fixed for all actions of an
operator, different for each action of an operator (argument depen-
dent), or even different for the same action (depending on the state
where they are applied). In addition to this, each planning prob-
lem can define a multiobjective metric function to assess the qual-
ity of the plan, such as (+ (* 4 (total-time)) (* 0.005
(total-fuel-used))). Unlike planners that only try to opti-
mise the number of planning steps, actions or makespan, the use of
this metric allows to find plans where several weighted criteria that
play an important role in the plan are also considered.

4 PLANNING WITH NUMERIC VARIABLES

Unlike TPSYS, the new approach does not generate a real temporal
planning graph. This allows to overcome two of the most important
inefficiencies of TPSYS: i) the calculus and propagation of mutex,
and ii) the extension of a temporal planning graph [5]. Instead of ex-
tending a temporal graph, we generate one spike vector for proposi-
tions and one for actions. Consequently, the first stage performs both
the instantiation of the actions through the spike construction and the
heuristic estimation of the numeric variables. Next, the second stage
performs the heuristic search of a plan, which is assessed in terms of
the multiobjective metric function.

4.1 First stage. Spike construction

The first stage uses two spikes that encode the information about
propositions/actions, thus reducing the storage requirements of a

3 More information about the domains of the IPC–2002 in:
http://planning.cis.strath.ac.uk/competition

planning graph. Each proposition/action is associated with a vector of
tuples 〈f-headi,min valuei,max valuei〉, where f-headi

is the ith numeric variable and min valuei (max valuei) stands
for the minimal (maximal) value estimated for that variable to
achieve the proposition/action. These values are incrementally up-
dated through the spike construction as shown in Algorithm 1.

1: for all p ∈ Is do
2: prop state← prop state ∪ {p}
3: for all f-headp,i do
4: update f-headp,i with value of f-headi in Is

5: while new actions can be applied from prop state do
6: for all a | {SCond(a) ∪ Inv(a)} ∈ prop state do
7: insert a in the spike of actions
8: for all f-heada,i do
9: update f-heada,i with ∪T value(f-headpj,i

∀pj∈SCond(a)∪Inv(a)

)

10: for all p ∈ {SAdd(a) ∪ EAdd(a)} do
11: insert p in the spike of propositions (if not present)
12: prop state← prop state ∪ {p}
13: for all f-headp,i do
14: update f-headp,i with ∩T effect(f-headaj,i

∀aj supporting p

)

Algorithm 1: Spike construction.

For each initial proposition p, the algorithm initialises the nu-
meric variables f-headp,i with the values indicated in the initial
state Is (steps 1–4). If one variable is not initialised in Is (for in-
stance, (total-time)), it is initialised to 0. Steps 5–14 construct
the spike structure until no new actions can be generated. For each
action a that starts, steps 8–9 estimate the minimal and maximal val-
ues of the numeric variables as the temporal union (∪T) of the values
of the (start and invariant) conditions of a. The operation temporal
union must take into account the duality in the optimisation direction
of the variables. Consequently, ∪T is defined as the operation “max”
when the variable must be minimised, and “min” when maximised.
For instance, when dealing with the variable (total-time), the
estimation of that variable for a is the maximal value of its conditions
(informally, a must wait until the latest of its conditions). On the
contrary, the estimation for the variable (fuel plane1), which
represents the current fuel level of plane1, is the minimal value
because a must wait until the condition with the lowest fuel level.
Analogously, steps 13–14 estimate the minimal and maximal values
of the variables for propositions as the temporal intersection (∩T)
of the effects of their supporting actions (after applying the assign-
ment operators {:=, + =,− =, ∗ =, / =}). This operation is in-
terpreted as “min” for the minimal value of the variable and “max”
for its maximal value. This way, each numeric variable has always
associated two values that correspond with the most optimistic and
pessimistic estimations.

It is important to note a special characteristic during the estima-
tion of the numeric variables: the numeric conditions of actions are
relaxed, but not their effects as in other approaches such as Sapa,
TP4 or metric-FF [2, 6, 7]. The heuristic estimation on actions is
only calculated in terms of their propositional conditions. Hence, the
estimation makes a clear distinction between the logic of the plan and
the constraints on the resources. In the case of the zenotravel do-
main, the heuristic estimates the cost of the actions necessary to de-
liver the set of people and not the requirements on resources (fuel
?a) of these actions. Intuitively, the heuristic informs about the cost
of the actions that should be executed to achieve the propositional
goals, but not about the cost of the actions which achieve the appro-
priate conditions of the resources to execute them (i.e. the heuristic
estimates the cost of actions like board or fly, but not refuel).

4.2 Second stage. Search of a plan

This stage is inspired by the two-step search of TPSYS. First, a back-
ward chaining stage generates an initial relaxed plan. Second, a for-
ward chaining stage allocates the execution time of the actions in the
relaxed plan trying to optimise the multiobjective function.

4.2.1 Generation of an initial relaxed plan

A relaxed plan Π is a partially ordered set of actions connected by
causal links in which both the propositional goals and action condi-
tions hold. It is called relaxed because neither mutex relationships
between actions nor commitment on their execution time are consid-
ered. Algorithm 2 shows the way to generate this plan.

1: Π← {IS ∪ FS} {obligatory actions}
2: queue acts← FS
3: while queue acts 6= ∅ do
4: extract a from queue acts
5: for all p ∈ {SCond(a) ∪ Inv(a) ∪ ECond(a)} do
6: if p is not supported in Π then
7: b← arg min(cost of execution of bi)

∀bi which supports p

8: if b is the only action supporting p ∧ a is obligatory then
9: mark b as obligatory in Π

10: Π← Π ∪ {b} {no commitment on execution time}
11: queue acts← queue acts ∪ {b}

Algorithm 2: Generation of an initial relaxed plan Π.

The algorithm is quite straightforward and consists of making ac-
tions applicable by supporting their conditions. All the relaxed plans
contain two fictitious actions with no duration called IS and FS. IS
achieves the propositions of the initial state, whereas FS requires the
problem goals. The algorithm uses a queue of actions (queue acts),
which is initialised with FS (step 2). Step 4 extracts one action a from
queue acts. For each unsupported condition of a, step 7 selects the
action b with the minimal cost of execution4 . This cost is calculated
by evaluating the numeric variables (estimated in the first stage) in
the optimisation function. We use the idea of obligatory action [5] to
indicate that such an action must be present in all the plans because
it is the only way to support the problem goals5 (steps 8–9). Finally,
steps 10 and 11 insert action b into Π and queue acts, respectively.

The actions in the relaxed plan are evaluated and selected accord-
ing to the estimation of their numeric variables. Therefore, the re-
laxed plan aims at the logical part of the plan, i.e. the actions to
achieve the propositional goals, and not at the actions to achieve the
required values of the resources. Apparently, this distinction seems
quite intelligent when dealing with large problems: the relaxed plan
focuses on the general structure of the plan, without taking into con-
sideration the actions to replace the resources, which in many cases
might be unknown or irrelevant in advance [2].

4.2.2 Generation of a plan. Planning and allocating actions

The plan is generated through a plan space search in a structure called
set of plans that contains all the generated plans {Πi}. Actions in
each Πi are divided into two disjunctive sets: Relaxi and Alloci.

4 For simplicity, the algorithms always consider the minimal cost best, as-
suming a minimisation problem. This does not reduce the generality of
the algorithms, because a maximisation problem can be transformed into
a minimisation one by multiplying all the costs with -1.

5 The idea of calculating actions that must be present in the plan has been
previously explored in [9]. Although our calculus does not perform any real
reasoning on landmarks, in many cases it provides very useful information
with barely computational effort.

Relaxi contains the actions which have not been allocated yet, and
so they can be removed from Πi. Alloci contains the actions which
have been allocated in time and will never be removed from Πi. Ini-
tially, Relaxi contains all the actions in Πi and Alloci is empty. Each
plan Πi also contains a stack of actions acts to allocatei with the
actions to allocate in each time of executioni. acts to allocatei

is initially empty and time of executioni is initialised to 0.

1: set of plans← Π, generated in Algorithm 2
2: while set of plans 6= ∅ do
3: extract the lowest cost Πi from set of plans
4: if Alloci supports all the problem goals then
5: exit with success
6: else if ∀aj ∈ Alloci | ∃p ∈ {SCond(aj)∪Inv(aj)∪ECond(aj)}

that is not supported then
7: ∀bk that supports p: insert Πk into set of plans with bk in

acts to allocatek

8: else
9: if acts to allocatei = ∅ then

10: a← arg max(allocation priority)
∀aj∈Relaxi which can start at time of executioni

11: else
12: extract a from acts to allocatei

13: if a is mutex in Alloci then
14: if a is non-obligatory in Πi then
15: remove a from Relaxi

16: else
17: postpone start time of a in Relaxi

18: else if a is applicable then
19: allocate a in Alloci at time of executioni

20: if acts to allocatei = ∅ then
21: regenerate Relaxi from the current state
22: else
23: ∀bk that makes a applicable: insert Πk into set of plans with

bk in acts to allocatek

24: update time of executioni

Algorithm 3: Generation of a plan. Planning and allocating actions.

The idea is to simulate the real execution of Πi, progressively
taking care of the actions that can start at the current state (see
Algorithm 3). The algorithm extracts the plan Πi of lowest cost
from set of plans (step 3). If the problem goals are supported in
Alloci the algorithm terminates with success (steps 4–5). If any
action in Alloci has unsupported conditions, the algorithm inserts
new actions to support them (steps 6–7), generating new plans. If
acts to allocatei is empty, step 10 selects the action a with the max-
imal allocation priority, which indicates the action to be allocated
next (see below for a more detailed explanation). Otherwise, a is ex-
tracted from acts to allocatei (step 12). If a is mutex6 in Alloci, it
is removed or postponed depending on whether a is non-obligatory or
obligatory, respectively (steps 13–17). If a is non-obligatory, it could
be a bad choice in the relaxed plan, but if it is obligatory we know
that it must be present in the plan, so it is not removed. Steps 18–23
try to allocate a. If a has unsupported conditions, step 23 inserts new
actions to support them, generating new plans.

The algorithm has two branching points (steps 7 and 23), where
it inserts new actions in new plans to support conditions. For each
new action aj supporting a condition, a new plan Πj with action aj

marked as obligatory and inserted into acts to allocatej is gener-
ated. aj is inserted as obligatory to guarantee that in the plan the
unsupported condition will be satisfied by aj. Further, the algorithm
has two points of selection: steps 3 and 10. Step 3 selects the plan Πi

with the lowest cost from set of plans, where the cost is:

6 The mutex information is provided by TIM [3], which has been extended
to deal with level 3 durative actions. Therefore, our approach uses a lazy
schema of mutex, which are only calculated between actions that are about
to interact.

cost(Πi) = cost(Alloci ∪ acts to allocatei) + cost(Relax
′

i)

cost(Alloci ∪ acts to allocatei) is calculated by evaluating the
numeric variables (after applying the actions present both in Alloci

and acts to allocatei) in the optimisation function. Analogously,
cost(Relax

′

i) is calculated, where Relax
′

i is formed by: i) the ac-
tions necessary to make acts to allocatei applicable from the state
achieved by Alloci, and ii) the actions necessary to achieve the prob-
lem goals from the state achieved by acts to allocatei. It is impor-
tant to note that Relax

′

i is a better estimation than Relaxi to achieve
the problem goals and, consequently, of the remaining cost. Relaxi

was initially generated from the initial state, and this may be con-
siderably different to the current state. In particular, the more the
algorithm advances in time, the less precise Relaxi becomes. There-
fore, whenever the state changes (after allocating one action) and no
actions remain in acts to allocatei, the algorithm replaces Relaxi

with the regenerated plan Relax
′

i (see steps 20–21). This new re-
laxed plan will better take advantage of the current state, improving
the estimations and helping the plan generation.

Step 10 selects the action from Relaxi with the maximal prior-
ity to be allocated at the current time of executioni. This value
prioritises the action that can be executed in the current state (all its
conditions are present) that minimises the number of mutex with the
remaining actions in Relaxi.

5 EXPERIMENTAL RESULTS

In this section we have extended TPSYS with the new search ap-
proach. To date our implementation only provides plans with mini-
mal action overlapping, which significantly reduces the quality of the
plans. Figure 2 shows some comparisons (execution time and plan
quality) for TPSYS, LPG-speed and MIPS in the zenotravel
and satellite domains used in IPC–2002, which try to optimise
both the makespan and total fuel used. The experiments for TPSYS
were run on a Pentium IV 2 GHz with 512 Mb, whereas the results
for LPG-speed and MIPS were provided in the competition (run in
a slightly slower computer with 1 Gb).

TPSYS behaves quite well in zenotravel (Figure 2-ab), show-
ing a scalable performance and better times than MIPS. Although the
current plans of TPSYS are still highly sequential, it provides better
plans than LPG.speed in most of the problems. In the satellite
domain (Figure 2-cd), LPG.speed has better results, but TPSYS
shows again a scalable performance. The times of TPSYS are faster
than MIPS, but the plans of MIPS have better quality.

6 DISCUSSION

Our approach to deal with numeric variables in multiobjective plan-
ning has some open points that require further investigation:

• The spike construction considers the numeric effects of the actions
without any relaxation, but no their numeric conditions. This may
make the estimations more optimistic than they really are. Addi-
tionally, these conditions could be also taken into account when
generating the relaxed plans in the second stage to make them
more precise. Particularly, the relaxation of the numeric conditions
may lead to an empty relaxed plan in some cases. Let us assume a
problem with the only goal (profit)>100. In this case, the re-
laxed plan contains no actions because the propositional goals are
supported in an empty plan. Thus, the generation of a plan starts
from scratch, without an outline that helps build the plan.

• The branching factor due to actions with numeric effects might
be prohibitive, specially when supporting conditions that re-
quire one precise numeric value. Let us assume a goal like
(profit)=100. We might apply actions with {+ =,− =
, ∗ =, / =} effects on the variable (profit). Although sim-
ple heuristics, like selecting + = or ∗ = effects with maximum
right hand side first as proposed in [7], can be used, they are not
always enough. For instance, one alternative is first to apply ∗ =
effects, and then tune the value with + = or − = effects. How-
ever, a second alternative might apply first + = effects and then
apply ∗ = effects. Further, the order of application of these effects
can modify the length, complexity and cost of the plan.

• The heuristic selection of actions may get stuck in the wrong path
while generating the plan, which entails to visit the same states
within a loop. Although memoization techniques [1] are helpful to
avoid this situation, they get more complex when dealing with nu-
meric variables: for identical propositional states the values of the
numeric variables can be different. This involves a huge explosion
in the space requirements and new techniques must be explored.

• Currently, the algorithm does not deal with continuous effects and
only guarantees the numeric conditions in the extreme points of
the execution of the action, i.e. at the start and end. A more com-
plex model should consider additional constraints on the variables
all over the execution of the action (for instance, when the value
for (fuel) must be in an interval during the execution of fly).

7 CONCLUSIONS AND RELATED WORK

In the last few years, some attempts to extend the capabilities of the
planners to manage numeric variables and multiobjective optimisa-
tion functions have been carried out in AI planning. One of the first
works to include reasoning under resource constraints in a Graph-
plan approach was done in [8]. In this work, actions provide, pro-
duce or consume resources (expressed as numeric variables), but the
assignment operators in the effects are restricted to {:=, + =,− =}.
The domain of the variables is also represented by an interval through
the construction of a classical planning graph, but the plan is only
optimised in terms of the number of planning steps. More recent
works are based on heuristic planning. GRT-R and its extension to
deal with multiobjective planning MO-GRT [10], include informa-
tion on resource consumption to construct the heuristic that estimates
the distance between each planning state and the goals. Similarly to
our approach, each proposition has associated a cost-vector which is
an estimate of the total cost of achieving that proposition. However,
there is an important difference: different values for the variables are
not encoded as an interval and one proposition can have different
vectors that correspond to alternative ways of achieving the propo-
sition, thus increasing the storage requirements. Sapa [2] and TP4
[6] use the constraints on resource consumption to adjust the heuris-
tic value that estimates the length of the plan. On one hand, Sapa
preprocesses the problem specification to find out the maximal in-
crement in the resources levels. Next, this increment is used to read-
just the estimations according to the resource consumptions. On the
other hand, TP4 uses the resource constraints as a way to limit the
actions that can be executed concurrently and avoid search. Unlike
these planners, metric-FF [7] also considers the numeric conditions
of the actions, but it still ignores the decreasing effects in the heuristic
estimation. Similarly to [8], the assignment operators in the effects
are restricted to {+ =,− =}. One interesting property of metric-
FF is that it considers the numeric conditions in the estimation, thus
improving the informedness of the estimations. Although duration

 10

 100

 1000

 10000

 100000

 1e+06

 2 4 6 8 10 12 14 16 18 20

T
im

e
in

 m
s

Problem

TPSYS
LPG-speed

MIPS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 2 4 6 8 10 12 14 16 18 20

Q
ua

lit
y

Problem

TPSYS
LPG-speed

MIPS

(a) - zenotravel (execution time) (b) - zenotravel (plan quality)

 10

 100

 1000

 10000

 100000

 1e+06

 2 4 6 8 10 12 14 16 18 20

T
im

e
in

 m
s

Problem

TPSYS
LPG-speed

MIPS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2 4 6 8 10 12 14 16 18 20

Q
ua

lit
y

Problem

TPSYS
LPG-speed

MIPS

(c) - satellite (execution time) (d) - satellite (plan quality)

Figure 2. Comparison of the new approach for search implemented in TPSYS vs. LPG.speed and MIPS.

could be managed in principle as other numeric variables, the se-
quential approach of metric-FF makes this feature useless, which
may degrade the quality of the plans.

This paper has proposed a planning approach to deal with numeric
variables. As a consequence of the numeric management, the plan-
ner can cope with problems with multiobjective optimisation criteria,
thus giving the user more opportunities to optimise plans. Briefly, the
main contributions of the paper have been the description of:

• The basic idea to associate a vector of numeric variables to each
proposition/action that indicate the estimated value for those vari-
ables in the achievement of that proposition/action. It is important
to note that no special distinction is done now for the duration
of actions, which is managed exactly as the rest of numeric vari-
ables. Therefore, in this approach the term of temporal planning is
subsumed by the term of planning with numeric variables.

• A first stage that constructs two spike vectors which encode the
classical information stored in planning graphs, while estimating
the optimistic and pessimistic values for the variables and the cost
of the actions w.r.t. the problem optimisation criterion.

• A second stage that performs the search process to generate a
plan. This stage uses an initial relaxed plan, calculated in a back-
ward way, as an outline of the final plan. This outline of the
plan presents two important benefits: i) it prevents the planner
from starting search from an empty plan, and ii) it provides use-
ful information to determine the actions to be allocated next,
and to estimate the distance from a given state to the goals. Un-
like other approaches, this estimation does not relax any of the
{:=, + =,− =, ∗ =, / =} effects, though the numeric condi-
tions are not considered in the calculus of the relaxed plans.

We are currently working on several parts of the implementation

of the algorithm to find plans with more actions in parallel. This will
lead to significant improvements in the quality of the plans. As dis-
cussed in section 6, there exist some limitations that require addi-
tional investigation, which is part of our future work.

8 ACKNOWLEDGMENTS

The work of the first author has been partially supported by the
Spanish MCyT under projects DPI2001-2094-C03-03 and TIC2002-
04146-C05-04, and by the project UPV-20020681.

REFERENCES
[1] A.L. Blum and M.L. Furst, ‘Fast planning through planning graph anal-

ysis’, Artificial Intelligence, 90, 281–300, (1997).
[2] M.B. Do and S. Kambhampati, ‘Sapa: a domain-independent heuristic

metric temporal planner’, in ECP-2001, pp. 109–120, (2001).
[3] M. Fox and D. Long, ‘The automatic inference of state invariants in

TIM’, JAIR, 9, 367–421, (1998).
[4] M. Fox and D. Long, ‘PDDL2.1: an extension to PDDL for expressing

temporal planning domains’, Tech. report, Univ. Durham, UK (2001).
[5] A. Garrido and E. Onaindı́a, ‘On the application of least-commitment

and heuristic search in temporal planning’, in IJCAI-2003, (2003).
[6] P. Haslum and H. Geffner, ‘Heuristic planning with time and resources’,

in ECP-2001, pp. 121–132, (2001).
[7] J. Hoffmann, ‘The Metric-FF planning system: Translating ”ignoring

delete lists” to numeric state variables’, JAIR, 20, 291–341, (2003).
[8] J. Köehler, ‘Planning under resource constraints’, in ECAI-98, pp. 489–

493, (1998).
[9] J. Porteous, L. Sebastia, and J. Hoffmann, ‘On the extraction, ordering,

and usage of landmarks in planning’, in ECP-2001, pp. 37–48, (2001).
[10] I. Refanidis and I. Vlahavas, ‘Multiobjective heuristic state-space plan-

ning’, Artificial Intelligence, 145(1-2), 1–32, (2003).
[11] D.E Smith and D.S. Weld, ‘Temporal planning with mutual exclusion

reasoning’, in IJCAI-99, pp. 326–337, (1999).

