
Planning with Numerical Expressions in LPG
Alfonso Gerevini Alessandro Saetti Ivan Serina

Dipartimento di Elettronica per l’Automazione, Universit à degli Studi di Brescia
Via Branze 38, I-25123 Brescia, Italy

{gerevini,saetti,serina }@ing.unibs.it

Abstract. We present some techniques for handling planning prob-
lems with numerical expressions that can be specified using the stan-
dard planning languagePDDL. These techniques are implemented
in LPG, a fully-automated planner based on local search that was
awarded at the third international planning competition (2002). First,
we present a plan representation for handling numerical expressions
called Numerical Action Graph (NA-graph). Then, we propose some
extensions ofLPG to guide a search process where the search states
are NA-graphs. Finally, we give some experimental results showing
that our techniques are very effective in terms of CPU-time or plan
quality, and that they significantly improve the previous version of
the planner.

1 Introduction

Local search is a powerful method for domain-independent planning,
as demonstrated by two planners awarded at the second and third
international planning competitions (IPC):FF [6] andLPG [5].

In this paper we present some extensions ofLPG for handling
planning problems involving numerical expressions specified with
the standard planning languagePDDL [3, 8]. In PDDL, numerical
expressions are constructed usingprimitive numerical expressions
and arithmetic operators. Numerical action preconditions usecom-
parison operators(such as<, ≤, =, ≥, and>) involving pairs of
numerical expressions. Numerical action effects useassignment op-
erators (such asassign , increase , decrease , scale-up , and
scale-down) for updating the value of some primitive numerical
expression. Primitive numerical expressions are functions involving
domain objects (e.g.,fuel(A1) , whose value represents the amount
of fuel available forA1).

The paper has three main contributions: (i) we present a plan repre-
sentation for handling numerical expressions, that we callNumerical
Action Graph(NA-graph); (ii) we propose new heuristic functions
guiding a local search process where the search states are NA-graphs;
(iii) we experimentally evaluate the proposed techniques using the
numerical test problems of the 3rd IPC.

The results of the 3rd IPC showed thatLPG is generally an effi-
cient planner [7]. However, often the metric version ofFF solved the
numerical test problems more quickly than the version ofLPG that
took part in the competition (we will call such a versionLPG-IPC3).
LPG-IPC3 does not include the neighborhood evaluation functions
presented in this paper. These new functions give a much more ac-
curate estimate of the quality of the elements in the neighborhood,
in terms of search cost to reach a valid plan, or execution cost of the
plan under construction.

The experimental analysis in this paper show that the new version
of LPG solves more than 93.2% of the numerical test problems of the

3rd IPC, whileLPG-IPC3 solves only 59.9% of them, and Metric-FF

68.5% of them. Moreover, in 40% of the problem tested, the CPU-
time required by the new version ofLPG is at least one order of mag-
nitude less than the CPU-time required byLPG-IPC3. The experimen-
tal results show also that the new version ofLPG generates plans that
generally have better quality than those produced by Metric-FF.

Section 2 introduces NA-graphs; Section 3 describes the basic
local search procedure, the new search neighborhood, the heuris-
tic evaluation of the search neighborhood, and a revised strategy to
restart the search for improving plan quality; Section 4 gives the re-
sults of our experimental analysis using the numerical domain vari-
ants of the 3rd IPC; finally, Section 5 gives the conclusions.

2 Numerical Action Graph

In this section, we present our plan representation to handle numeri-
cal domains, which is an extension of theaction graph[4], a partic-
ular subgraph of the well-known planning graph representation [1].

A numerical action graph (NA-graph)A is a directed acyclic
leveled graph alternating afact level and an action level. Fact
levels containpropositional nodesand numerical nodes, labelled
with propositions and numerical expressions, respectively. Numer-
ical nodes are of two types:numerical precondition nodes, labelled
with numerical comparisons, andnumerical fluent nodes, labelled
with primitive numerical expressions. Each numerical fluent node la-
belledx at a levell has a real value associated with it, that we denote
with NumV al(x, l). NumV al(x, l) represents the value of the nu-
merical primitive expressionx at the world state corresponding to
level l of A. The valueNumV al(x, l) of a numerical fluent nodex
at levell (with l > 1) is derived fromNumV al(x, l − 1) and the
numerical effects of the action at levell−1 (if any).NumV al(x, 1)
is the value ofx defined in the initial state of the planning problem.

Each action level contains oneaction nodelabelled with the name
of a domain action, and any number ofno-op nodes(defined as in
[1]). Any action node labelleda at a levell is connected by (i)pre-
condition edgesto the propositional/numerical nodes at levell repre-
senting the preconditions ofa, and (ii) byeffect edgesto the propo-
sitional/fluent nodes at levell + 1 representing the effects ofa. Each
effect edge to a numerical fluent node is labelled with an assignment
operator. Finally, ifa is an action node ofA, then the precondition
of a, the effect nodes ofa, and the involved numerical fluent nodes
are inA, together with the edges connecting them toa

We assume that the problem goals are the preconditions of a spe-
cial actionaend; while the initial facts and initial numerical fluent
values are determined by the effects of a special actionastart.

Figure 1 gives an example of NA-graph for a simple logistics
problem with numerical expressions (one airplane,A1, one package,

mutex

mutex

Level1

No-op No-op No-op

astart

fuel(A1)=0

fuel(A1) < 50fuel(A1)

Level2

fuel(A1)

No-op No-op

fuel(A1)

decrease(fuel(A1),100)

assign(fuel(A1),50)

Goal Level

refuel(A1,L1)

at(A1,L2)

at(A1,L1)

at(P1,L1)

at(P1,L2)

at(P1,L2)

at(P1,L2)

aend

fuel(A1) ≥ 100

-50

50

0

at(A1,L1)

fly(A1,L1,L2)

Figure 1. NA-graph for a simple logistics problem with numerical
expressions. Numerical fluent nodes are marked with the corresponding

values.fly(A1,L1,L2) blocks the propagation ofat(A1,L1) at level 2,
while refuel(A1,L1) blocks the propagation offuel(A1)< 50 at level 1.

P1, and two locations,L1 andL2). The value offuel(A1) is 0 at
level 1,50 at level 2 (because of the effectassign(fuel(A1),50)

of the actionrefuel(A1,L1)), and it is −50 at the goal level
(because of the effectdecrease(fuel(A1),100) of the action
fly(A1,L1,L2)).

A numerical action graph can contain someinconsistencies, i.e.,
an action with a precondition node that is notsupported. A numeri-
cal action graph without inconsistencies represents a valid plan, and
it is calledsolution graph. A propositional precondition nodeq at a
level l of a NA-graphA is supported if there is an action node (or
a no-op node) at levell − 1 of A connected toq by an effect edge.
A numerical precondition node at a levell is supported if the corre-
sponding numerical comparison is satisfied according to the values
of the numerical fluent nodes at levell. For example, the numeri-
cal precondition nodefuel(A1) < 50 at level 1 in Figure 1 is sup-
ported because the value assigned tofuel(A1) at level 1 is 0; on the
contrary,fuel(A1) ≥ 100 at level 2 is not supported, because of the
actionrefuel(A1,L1) at level 1 assigning50 to fuel(A1) .

The definition of NA-graph can be refined by including the (au-
tomatic) propagation of supported propositional nodes to the next
levels of the graph through the corresponding no-ops, until there is
an interfering actionblockingthe propagation, or the goal level has
been reached. A similar propagation can be done also for supported
numerical precondition nodes (for an example, see Figure 1).

In the rest of the paper we will use the following notion ofnumer-
ical state.

Definition (Numerical State) A numerical stateis a pair 〈I, N〉,
whereI is a set of propositional facts, andN is an assignment of
real values to the domain numerical fluents.

Each levell of a NA-graphA identifies a particular numerical state,
〈Il, Nl〉, obtained by applying to the initial numerical state of the
planning problem the actions inA up to levell−1, ordered according
to the corresponding level.

3 Local Search in the Space of NA-graphs

In this section, we present some techniques for searching in the space
of NA-graphs that are implemented in the new version ofLPG.

3.1 Background: Walkplan

The general scheme for searching a solution graph (a final state of
the search) consists of a local search process in the space of all NA-
graphs of the planning problem, starting from an initial NA-graph
containing onlyastart andaend.

Each basic search step selects an inconsistencyσ in the current
NA-graphA and identifies theneighborhoodN(σ,A) of A for σ,
i.e., the set of the NA-graphs obtained fromA by applying a graph
modification that resolvesσ, or that simplyhelpsto resolveσ. The el-
ements of the neighborhood are weighed according to anevaluation
functionestimating their quality, and an element with the best quality
is then considered as the next possible NA-graph (search state). The
quality of a NA-graph depends on the number of the inconsistencies
it contains, the estimated number of the search steps required to re-
solve them, and the overall execution or temporal cost (depending on
the plan metric specified) of the represented plan.

The search strategy used byLPG is Walkplan, a method similar
to the well-known procedureWalksat for solving propositional sat-
isfiability problems [9]. According toWalkplan, the best element in
the neighborhood is the NA-graph which has thelowest decrease of
quality with respect to the current NA-graph, i.e., it does not con-
sider possible improvements. This strategy uses anoise parameter
p. Given a NA-graphA and an inconsistencyσ, if there is a modi-
fication forσ that does not decrease the quality ofA, then the cor-
responding NA-graph is chosen as the next search state; otherwise,
with probabilityp one of the graphs inN(σ,A) is chosen randomly,
and with probability1− p the next NA-graph is chosen according to
the minimum value of the evaluation function.

3.2 Neighborhood and Heuristics for NA-graphs

The search neighborhoodN(σ,A) of a NA-graphA for the selected
inconsistencyσ is the set of NA-graphs that can be derived fromA
by removing the action node with preconditionσ or adding an action
node that ishelpful for σ. When we add an action node at a levell,
the nodes and edges at each levell′ ≥ l are shifted one level forward.
Similarly, when we remove an action node, the NA-graph is “shrunk”
by one level.

Definition (Helpful Action Node) Given an unsupported precondi-
tion nodeσ at a levell of the current NA-graphA, if σ is a propo-
sitional precondition, we say thata is a helpful action nodefor σ if
its insertion intoA at a leveli ≤ l makesσ supported; ifσ is a nu-
merical precondition node labelled (exp1,comp,exp2), we say thata
is a helpful action nodefor σ if its insertion intoA at a leveli ≤ l
decreases the gap between the values ofexp1 andexp2 at levell of
A with respect to comp.1

For example, consider the unsupported precondition (σ)
fuel(A1) ≥ 100 at level 2 of Figure 1. An action node with the
numerical effectincrease(fuel(A1),50) that is added at level
2 is helpful for σ, while such an action is not helpful if it is
added at level 1 (because of the effectassign(fuel(A1),50) of
refuel(A1,L1)).

The addition/removal of an action nodea at levell of A may re-
quire a revision of the values associated with the numerical fluents at
the next levels that are influenced by the numerical effects ofa. Es-
sentially, the algorithm for updating such values performs a forward

1 This definition is similar to the one formulated by Hoffmann in [6], except
that our approach handles both linear and non-linear numerical expressions.

EvalAdd(a)
Input: An action nodea that does not belong to the current NA-graph.
Output: A set of pairs of type(action, number of occurrences).

1. l = Level(a);
2. Il ← SupportedFacts(l);
3. Nl ← {NumV al(x, l) | x is a numerical fluent};
4. Rplan← RelaxedNumplan(Pre(a), 〈Il, Nl〉, ∅);
5. I+

l ← Il ∪ Add(a)− Threats(a);
6. N+

l ← UpdateNumVal(Nl, a);
7. Rplan← RelaxedNumplan(Threats(a), 〈I+

l , N+
l 〉, Rplan);

8. Rplan← Rplan ∪ {(a, T imes(a, g))};
9. return Rplan.

EvalDel(a)

Input: An action nodea that belongs to the current NA-graph.
Output: A set of pairs of type(action,occurrences).

1. l = Level(a);
2. Il ← SupportedFacts(l);
3. Nl ← {NumV al(x, l) | x is a numerical fluent};
4. Rplan← RelaxedNumplan(UnsupFacts(a), 〈Il, Nl〉, ∅);
5. return Rplan.

Figure 2. Algorithms estimating the addition/removal of an action nodea.

propagation starting from the effects ofa, and updating level by level
the numerical fluents froml + 1 up to the goal level.

The elements of the neighborhood are evaluated according to an
action evaluation functionE estimating the cost of adding (E(a)i)
or removing (E(a)r) an action nodea. ForSTRIPSdomains extended
with numerical expressions,E consists of two weighed terms, eval-
uating the search cost and the quality of the current partial plan:

E(a)i = α · SearchCost(a)i ± β · ExecCost(a)i,

E(a)r = α · SearchCost(a)r ± β · ExecCost(a)r.

The first term ofE estimates the increase of the number of search
steps needed to reach a solution graph; the second estimates the in-
crease of the plan execution cost. The coefficients of these terms,
which are automatically set by our planner, are used to normalize
them, and to weigh their relative importance. The sign of the second
term depends from the plan metric expression (more details on this
in Section 3.3).

Suppose that we are evaluating the addition ofa at levell of the
current NA-graphA. The terms ofE are heuristically estimated by
computing a relaxed planπ. π consists of an estimated minimal set of
actions to achieve the unsupported preconditions ofa and the setΣ
of the preconditions of other actions inA that would become unsup-
ported by addinga (because it would block the no-op propagation
currently used to support such preconditions).2 π is relaxed in the
sense that (i) it does not consider the negative interference with other
actions in the relaxed plan; (ii) the possible minimum and maximum
values of the involved numerical expressions aremonotonicallycom-
puted according to the actions in the relaxed plan; (iii) the compar-
isons of the numerical action preconditions are evaluated in a relaxed
way, using the estimated min and max values of the involved numer-
ical expressions. By monotonic computation of the min/max values
of a numerical fluentx we mean the following: if an action inπ in-
creasesx, we increase the max ofx; if an action inπ decreasesx,
we decrease the min ofx.

The relaxed subplan ofπ for the preconditions ofa is computed
from the numerical state〈Il, Nl〉. The relaxed subplan ofπ for
achievingΣ is computed from〈Il, Nl〉 modified by applying the ef-
fects ofa. This subplan can reuse any actiona′ in the other relaxed
subplanπ previously computed for the preconditions ofa. Note that,
in order to support a numerical precondition, it can be necessary to
use more than one action. For instance, if we havex = 0 in Nl, and

2 Note that inLPG-IPC3 Σ contains only propositional preconditions, while
hereΣ can contain numerical preconditions as well.

RelaxedNumplan(G, 〈Il, Nl〉, A)
Input: A set of goalsG, an initial numerical state〈I, N〉, a setA of pairs(a, t);
Output: A set of pairs{(a, t)} estimating the minimal set of actions with the relative

number of occurrences that are required for achievingG .

1. G← G− I; F ← I; Acts← A;
2. forall g ∈ G do
3. F ←

⋃
a∈ActsAdd(a);

4. 〈Vmin, Vmax〉 = ComputeMinMax(N, Acts);
5. if g 6∈ F andg is not satisfied usingVmin andVmax then
6. (b, tb)← ChooseAction(g);
7. Rplan← RelaxedNumplan(Pre(b), 〈I, N〉, Acts);
8. forall (a, t) ∈ Rplan such thata = b do
9. Rplan← Rplan− (a, t);
10. tb← tb + t;
11. Acts← Rplan ∪ {(b, tb)};
12. return Acts.

Figure 3. Algorithm for computing a relaxed plan achieving a set of action
preconditions from the numerical state〈I, N〉.

the only action modifyingx increases it by 10 units, then to support
x > 25 we need three of such actions. In the following, we indicate
t occurrences of an actiona with the pair(a, t).

The actions inπ are used to define a heuristic estimate of the ad-
ditional search cost that would be introduced by the new actiona
(SearchCost(a)). This estimate also takes account of the number of
supported preconditions that would become unsupported by adding
the actions inπ toA (because of their negative or numerical effects).
The set of these subverted preconditions is denoted byThreats(a).
For example, ifa has the numerical effectdecrease(x,50) and
NumV al(x, l) = 120, then the supported numerical precondition
x < 100 at level l becomes unsupported when addinga at level
l. Note thatLPG-IPC3 does not include numerical preconditions in
Threats(a).

ExecCost(a) is an estimate of the additional execution cost that
would be required to satisfy the preconditions ofa, and it is derived
by summing the execution cost of eacha′ in π (Cost(a′)), multiplied
by the corresponding number of occurrences.3 More formally,

SearchCost(a)i =
∑

t s.t.(a′,t)∈π

t +
∑

a′s.t.(a′,t)∈π

|Threats(a′)|,

ExecCost(a)i =
∑

a′s.t.(a′,t)∈π

Cost(a′) · t,

where the relaxed planπ is computed byEvalAdd. The costs for
E(a)r are defined in a similar way, and are computed byEvalDel.
Figure 2 shows the main steps ofEvalAdd andEvalDel, that we now
describe.

The relaxed subplans used inEvalAdd andEvalDel are computed
by RelaxedNumplan (see Figure 3). Given a setG of (propositional
or numerical) goal facts and a numerical state〈Il, Nl〉, RelaxedNum-
plan computes an estimated minimal set (Acts) of actions required
to reachG from 〈Il, Nl〉. SupportedFacts(l) denotes the set of
propositional facts that are true after executing the actions inA at lev-
els precedingl from the initial numerical state〈I1, N1〉; Pre(a) the
preconditions ofa; Add(a) the propositional effects ofa; Vmin and
Vmax the sets of the min and max values of the numerical fluents, re-
spectively. Such values are (monotonically) computed byComputeM-
inMax from the values ofNl by applying the numerical effects of the
actions inActs.

After having computed the numerical state〈Il, Nl〉, in step 4Eval-
Add usesRelaxedNumplan to compute a relaxed subplan (Rplan)
for achieving the preconditions of the new actiona from 〈Il, Nl〉.
Steps 5 updates the propositional facts ofIl using Add(a) and
Threats(a). In step 6,UpdateNumVal updates the valuesNl of the
numerical fluents using the numerical effects ofa. Step 7 computes

3 LPG pre-computes the action costs using the plan metric specified in the
problem description (for more detail see [5]).

a relaxed plan forThreats(a), possibly reusing the actions form-
ing the previously computed relaxed subplan. Finally, step 8 adds
the pair(a, T imes(a, g)) to π, whereTimes(a, g) is the minimum
number of occurrences ofa required to support the preconditiong
under consideration in the current search step.

EvalDel is simpler thanEvalAdd, because the only new inconsis-
tencies that can be generated by removinga from the current NA-
graph are the precondition nodes supported bya that become un-
supported.UnsupFacts(a) denotes the set of these nodes. Step 4
computes a relaxed plan forUnsupFacts(a) from the numerical
state〈Il, Nl〉 computed by steps 2 and 3.

The set of pairs(action, number of occurrences)returned byRe-
laxedNumplan is derived by computing a relaxed plan (Rplan) for
G, starting from a possibly non-empty input set of pairs (A) that
can be reused to achieve the action preconditions or goals of the re-
laxed problem.RelaxedNumplan constructsRplan through a back-
ward process where the pair chosen to achieve a (sub)goalg is a
pair (b, T imes(b, g)) obtained by combining the following require-
ments: (1)b is an helpful action forg; (2) all preconditions ofb are
reachable from〈Il, Nl〉; (3) reachability of the preconditions ofb
requires a minimum number of actions, estimated as the maximum
of the heuristic number of actions required to support each precon-
dition p of b at level l (Num acts(p, l)); (4) b subverts the mini-
mum number of supported precondition nodes inA (Threats(b));
(5) b is applied the minimum number of times required to satisfy
g (Times(b, g)). More precisely,ChooseAction(g) returns a pair
(b, T imes(b, g)) such thatb is an action satisfying

ARGMIN
{c∈Ag}

{(
MAX

p∈P re(c)−F
Num acts(p, l)

)
+ |Threats(c)|+ Times(c, g)

}
,

whereF is the set of the (positive) effects of the actions currently in
Acts; Ag is the set of the actions with effectg (if g is a propositional
precondition) or with an effect that reduces the gap in the numerical
comparison ofg (if g is a numerical precondition). A “relaxed” check
of such a reduction is done using the values ofVmin andVmax. For
instance, suppose thatg is x > y , that according toVmin y = 25,
and that according toVmax x = 15. An action with an effect assign-
ing 10 tox does not belong toAg, while an action assigning 20 tox
belongs toAg.

Num acts(p, l) is computed byreachability analysisusing a
polynomial algorithms similar to the one proposed in [5]. The main
differences, that for lack of space here we do not describe in de-
tail, concern numerical preconditions. InLPG-IPC3, the reachability
analysis simply ignores the numerical preconditions of the actions
examined, while the new version of the planner treats them as well.
Moreover, inLPG-IPC3, theNum acts-value of every unsupported
numerical precondition is always 1, while in the new version it is
estimated more accurately.

3.3 Search Restarts for Improving Plan Quality

LPG produces a succession of valid plans obtained by appropriately
restarting the search when it finds a plan. Each plan is an improve-
ment of the previous ones in terms of its quality. The first plan gen-
erated is used to initialize a new search for a second plan of better
quality, and so on. This is a process that incrementally improves the
quality of the plans, and that can be stopped at any time to give the
best plan computed so far. Each time we start a new search, some
inconsistencies are forced in the NA-graph representing the best plan
Π computed so far, and the resulting NA-graph is used to initialize a
new search.

For plan metric expressions requiringminimizinga numerical ex-
pression,LPG removessome actions fromΠ, preferring those with

Problems LPG-speed LPG-quality
Domain solved better worse better worse

LPG FF thanFF thanFF thanFF thanFF

Numeric
Depots 21 19 13 8 15 1
DriverLog 20 16 9 11 16 0
Rovers 20 9 11 7 0 0
Satellite 19 13 9 10 13 0
Settlers 11 4 9 0 0 2
ZenoTravel 20 20 1 18 15 4
HardNumeric
DriverLog 20 16 10 9 16 0
Satellite 20 14 6 14 14 0
Total 93.2% 68.5% 42% 47.5% 83.2% 5.9%

Table 1. Summary of the comparison betweenLPG and Metric-FF in terms
of number of problems solved, CPU-time and plan quality.

high execution costs. For plan metric expressions requiringmaximiz-
ing a numerical expression,LPG addssome expensive actions toΠ.
The “HardNumeric” variant ofSatellite used in the 3rd IPC is
an example of domain requiring maximizing a numerical expression.

In LPG-IPC3, both the two terms of the evaluation functionE are
positive quantities, and the planner is not capable of finding plans
of good quality for maximization problems. In the new version of
LPG, the sign of the term for the execution cost can be either posi-
tive or negative. Specifically, it is positive when the planner tries to
minimize the plan metric, and it is negative when it tries to maxi-
mize it. This sign is automatically set, and allowsLPG to find good
quality plans for both minimization and maximization problems. In
particular, as we will show in the next section, by appropriately set-
ting the sign of the execution cost and using the simple restart strat-
egy introduced above,LPG solves all problems of the HardNumeric
Satellite domain very efficiently in terms of plan quality.

4 Experimental Results

The techniques presented in the previous sections are implemented
in a new version ofLPG. In this section, we give some experimen-
tal results illustrating the performance ofLPG using theNumeric
and HardNumeric variants of the 3rd IPC test problems. These
problems belong to the domainsDepots , DriverLog , Rovers ,
Satellite , Settlers andZenotravel .4

The results forLPG correspond to median values over five runs
for each problem considered. The performance ofLPG was tested
in terms of both CPU-time required to find a solution (LPG-speed)
and quality of the best plan computed (LPG-quality), using at most 5
CPU-minutes.5

LPG-IPC3 does not include the extension of the neighborhood eval-
uation for handling numerical expressions that we have presented.
In particular, in that version of the planner, the heuristic evaluation
of each NA-graph in the neighborhood simply ignores the numer-
ical preconditions thatbecomeunsatisfied as a negative side effect
of removing the inconsistency under consideration. (E.g., if we add
an actiona at a levell of the current NA-graphA, anda has the
numerical effectdecrease(x,50) , it could be that the numerical
preconditionx > 60 of another action at a level afterl becomes un-
supported.) Moreover,LPG-IPC3 does not consider numerical pre-
conditions when choosing the actions forming the relaxed plans.

The new heuristic functionsEvalAdd, EvalDel, andRelaxedNum-
plan introduced in this paper lead to significant improvements of
the performance ofLPG. The percentage of the numerical problems
solved byLPG-IPC3 is 59.9%, while this percentage with the new ver-
sion ofLPG is 93.2%; the percentage of the problems where the new

4 For a description and formalization of these domains, see
www.dur.ac.uk/d.p.long/competition.html .

5 All tests were conducted on a PIII Intel 866 Mhz with 512 Mbytes of RAM.

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12 14 16 18 20

Rovers-NumericMilliseconds

LPG-speed (20 solved)
LPG-IPC3-speed (17 solved)
Metric-FF (9 solved)
MIPS (8 solved)

 10

 100

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10 12 14

Settlers-NumericMilliseconds

LPG-speed (11 solved)
LPG-IPC3-speed (0 solved)
Metric-FF (4 solved)
MIPS (1 solved)

 10

 100

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10 12 14 16 18 20

Satellite-HardNumericMilliseconds

LPG (Speed) (20 solved)
MIPS (20 solved)

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14 16 18 20

Rovers-NumericQuality

LPG-quality (20 solved)
LPG-IPC3-quality (17 solved)
Metric-FF (9 solved)
MIPS (8 solved)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 2 4 6 8 10 12 14

Settlers-NumericQuality

LPG-quality (11 solved)
LPG-IPC3-quality (0 solved)
Metric-FF (4 solved)
MIPS (1 solved)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2 4 6 8 10 12 14 16 18 20

Satellite-HardNumericQuality

LPG (Quality) (20 solved)
MIPS (20 solved)

Figure 4. Number of problems solved and performance ofLPG-speed (upper plots) andLPG-quality (bottom plots) compared with Metric-FF, MIPS and
LPG-IPC3 in Rovers Numeric,Settlers Numeric, andSatellite HardNumeric. On the x-axis, we have problem names indicated with numbers. On the

y-axis, we have CPU-time (log scale) or plan quality measured using the metric specified in problem formalizations. The plan metrics forRovers and
Settlers require to minimize a numerical expression, while the plan metric of theSatellite problems require to maximize a numerical expressions.

version ofLPG is at least one order of magnitude faster thanLPG-
IPC3 is about 40%, while this percentage forLPG-IPC3 is 0%; finally,
in terms of plan quality, the new version ofLPG performs generally
better thanLPG-IPC3.

Table 1 compares the performance ofLPG and Metric-FF [6]. In
terms of CPU-time,LPG and Metric-FF perform similarly. The per-
centage of the problems where our planner is faster is 42%, while
for Metric-FF this percentage is 47.5%. However, the percentage of
the problems whereLPG is at least one order of magnitude faster is
27.8%, while for Metric-FF this percentage is only 6.2%. Moreover,
the percentage of the problems solved is 93.2% forLPG, 68.5% for
Metric-FF. In terms of plan quality,LPG performs generally better
than Metric-FF: the percentage of the problems whereLPG produces
a plan of better quality is 83.2%, while for Metric-FF this percentage
is only 5.9%.

Figure 4 shows the performance of the new version ofLPG

compared with Metric-FF, MIPS[2] and LPG-IPC3 in three do-
mains: NumericRovers , NumericSettlers , and HardNumeric
Satellite . The Rovers and Settlers problems require to
minimize a numerical expression, while theSatellite prob-
lems require to maximize a numerical expression.LPG solves all
20 Rovers problems, Metric-FF 9, MIPS 8, LPG-IPC3 17 (but it is
generally slower than the new version ofLPG – up to two orders of
magnitude). The quality of the plans found byLPG for theRovers
problems is better than or equal to the quality of the plans generated
by the other planners. InSettlers , LPG solves 11 of the 20 test
problems, Metric-FF 4, MIPS 1, andLPG-IPC3 0.

Regarding theSatellite problems, it should be noted that they
admit, as special solutions, plans of quality zero. However, such
plans are useless and not interesting, given the maximization goal of
the problems. Since Metric-FF solves all these problems producing
plans with quality zero, we have not considered it for this domain.
MIPS was the only planner of the 3rd IPC capable of finding some
plans with quality higher than zero forSatellite HardNumeric.
However, in general, the quality of the plans found by the new ver-

sion ofLPG is much better than the quality of the plans generated by
MIPS.

5 Conclusions

The capability of planning in domains involving numerical expres-
sions is very important for addressing real-world problems. In this
paper, we have presented the graph-based representation used byLPG

for handling plans involving numerical quantities, and some new lo-
cal search techniques for planning using this representation.

Experimental results obtained using the test problems of the 3rd
planning competition show that our system performs very well with
respect to Metric-FF andMIPS, and it significantly improves the ver-
sion ofLPG that took part in the competition.

ACKNOWLEDGEMENTS

Alessandro Saetti thanks the European Coordinating Committee for
Artificial Intelligence for a travel grant.

REFERENCES
[1] Blum, A., and Furst, M. 1997. Fast planning through planning graph

analysis.Artificial Intelligence90:281–300.
[2] Do, M., and Kambhampati, S. Sapa: A scalable multi-objective heuristic

metric temporal planner. JAIR 20:155–194. 2003.
[3] Fox, M., and Long, D. 2001. PDDL2.1: An extension to PDDL for ex-

pressing temporal planning domains. JAIR 20:61–124.
[4] Gerevini, A., and Serina, I. 2002. LPG: A planner based on local search

for planning graphs with action costs. InProc. of AIPS-02.
[5] Gerevini, A., Saetti, A., and Serina, I. 2003. Planning through Stochastic

Local Search and Temporal Action Graphs.JAIR20:239–290.
[6] Hoffmann, J. 2003. The Metric-FF Planning System: Translating “Ignor-

ing Delete Lists” to Numeric State Variables.JAIR20:291–341.
[7] Long, D., and Fox, M. 2003. The 3rd international planning competition:

Results and analysis.JAIR20:1–59.
[8] McDermott D. 2000. The 1998 AI planning systems competition.AI

Magazine21(2):35–56.
[9] Selman, B.; Kautz, H.; and Cohen, B. 1994. Noise strategies for improv-

ing local search. InProc. of AAAI-94.

