
Assessing the Bias of Classical Planning Strategies
on Makespan-Optimizing Scheduling

Federico Pecora1,2 and Riccardo Rasconi1,3 and Amedeo Cesta1

Abstract. This paper investigates a loosely coupled approach to
planning and scheduling integration, which consists of cascading a
planner and a scheduler. While other implementations of this frame-
work have already been reported, our work aims at analyzing the
structural properties of the scheduling problem which results from
the planning component, focusing on the bias produced by different
planning approaches in the light of makespan-optimizing schedul-
ing.

1 Introduction

Research in scheduling has reached a level of maturity which has en-
abled it to effectively leap into the industrial realm. Today, schedul-
ing components are employed to solve real-world problems. Yet it is
interesting to notice that in most of these applications the tasks to be
scheduled and the causal constraints among them are basically pre-
determined. This trend is also present in the research arena, where
scheduling problems have traditionally been generated for perfor-
mance testing. This article is motivated by our belief that many in-
teresting applications will require the automated generation of the
causal structure of scheduling problems. This can be straightfor-
wardly recognized as a form of planning. As a consequence, the first
step in this direction is to employ a general purpose planner to do the
job.

We address this issue by analyzing the properties of loosely-
coupled, component-based planning and scheduling (P&S) integra-
tion, with a strongly separating assumption: the causal constraints
of the scheduling problem are irrevocably decided by the planner,
and the scheduler is responsible for producing an optimized instan-
tiation in time of the tasks. This assumption on one hand limits the
mechanism by which domain knowledge is shared between the two
reasoning components to one instance of information flow, and on
the other partitions the competences of the two reasoners. Given this
“one-pass” assumption, we evaluate how the quality of the output is
affected by the choice of the planner, where the makespan is a mea-
sure of schedule quality, as is common practice in scheduling.

2 Loosely-Coupled Planning & Scheduling
Integration

In an integrated P&S context, time and resource constraints as well
as causal dependencies are contemplated in the initial problem defi-
nition. Every operator is inherently associated to a time duration and

1 Institute for Cognitive Science and Technology – Italian National Research
Council – Viale Marx 15, I-00137 Rome, Italy – email:{fpecora, rasconi,
a.cesta}@istc.cnr.it

2 PhD student in Computer Science Engineering at the University of Rome
“La Sapienza”.

3 PhD student in Computer Science Engineering at the University of Genoa.

requires a certain quantity of consumable multi-capacitated resources
that ensure its executability.

The general schema we will use in this investigation is as follows.
A causal model of the environment is given as input to a planner,
i.e. the domain representation and the problem definition, both ex-
pressed in a STRIPS-like formalism. This model does not contem-
plate time and resource related constraints, which are accommodated
after the planning procedure has taken place. In order to produce a
problem specification which can be reasoned upon by the schedul-
ing procedure, the Partial Order Plan (POP) produced by the planner
is integrated with time and resource related information by means
of a plan adaptation procedure. This procedure produces a minimal-
constrained de-ordering [1] of the POP and integrates it with time and
resource related information to produce what we shall call a com-
pletePOP. In more formal terms:

Definition 1. A completePOPP is a quintuple〈T ,P,R, C,D〉
where

• T = {T1, . . . , Tn} ∪ {T0, Tn+1} is the set oftaskswhich corre-
spond to then activities in the POP produced by the planner;T0

andTn+1 are calledsourceandsink activities;
• P is a set ofprecedence constraintsbetween the tasks, whereTi ≺

Tj means that taskTi must be completed before the execution of
taskTj can begin;

• R = {R1, . . . , Rm} is a set ofresources; each taskTi ∈ T uses
a setR ⊆ R of resources, which is expressed with the notation
[Ti] = R.

• C = {C1, . . . , Cm} are thecapacitiesof the resource;
• D = {D1, . . . , Dn} is the set of taskdurations.

According to the definition above, a completePOP coincides with
a Resource Constrained Project Scheduling Problem (RCPSP) [3]
and can be visualized in the form of a precedence graph, as shown
in the example in figure 1, where edges are simple precedence con-
straints. This particular problem contains 11 tasks (plus source and
sink), for which a partial order is specified by means of precedence
constraints. The problem contains two binary resources,R1 andR2.

3 Planning Strategies

By observing the precedence graph produced by the plan adaptation
procedure, one extremely important characteristic for our purposes
can be recognized as thedegree of concurrency(or parallelism).
The relationship between this characteristic of the precedence graph
and the quality (in terms of makespan) of the final schedule is quite
straightforward. In fact, the makespan of the schedule is related to
thecritical path through the causal network of tasks, where by criti-
cal path we intend the sequence of tasks which determines the short-
est makespan of the schedule, i.e. the path that runs from the source

R2

R1

T0

T1 T2

T3

T4

T5

T6

T12

T11

T10

T9

T8

T7

Figure 1. A completePOP with 11 tasks in whichR = {R1, R2},
[T1] = [T2] = [T3] = [T4] = [T5] = [T6] = {R1}, and

[T7] = [T8] = [T9] = [T10] = [T11] = {R2}. The source and sink
tasks areT0 andT12.

to the sink node such that if any activity on the path is delayed by
an amountt, then the makespan of the entire schedule increases by
t. Obviously, if the durations of the tasks were all the same, then
the critical path would coincide with the longest path through the
graph. This is in general not true since the path which determines
the makespan of the entire schedule may be shorter than the longest
path through the graph. Nevertheless, we can assume that the critical
path is usually one of the longest paths through the graph4. Given
our main goal, which is to obtain a schedule with a short makespan,
the previous considerations naturally lead us to prefer, among the ex-
isting planners, those which are more likely to produce plans which
minimize the longest path through the graph. The aim of our analy-
sis is to reveal how different planning paradigms, namely Heuristic
Search (HS) planning and Planning Graph (PG) based planning, be-
have in this loosely coupled framework.

PG-based planners work by alternating one step of graph expan-
sion to a search on the planning graph5 for a valid plan, the search
occurring at every level of expansion (starting when the goals appear
non-mutex for the first time). This, together with the disjunctive na-
ture of the search space [10], makes PG-based planners optimal with
respect to the number of execution steps. This guarantees that these
planners find the shortest plan among those in which independent
actions may take place at the same logical step [2].

The optimality of PG-based planners is precisely what makes them
best suited with respect to the criteria described above for loosely-
coupled P&S integrations. In fact, the length of a POP in terms of
execution steps is related with the critical path of the corresponding
completePOP as follows:

Theorem 1. The number of execution steps in a plan produced by
a PG-based planner coincides with the length of the longest path
through the relative completePOP.

Proof. The proof of this theorem equates to proving that if the num-
ber of steps in the POP iss, then the length of the longest path is both
at leastandat mosts.

To prove that the lengthl of the longest path cannot be greater
thans, it suffices to observe that ifl > s, then there would be at least
one sequence ofs + m actions in the plan which belong to different
logical steps, which in turn would mean that no valid plan of length
s exists. This contrasts with the validity of the POP generated by the
planner, since the shortest possible solution would be longer thans.

4 This assumption is realistic when there are no tasks in the problem speci-
fication whose duration is dominating, i.e. if the durations of all tasks are
comparable.

5 This category includes all those planners which maintain a planning graph
representation of the search space, and does not refer to the particular solu-
tion extraction algorithm they employ (exploring the planning graph, cast-
ing it as a SAT problem and so on). The details of the search do not affect
the generality of the observations we make here.

The fact that the longest path cannot be shorter that the length of
the POP can be deduced by observing that if indeedl < s, then
it would be possible to eliminate at least one extra precedence con-
straint in the completePOP, which contrasts with the fact that the
completePOP is a minimal-constrained de-ordering of the POP.

In one statement, what we have said shows that PG-based plan-
ners, by minimizing the critical path, in fact maximize concurrency
with respect to the causal model of the problem. Indeed, whereas any
type of planner may be used to produce the initial POP, the quality of
the final solution is negatively affected by the non-optimality (with
respect to the number of execution steps) of the generic planner.

3.1 A General Example

In order to confirm the previous statement experimentally, we have
created a benchmark PDDL domain which produces completePOPs
with high levels of concurrency by encapsulating the notion ofex-
ecuting agentand thread of execution. Concurrency is obtained by
inducing the presence of multiple threads (i.e. multiple agents) in
the POP. Having augmented the PDDL language with some sim-
ple extensions to allow the specification of durations and resource
usage for the operators (these directives are ignored by the planner
and integrated into the POP to form the completePOP), the general
structure of a problem which leads to threaded completePOPs is as
shown in figure 2, where:capacity 0 denotes an object which
is not a resource. Given this structure, the number of threads in the
completePOP is determined by the number of objects with non-zero
capacity, i.e.|{A1, . . . , An}|, and the resource usage of each task is
given by the:uses clause in the abstract operator specification.

(define (domain . . .) . . .
(:action op

:parameters (?a - agent . . .)
:precondition (. . .)
:effect (. . .)
:uses (?a USAGE)
:duration DUR) . . .)

(a)

(define (problem . . .) (:domain . . .)
(:objects

A1, . . ., An - agent :capacity CAP
B1, . . ., Bm - type :capacity 0 . . .)

(:init . . .)
(:goal . . .))

(b)

Figure 2. General structure of augmented PDDL domain (a) and
problem specifications (b) which lead to completePOPs with

multiple threads.

We have chosen to impose some simplifying restrictions on the
completePOPs: first, we deal only with binary resources (Ci =
1, ∀Ci ∈ C); second, all tasks use exactly one resource (|[Ti]| =
1, ∀Ti ∈ T). As a consequence, the value ofCAP in figure 2(b)
must be1 or 0 for all objects, and each operator must have at least
and not more than one:uses clause. In terms of the resulting com-
pletePOP, this leads to the following formal definition of thread:

Definition 2. A threadΦk of a completePOPP = 〈T ,P,R, C,D〉
is a set of tasks{T1, . . . , Tl} ⊆ T such that[Ti] = {Rk} ∈
R, ∀Ti ∈ Φk.

The threaded structure of the completePOP is achieved by instanti-
ating theAi objects as agents, and specifying that all operators are
parametric with respect to the executing agent. Given the resource ca-
pacity constraint in the completePOP, each agent can carry out only
one action at a time (which is enforced during scheduling). More
formally [6]:

Definition 3. A set of tasksS ⊆ Φk is a contention peakiffP
Ti∈S |[Ti]| > Ck ∧ @ Ti, Tj ∈ S s.t.{Ti ≺ Tj} ∈ P, whereP

is the transitive closure ofP .

Definition 4. A minimal critical setis a contention peak such that
any proper subset of its activities has a combined resource require-
ment< Ck.

In more simple terms, a contention peak is a set of activities which
simultaneously require a resource (in order for the tasks to be po-
tentially simultaneous there must not be any precedence constraints
among them in the transitive closure of the precedence graph). A PG-
based planner not only allows the execution of one agent’s tasks in a
single step, but it maximizes this feature (by maximizing the size of
the contention peaks), as shown in theorem 1. This behavior explains
why PG-based planners are particularly suited for loosely coupled
P&S integration: contention peaks are precisely what any profile-
based makespan-optimizing scheduler works on in order to obtain
shorter makespans — in this respect, PG-based planners never im-
pose over-committing constraints, the insertion of which is delegated
to the resource reasoning module.

3.2 Experimental Results

Figure 3 shows the makespan-optimizing performance obtained with
two different component based implementations of the loosely cou-
pled framework: one employsBLACK BOX [11], a PG-based planner
which combines the efficiency of planning graphs with the power
of SAT solution extraction algorithms, while the other uses theFF
planning system [9], a heuristic search planner which was Top Per-
former in the Strips Track of the3rd International Planning Compe-
tition. Both instantiations of the framework employO-OSCAR [4],

make-
span

problem

BB + PAP + O-Oscar

FF + PAP + O-Oscar

500450400350300250200150100500

1200

1000

800

600

400

200

0

Figure 3. Comparing the makespan obtained by loosely coupling
BLACK BOX andFF with O-OSCAR on 500 randomly generated

multi-agent problems (PAP = plan adaptation procedure).

a profile-based [5] CSP scheduler which implements an iterative im-
provement algorithm [6]. The benchmark used for these tests consists
of 500 randomly generated problems in an “artificial” multi-agent
domain which adheres to the general PDDL structure shown above.

While both planners obtain similar results, as expected the
BLACK BOX-based integration yields shorter makespans on the over-
whelming majority of instances. Since theO-OSCARscheduler is not
systematic, the computed makespans are not necessarily the shortest
possible.

It is even more interesting to notice, though, that innoneof the in-
stances doFF-derived completePOPs yield shorter makespans than
the BLACK BOX-derived problem instances. This is somewhat sur-
prising given the non-complete nature of the scheduling algorithm.
While it is true that theoptimalmakespan of a completePOP obtained
throughBLACK BOX is shorter or equal to that of the equivalent com-
pletePOP computed byFF, it is not so obvious that the strongly non-
systematic sampling strategy employed byO-OSCAR never“stum-
bles upon” a more optimized solution when solving anFF-derived

scheduling problem. Indeed, this is a planner which, according to the
HS planning paradigm, employs powerful heuristics to drastically
prune the search space. The resulting net effect is a different causal
structure of the scheduling problem instance. As we will see, the dif-
ference between the two types of completePOPs plays a major role in
the distribution of the solutions’ makespans, a characteristic which is
strongly related to how easy it is to perform makespan optimization
on a completePOP. In order to explain this concept fully, we must
first focus on the structure of completePOPs and its role in makespan
optimization, which is the topic of the following section. The issues
we have put forth here will be further analyzed at the end of the next
section.

4 The Role of Threads in Makespan Optimization

Generally speaking, a makespan-optimizing scheduler like the one
used in the experiments shown above works according to an iter-
ative procedure. The solving core is run according to makespan-
optimization criteria so as to eventually obtain multiple, increasingly
better solutions. Some degree of randomization is injected in the it-
eration to retain the ability to restart the search in the event that an
unresolvable conflict is encountered, without incurring into the com-
binatorial overhead of a conventional backtracking search.

In the experiments shown in the previous section, some problems
required very few iterations for the solution to converge to a short
makespan, while others induced the scheduler to perform many runs
before terminating. From a scheduling point of view, it is clear that
the most challenging problems are prone to high degrees of optimiza-
tion, a characteristic which is intrinsic to the structure of the com-
pletePOPs. In our simplified context with the single resource usage
constraint for each task and the binary nature of the resources, these
structural properties can be captured quite easily. As we will show
in the remainder of this article, it is possible to identify the param-
eters which determine how trivial a problem is from the makespan
optimization point of view.

4.1 Weak and Strong Coupling

Let us start with the example shown in figure 1. A solution to this
scheduling problem can be obtained by sequencing all those tasks
which produce resource contention: the tasks{T3, T4, T5} cannot be
executed together because they all useR1 (which has capacity 1),
and the same holds for tasks{T8, T9, T10}, which use resourceR2.
Therefore, any instantiation in time in which these tasks are over-
lapping violates the resource capacity constraints, and is thus not an
admissible solution. Figure 4 shows two solutions for this problem
in the case thatDi = 1, ∀Di ∈ D.

time0 1 2 3 4 5 6 7

b)

a)

T1

T7

T2

T9

T3

T8

T4

T10

T5

T11

T6

T11T10

T3 T6T5T4T2

T8T9

T1

T7

Figure 4. Two admissible solutions (schedules) for the
completePOP shown in figure 1 forDi = 1, ∀Di ∈ D: solutiona
has makespan 7, while solutionb can be executed in 6 time units.

The fact that the problem admits solutions with different
makespans is due to the precedence constraintT3 ≺ T10. Indeed,
if this constraint were not present, the problem could be decom-
posed into two disjoint scheduling problems, and the global solution

could be obtained by simply executing the two solutions simultane-
ously. In turn, the two scheduling problems so obtained would not
bemakespan-optimizable, since all the tasks use the same binary re-
source (R1 or R2) and thus must be serialized in the solution. In
cases like this, we say that the scheduling problem is composed of
disjoint threads. More precisely:

Definition 5. Two threadsΦk and Φl6=k are couplediff ∃ Ti ∈
Φk, Tj ∈ Φl s.t. Ti ≺ Tj ; if Φk and Φl are not coupled, they are
said to bedisjoint.

It is rather intuitive that if all the threads in a given single-capacity
completePOPP are disjoint, then all its solutions (schedules) will
have the same makespan (SOL∗(P) ≡ SOL(P), i.e. the set of
optimal solutions coincides with the set of all solutions). Indeed, a
problem in which the resource conflict resolution strategy can yield
more or less optimized solutions (SOL∗(P) ⊂ SOL(P)) can be
achieved only if there are precedence constraints whichcouplethe
threads, making the execution of one agent’s tasks dependent on the
behavior of another agent. More formally:

Definition 6. Two threadsΦk and Φl6=k are strongly coupledif
∃ Ti ∈ S ⊆ Φk s.t.{Ti ≺ Tj} ∨ {Tj ≺ Ti} ∈ P ∧ Tj ∈ Φl,
whereS is a contention peak.

Definition 7. Two threadsΦk and Φl6=k are weakly coupledif all
inter-thread constraints are bewteen tasks which do not belong to
contention peaks.

In more simple terms, weakly coupled threads can be connected
only by constraints between tasks which do not belong to contention
peaks. It is easy to show that the absence of strongly coupled threads
is the structural trademark of trivial problems from a makespan opti-
mization point of view. In fact:

Theorem 2. A completePOPP = 〈T ,P,R, C,D〉 whose threads
are at most weakly coupled is not makespan-optimizable.

Proof. As we have already said, if all threads are disjoint, then all
solutions are optimal since the problem can be decomposed into|R|
problems whose solutions are all completely sequential.

Let us now suppose thatP contains weakly disjoint threads, and
that it is also makespan-optimizable, i.e.SOL∗(P) ⊂ SOL(P). As
a consequence, there exists a minimal critical setS = {Ti, Tj} ⊆
Φk whose possible serializations have different effects on the total
makespan of the solution. LetTi ≺ Tj lead to a solutionSOL1

with makespanm1, Tj ≺ Ti lead toSOL2 with makespanm2,
and let us suppose thatm1 < m2. As a consequence,Ti must be-
long to the critical path inSOL1 andTj obviously does not belong
to the critical path inSOL1 (as this would makem1 = m2). Let
the critical path forSOL1 be Ti ≺ Th ≺ . . . ≺ Tn+1. SinceTh

may occur concurrently withTj , Th andTj must belong to different
threads, hence the necessary presence of the inter-thread constraint
Ti ≺ Th ∈ Φl6=k, which contrasts with the hypothesis that all threads
are at most weakly coupled.

The previous theorem states that if in a completePOP there are no
inter-thread precedence constraints between tasks which belong to
contention peaks then the problem is not makespan-optimizable. This
constitutes only a necessary condition for makespan-optimizability.
In fact, even if a completePOP does indeed contain such constraints,
it still may be non-optimizable.

4.2 The Face of Strong Coupling

It is experimentally verifiable that the presence of strong-coupling
inter-thread constraints not only makes it possible for a completePOP

to be makespan-optimizable, but the degree of optimizability of
the completePOP depends rather strongly on the density of these
constraints. Given a completePOPP = 〈T ,P,R, C,D〉, let the
set of strong-coupling inter-thread constraints bePs ⊆ P . The ρ
curve in figure 5 shows the density of strong-coupling inter-thread
links |Ps| / |P| in the 500 completePOPs generated for the problems
shown earlier.

problem

%
γ
ρ

500450400350300250200150100500

100

80

60

40

20

0

Figure 5. The concentration of strong-coupling inter-thread
precedence constraintsρ = |Ps| / |P|, is directly responsible for the

degree of optimizability of a completePOPγ = S+/S.

In general, an optimizable scheduling problem admits solutions
with a makespan in a bounded interval[lb, ub]. The width of this in-
terval tells ushow much a completePOP can benefit from makespan
optimization during scheduling: on one hand, we have completePOPs
which admit only one makespan and thuscannot be optimized(see
theorem 2); on the other hand, a very different category of com-
pletePOP is one whichretains a higher degree of optimizability, thus
admitting a range of possible schedules with different makespans.

Enumerating all the solutions for a given completePOP is clearly
unfeasible. Nonetheless, an estimate of how the makespans of the so-
lutions are distributed can be obtained by sampling a set of solution
extraction attempts on the completePOP and calculating the percent-
age of solutions with different makespans the scheduler is capable of
finding. This estimate can be obtained as follows: each completePOP
is solved by an optimizing scheduler, and the number of solutions
with different makespansS+ is normalized over the total number of
solutions found for that problemS, yielding theγ = S+/S curve
shown in the plot6.

The next question we want to answer is the following: what is
the causal characteristic of the planning problem which induces
high densities of strong-coupling inter-thread constraints in the com-
pletePOP? In our agentified domain, two tasks which belong to dif-
ferent threads are linked if and only if the preconditions of one task
depend on the effects of the other, which can be semantically inter-
preted as the enactment of a certain degree ofcooperationamong
the agents, which is in turn strongly connected to theρ constraint
density measure. A high value of this density is indeed what makes
a scheduling problem challenging for a makespan-optimizing sched-
uler. This confirms the rather intuitive fact that the role of optimizing
scheduling algorithms acquires importance as the degree of agent in-
teraction in the problem increases.

It is interesting to notice that one of the ways we can enforce a high
degree of strong thread coupling in the completePOP is tospecialize
the roles of the agents in the causal problem specification.

6 In order to make theγ curve more readable, the data was filtered with
a sliding window average of width ten, which corresponds to a low-pass
filter. The low accuracy of the estimate beyondρ ≈ 21.3% (beyond the
first 100 completePOPs) is due to the fact that higher values of strong inter-
thread constraint density require larger samples. In fact, as the problems
get more challenging from a makespan-optimization point of view, more
solution extraction attempts are necessary to derive useful statistics on the
distribution of makespans in the[lb, ub] interval.

4.3 Planning Strategies and Challenging
Scheduling Problems

As we saw earlier, the strong heuristic choices performed byFF af-
fect the structure of the resulting scheduling problem. Figure 6 shows
the strong-coupling constraint densities for the 500 problems used in
the experimental evaluation of the planning strategies shown in fig-
ure 3.

%

problem

0

5

10

15

20

25

30

35

40

45

0 50 100 150 200 250 300 350 400 450 500

ρ (FF)

ρ (BB)

Figure 6. The higher density of strong-coupling inter-thread
precedence constraintsρ makesFF-derived completePOPs more

difficult for a makespan-optimizing scheduler.

Since higher densities of strong-coupling inter-thread precedence
constraints determine a “wider” distribution of the makespans of the
solutions, the consequence ofFF’s heuristics are twofold: first, the
optimal makespan of the completePOP is greater or equal to that of
a PG-derived completePOP which solves the same planning prob-
lem, and second, these completePOPs are actually more difficult to
optimize. On the other hand, PG-based planners have the opposite ef-
fect, yielding causal structures which produce better makespans and
also facilitate the performance of an optimizing scheduler. This ef-
fect is obtained thanks to the characteristic of the PG paradigm which
tends to maximize thesizeof the contention peaks, as opposed to the
performance-oriented HS strategies such as those employed byFF.
Our analysis has shown that, at least in the case ofFF, these heuris-
tics reflect negatively on makespan-optimizing scheduling compo-
nents.

5 Conclusions

This investigation stems from the general question of how to em-
power makespan-optimizing schedulers with causal reasoning capa-
bilities. While a reasonably large amount of research has been dedi-
cated to integrating P&S [8, 12, 13, 7], few analyses have focused on
the nature of the information which is mutually shared between the
two solving components. In this context, we have shown an investiga-
tion into the type of information which can be contributed to schedul-
ing by planning, focusing on the structure of the causal knowledge
that a scheduling tool can inherit from STRIPS-based reasoners.

In order to focus on the nature of the shared information rather
than the mechanism with which this information is exchanged, we
have employed a framework in which an explicit distinction between
the causal and time/resource aspects of the problem is maintained
(an architecture which is similar toREALPLAN -MS [13]). The aim
of this analysis yields two results.

First, we show that HS planners are liable to produce schedul-
ing problems with longer optimal makespans than those of the PG-
derived problems. In this context, the over-committing nature of HS
appears to be counter productive in makespan-optimization, while
PG-based planners have the nice property of never committing to
resource-leveling decisions, thus never invading the decision space
of the scheduler. In fact, “blind” performance-oriented choices made

by HS planners correspond to unilateral resource peak leveling de-
cisions, the uninformed nature of which compromises the optimal
makespan of the scheduling problem.

These uninformed heuristics also have another effect on the
scheduling problem: by introducing the concepts of weak and strong
inter-thread coupling, we show how increasing densities of these con-
straints not only determine “wider” makespan distributions among
the schedules, but also make scheduling problems more challenging
from a makespan-optimization point of view.

Future work will investigate how these results can be generalized
by relaxing the single-resource, binary-capacity and non-dominating
duration assumptions made herein. Also, an interesting future devel-
opment could be to study on one hand how to empower heuristics to
overcome their inefficiency in loosely-coupled makespan optimizing
P&S, and on the other to analyse the behavior of planners which can
deal with action durations in the loosely-coupled framework.

As a concluding remark, it is worth noticing that this investigation
points to the interesting issue of using a classical planner to produce
RCPSP benchmark problems, a direction we will be pursuing further
in future work.

Acknowledgments

This research is partially supported by MIUR under projectROBO-
CARE, and by the Italian Space Agency (ASI). The Authors thank
Angelo Oddi and the other members of the PST. Federico Pecora is
also grateful to ECCAI for supporting his attendance to ECAI 2004.

REFERENCES
[1] C. Bäckstr̈om, ‘Computational Aspects of Reordering Plans’,Journal

of Artificial Intelligence Research, 9, 99–137, (1998).
[2] A.L. Blum and M.L. Furst, ‘Fast Planning Through Planning Graph

Analysis’,Artificial Intelligence, 281–300, (1997).
[3] P. Brucker, A. Drexl, R. M̈ohring, K. Neumann, and E. Pesch,

‘Resource-Constrained Project Scheduling: Notation, Classification,
Models, and Methods’,European Journal of Operations Research, 112,
3–41, (1999).

[4] A. Cesta, G. Cortellessa, A. Oddi, N. Policella, and A. Susi,
‘A Constraint-Based Architecture for Flexible Support to Activity
Scheduling’, inLNAI 2175, (2001).

[5] A. Cesta, A. Oddi, and S. Smith, ‘Profile-Based Algorithms to Solve
Multi-Capacitated Metric Scheduling Problems’, inProceedings of the
5th International Conference on Artificial Intelligence Planning Sys-
tems, (June, 1998).

[6] A. Cesta, A. Oddi, and S.F. Smith, ‘A Constrained-Based Method for
Project Scheduling with Time Windows’,Journal of Heuristics, 8(1),
109–135, (2002).

[7] M.B. Do and S. Kambhampati, ‘Improving the Temporal Flexibility of
Position Constrained Metric Temporal Planning’, inProc. of the Inter-
national Conference on AI Planning and Scheduling (ICAPS), (2003).

[8] M. Ghallab and H. Laruelle, ‘Representation and Control in IxTeT, a
Temporal Planner’, inProceedings of the Second International Confer-
ence on AI Planning Systems (AIPS-94), (1994).

[9] J. Hoffmann and B. Nebel, ‘The FF Planning System: Fast Plan Gener-
ation Through Heuristic Search’,Journal of Artificial Intelligence Re-
search, 14, 253–302, (2001).

[10] S. Kambhampati, E. Parker, and E. Lambrecht, ‘Understanding and Ex-
tending Graphplan’, inProceedings of ECP ’97, pp. 260–272, (1997).

[11] H. Kautz and B. Selman, ‘Unifying SAT-Based and Graph-Based Plan-
ning’, in Workshop on Logic-Based Artificial Intelligence, Washing-
ton, DC, June 14–16, 1999, ed., Jack Minker, College Park, Maryland,
(1999). Computer Science Department, University of Maryland.

[12] N. Muscettola, ‘HSTS: Integrating planning and scheduling’,In
M.Zweben and M.S.Fox (Ed.)Intelligent Scheduling, Morgan Kauff-
mann, (1994).

[13] B. Srivastava, ‘RealPlan: Decoupling Causal and Resource Reasoning
in Planning’, inAAAI/IAAI, pp. 812–818, (2000).

