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Abstract. Pickup and delivery problems with time windows (PDP- problems including timetabling [3], integrated circuitsitgn and ve-
TW) are challenging yet realistic scheduling problems irichleach  hicle routing [2]. Besides, genetic algorithm (GA) [1] isypé of
delivery vehicle is assigned to handle different pairs akpp-and-  adaptive heuristic search based on natural evolution. Allatipn
delivery requests. Our previous work successfully adafitecoush ~ of chromosomes is generated and continuously modified byesom
forward insertion heuristic (PFIH) for initialization, drproposed a  genetic operators to produce offsprings for another neveiggion
new swap operator to effectively solve PDP-TWSs. In this pawe until a predefined stopping criterion is reached, or a |lgoaitimal
improved our adapted PFIH to efficiently obtain a betteiahgolu-  solution is found. An example of GA is the GIDEON [1] algorith
tion. Moreover, we proposed an adaptive swAp-{Swvap) operator In a previous work [7], a min-conflicts based micro-genetgoa
that can flexibly revise its neighborhood size for iterafivgrove- rithm [1, 7] was adapted to solve PDP-TW. Moreover, two ieser
ments. Our improved search prototype achieved remarkabldts  ing initialization heuristics namely the Align-Fold and &uoerang,
against those of a tabu-embedded metaheuristic searchrgr@u  as alternatives to the adapted PFIH, together with a new $pap
vious work on a set of modified Solomon'’s test cases. More impo erator for repairing the current solution were proposedfectvely
tantly, our improved heuristics can easily be integrateéd many  solve the PDP-TW. The proposed initialization and repauristic
search schemes to solve other scheduling problems. operators were later integrated into 6 different searcbratgns, and
obtained impressive results on a set of modified Solomoststses.
In this paper, we firstly review the Align-Fold and adaptedHPi-

1 INTRODUCTION tialization methods, and then improve the adapted PHIRlization

In both Artificial Intelligence [1, 3] and Operations Resga[2, 5], heuristic to aggressively look for a better initial solutim an effi-
delivery problem with time windows (DP-TW) notably repratea  Ci€nt manner. In addition, we proposed an adaptive swapdwap)
class of challenging delivery problems with a wealth of [sh#d operator that can flexibly adjust its neighborhood size rsaitble
results [1, 5, 6]. The main aim is to effectively schedule atfief for iterative improvements. Obviously, o#D-Swvap operator can
delivery vehicles in order to satisfy a number of customezquests D€ regarded as a reduced version of the large neighborhaochse
with user-specified service time windows, thus restrictiagh de-  (LNS) method described in [4]. After all, our improved sdwfro-
livery to occur within a limited period. Extending from DPAT, totype achieved remarkable results against those of agathedded
the pickup and delivery problems with time windows (PDP-T8]) r_netaheuristic search [2, 6] or our previous work_on the sehmrﬂl
with additional coupling constraints to request each pajpickup fied Solomon'’s test cases. More importantly, our improvétbiiza-
and delivery requests to be serviced by the same deliverigleeh tion and repair heuristics were so generic and thus eagigiated
represent a more general and challenging class of delivetygms into many search schemes to possibly solve other optirizgtiob-
with wider applicability to modern logistics applicatiofws the land, ~ '€ms. ) _ _ ) _
sea or air transport. Examples of PDP-TWs include the diad@ The paper is organized as follows. Section 2 reviews thecbasi
application and bus scheduling. Heuristics have been wigidd for ~ concepts and definitions about the PDP-TW. Section 3 corssitle
vehicle routing due to their effectiveness. The push fodwasertion original and improved versions of the initialization anga@ heuris-
heuristic (PFIH) [5] was a route construction heuristicgmsed by ~ tics. Section 4 gives an empirical evaluation on the peréovce of
Solomon to handle DP-TW. Basically, PFIH compares the cbst o©Ur improved heuristic search method against those of tiyinaf
inserting a new customer into the current route with the kipes- ~ Séarch method and Li & Lim’s metaheuristic approach [6].tlyas
sible cost against that of creating a new route. A modified-Pfas ~ We conclude our work in Section 5.

proposed in [6] to handle PDP-TW.

For vehicle routing, many local search methods like the tab
search [2] or genetic algorithms [1] often use the PFIH owés-
ants to construct an initial solution before applying anyrigtic op-
erators to optimize the objective value of the current sotutTabu
search (TS) [2] is an example search strategy, with the usbat-
term memory to avoid cycling, to solve many practical corabnial

2 PICKUP AND DELIVERY PROBLEMS WITH
TIME WINDOWS (PDP-TW)

Similar to DP-TW, pickup and delivery problems with time wdows
(PDP-TW) are constrained optimization problems [3]. Therfal
definition of PDP-TW [6, 7] is stated as follow. Given a node¢ se
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and the last index» is always an even number, each individual cus-
tomer request is represented by a pair of delivery and pidica-
tions. Each delivery or pickup locationy wherei # 0 is associated
with a customer demangl such thatg; > 0 for a pickup location
whereasy; < 0 for a delivery location, a service timsg, that is the
duration required to effectively service the customer deanat that
location, and an associated service time windey;] wheree; and
l; denote the earliest and latest time to start the service d€he-
ery and pickup demand; andg; belonging to the same customer
will have the same magnitude so that+ ¢j = 0 for ease of anal-
ysis. Besides, for any possible edge, n;), both the non-negative
distanced;; and required travel time;; are specified. However, it
should be noted that due to the time-window constraints exety
possible edge is a feasible edge to construct a feasible fouany
vehicle when solving the DP-TW or PDP-TW. In other words,yonl
those edgesn;, n;) that satisfy their corresponding time-window
constraints as.; + s; + t;; < [, restricting the vehicle concerned
to arrive at or before the latest service tieafter traveling from
the depot tar; to n; with its completion of service at;, should be
considered.

In addition to the time-window constraints, several prableon-
straints must not be violated. First, each vehicle has adurcapac-

3.1 Initialization heuristics

When handling PDP-TWs, with a sorted list of customer-plaased
on their combined distance from the depot, a local seardritthgn
can proceed to construct an initial solution possibly using of our
proposed initialization heuristics detailed as follows:

e The Align-Fold Initialization Method
The initialization heuristic involves 2 phases: Align andld=
In the first Align stage, customer pairs are inserted into a ve
hicle one by one from the sorted list of customer pairs in de-
scending order of their combined distance from the depotetwh
a customer pair cannot be inserted into the current route due
to constraints violation, a new route will be created. Theem
tion process continues until all customer pairs are routdtir
the Align Stage, there may be gaps of different sizes in the be
ginning few routes, that can possibly be filled up by custemer
pairs (of smaller distance from the depot) shifted from thst |
few routes. Such shifting and filling operation is calleddfab.
Folding requires a boundary line to be set among the vehicles
Following the strategy to preset the number of "virtual” ieh
cles for constructing the initial solution in [9], we refey te-
search results produced by Li and Lim [7] to determine thendeu

ity C that cannot be exceeded. Each vehicle must carry an amount ary line for each case. For each customer-pair to be folded, w

less than or equal t6¢'. Second, all vehicles depart from and return
to the same depot n0, and share the same constraints timewind

compute the folding cost for every possible insertion pasitn
any upper vehiclé asi x (scheduled duration per route +

[E, L], whereE denotes the time a vehicle must have left the depot, distance traveled by the vehicle per route). The position with
and L denotes the time a vehicle must have returned to thetdepo the least folding cost would be chosen. Obviously, we wat-it

Third, a customer can only be serviced within the associsgéedce
time window [e;, [;]. That is, if a vehicle reached the customer ear-
lier thane;, the vehicle has to wait untd;. Lastly, the coupling con-
straints request that every pair of pickup and deliverytiocs must

be serviced by the same vehicle while the precedence coristra
specify that the pickup location must be serviced first. Qyeshe
objective functions vary depending on different applicas. For in-
stance, in the dial-a-ride application, a common objedtve mini-
mize the inconvenience (often measured in term of the toadting
time) as caused by the service to occur earlier or later tharex-
pected time. Following [6], we consider in this paper an ofiye
cost function with4d parameters in descending order of importance
as follows: the number of vehicles used, the total travetiost, the
total schedule duration, and the drivers’ total waitingdim

3 IMPROVED HEURISTICS TO SOLVE
PDP-TWs

Generally speaking, heuristics play a very significant mlaffect-
ing the overall performance of a local search method. When ha
dling the DP-TW or PDP-TW, heuristic operators can be cliski
as intra-route or inter-route operators [7] depending oetivr the
operator works within or between the route(s). Clearly, thu¢he
‘coupling’ nature of delivery and pickup nodes in PDP-TW,sho
heuristics operators designed for DP-TWs need to be sjightldi-
fied to effectively tackle the PDP-TW. In the following subsens,
we are going to firstly consider the adapted push forwardriiose
heuristic (PFIH) as originally applied in [6], followed byuo pro-
posed improvement to aggressively look for a better ingaution
for solving PDP-TWs efficiently. Later, we would compare tinii-
nal and improved Swap operators using a flexible revisiopsehto
adjust neighborhood size for iterative improvements.

atively try for more folding at a higher boundary line wheeev
possible.

e The originally adapted PFIH
The push forward insertion heuristic (PFIH), originallysdgmed
for DP-TWs, was successfully adapted [6] to tackle PDP-TWs.
The adapted PFIH basically considers each customer pasias a
gle unit of requests to be handled by every delivery vehithe
adapted algorithm is clearly specified in pseudo-code é&zifsl

(1) Start a new route to insert a “customer pair” taken from the
beginning of a customer-pairs list sorted in decreasingroodl
their combined objective values (as described in Sectipn 2)

(2) Remove a customer pair from the sorted customer-pairs list
while the list is not empty. After evaluating! feasible posi-
tions of current route, insert the newly removed customer pair
into a position of thecurrent route which cause the least incre-
ment in the combined objective value;

(3) If the customer pair cannot be assigned to any position of the
current route, starts a new route and assign the customer pair to
this newly created route;

(4) Repeatstep (2) and (3until all customer pairs are assigned.

e The improved best-fit PFIH
One obvious shortcoming of the originally adapted PFIH rodth
is that it does not even guarantee to return a locally optsoal
lution with respect to all the available routes during tharsk.
Accordingly, we decided to improve the adapted PFIH to agigre
sively look for the best-fit positions among all the existimogtes
for each customer pair for insertion with the following mibch-
tions to step (2) and (3) of the previous adapted PFIH algorit

2*) Remove a customer pair from the sorted customer-pairs list
p p
while the list is not empty. After evaluatingl| feasible posi-
tions ofall route, insert the newly removed customer pair into



the best-fit position of any route which cause the least incre  number of vehicles used. In fact, tlSevap operator can be more
ment in the combined objective value; appropriately used for iterative improvements in which $heap
operator can be applied several times per search iteratiop-t
portunistically look for a better solution with a flexibly jadtable
relocation size. The result is an adaptidé)-Swap operator as
proposed in this paper.

3*) If the customer pair cannot be inserted to any existing route,
p y g
starts a new route and assign the customer pair to this newly
created route;

Since our proposed improvement here actively examinexialieg
routes for any better improvement, the quality of most ahitiolu-

tions generated by our improved best-fit PFIH (BPFIH) wilvays oo R
g y P ( ) y for opportunistic improvements. However, other than thgomeif-

outperform the solution quality generated by the origindhted . ) . .
PFIH. However, the major concern is whether our proposed BPfErefn‘Tle n th((aj_][feallocan_on pool shlze, we ;hOUId car.efLij:]sw_ler
FIH can be efficient for execution. In fact, in a preliminayat- '€ following difference in using the originalwap against the im-

ation of the BPFIH, we already found that our implemented BPF pr(_)ve(_iAD_-Swap to solve PD.P'TWS' First., the extracted customer-
could always return an initial solution in less thawall clock) sec- pairs list will always be sorted in a decreasing order of the combined
onds, almost the same time required by the original adapt,P distance traveled in the origin&hwap whereas the same list will be
for any of the56 modified Solomon'’s test cases of PDP-TWSs run- alternatively sorteq z_a_nd unsorted in th_e |m_provﬂdD-Swap S0 as
ning on an Intel P2.8 G H z desktop computer. However, over these to allow more flexibility and thus possible |mprc_)vement5|_dgrthe

56 tested PDP-TWs, the overwhelming initial solution qualitsis search. Moreover, whenever the number of vehicles reqakeeeds
guaranteed by our improved BPFIH with the total number ofiveh that of the currently b_est SO.|Ut'0n’ anew vehicle will sl created,
cles used a549 and the total distance traveled Hsl, 999.95 stan- ar_ld the 'search continues in the on_gn&ba_p whereas the search
dard units, such akm, whereas the figures obtained by the origi- Wt'rl]l be sm;plyﬂr:alted abnd refstarrt]f_sclj in the '.m%r%m@'stlﬁag;h

nal adapted PFIH werg24 and148, 405.96 units respectively. This ‘(‘)b er ;Nodr E he nufmherbo ve 'IC es rfequwde_ ﬁr'ng eveﬂ)m
drastic difference clearly indicates that our improved B#PEan be ounded” by that of the best solution found in the impro )

implemented and executed efficiently to obtain a much batitgal Swap op_e_rator.
solution as compared to that of the originally adapted PFIH. In addm(_)n to t.he at_)ovelD-Swgp scheme, we try a seargh strat-
egy opposite to iterative deepening (ID) [7] so as to effetyi con-
. L trol the resources used to explore the possible improvesrganing
3.2 Repair heuristics the search. Instead of iteratively increasing the resolimieto ex-

In the following, we consider two interesting repair heticis ~ Plore various sub-trees in ID, we gradually reduce the ggloo pool
namely the original and improvefwap operators, to iteratively ~SIiZ€ OVer iterationsin order to minimize the computatianedrheads

Undoubtedly, both Swap and AD-Swap randomly extract
customer-pairs from the existing solutions for re-ingertto look

improve the objective value of the current routing plan mtiocal ~ INvolved in the AD-Swap scheme. The final result is the Iterative
minimum is reached. Diminishing Swap (D-Swap ) operator that is simply a variant of

the AD-Swap operator using a strategy to gradually diminishing the
e The original Swap operator relocation p00| size.

The original Swap operator works by a substantial modification
of the currgnt solution. Erom each vehlt_:le in the fleet, $heup 4 AN EMPIRICAL EVALUATION
operator will randomly pick up a few pairs of customers, rgeno
them from the vehicle and add them into a relocation pool. TheTo demonstrate the effectiveness of our proposed improntroar
number of customer pairs to be removed from each vehiclémproved initialization and repair heuristics were ingggd into the
depends on fleet size. The major consideration is to keep thprevious local search framework [7] as an improved optimizened
relocation pool having roughly the same number of custornimers (BPFIH + ID-Swap) to compare against the original optimizer
each swap. As an example, in our prototype implementatien, w (P FIH +Swap) [7], another local optimizer4lign+ Swap) using
arbitrarily set the Swap operator to remove arourid of total the Align-Fold initialization method and th€wap operator, and Li
number of customers into the relocation pool. When ther@ys a & Lim’s metaheuristic approach [6] integrating tabu seaaol sim-
empty vehicle after removal of customers, the vehicle wdadd ulated annealing on a set of 56 modified Solomon’s test cdes [
removed from the fleet. Then, the operator will randomly cfeoo Basically, each problem instance has aroufd customers. There
a pair of customers from relocation pool and insert themamyp  are totally 6 distinct classes, namely LC1, LC2, LR1, LR2,GR
vehicle based on the objective cost function described ati@®  and LRC2. 'LC’ refers to cases with clustered distributidncas-
2. In case there is no possible position in any route to inbert tomers, LR’ refers to cases with uniform distribution ofstomers,
customer pair(s) in the relocation pool, a new vehicle wdagdd and 'RC’ refers to mixed customers types. '1' refers to smeliicle
created. After all, theSwap operator is closely related to the capacity whereas '2’ refers to large vehicle capacity.
large neighborhood search (LNS) method [4], and can be Wewe All of our search prototypes were implemented using the Vi-
as a reduced version of LNS, thus taking up less computationasual C++ Version7.0. And all tests were run on a desktop com-
resource, to repair the current solution for solving PDPsSTW puter with Intel Pentium IV processor 8f8 GHz, 512 M B RAM,
efficiently. and a hard disk 020 GB space. The operating system used was
the Microsoft Windows XP. It should be noted that the orifjina
e The improved AD-Swap with adaptive reallocation pool size (PFIH+Swap) optimizer with a constant relocation pool sizel6f
The previousSwap operator suffers from two major drawbacks. customer pairs would halt after no improvement ®3@consecutive
First, it is generally very difficult to determine a “suitablrelo- iterations whereas our improve@8 P F'I H + I D-Swap) optimizer
cation pool size in each iteration for the same/differenbfgms.  would keep on adjusting its relocation pool size fr@mpairs with
Second, theéSwap operator is applied only once per search iter- a decrease of pairs after every240 iterations. And the improved
ation, and may sometimes create a poorer solution with @darg optimizer would stop after a total af 440 iterations.



Table 1 summarizes the overall results, in terms of the totai- BPFIH + ID-Swap Li & Lim's approach
ber of vehicles used T'V), the total distance traveled { 7'D) TestCase| TV | TD v D
and the sum of their products 3s(TV x TD), of the different LC204 3| 590.60(] 0.10%) 3 591.17
search proposals over all tti@ modified cases. The smallest fig- ::Eggé é 35335'3(31@006321/(7;) é 19236736854
ure in each column was boldfaced for ease of comparisonriglea [RC106 | 11 142;1.74@ 6.06?%) 11 119553

LRCI07 | 11 | 1230.14(] 0.0008%) | 11 1230.15

Optimizers Overall Results [RC108 | 10 | 1147.43(] 0.05%) 10 1147.97

LRC201 4 | 1406.94(] 4.22%) 1 1468.96

YTV | 3°TD | Y (TV xTD) [RC204 | 3 | 818.66(] 1.10%) 3 82778

Align + Swap 415 58,743 479,974 LRC206 3 | 1159.03(] 0.33%) 3 1162.91

PFITH + Swap 417 58,410 481,426 LRC207 3 | 1062.05(] 25.45%) 3 1424.60
BPFTH + ID-Swap 410 57,766 467,197
Li & Lim’s approach 405 58, 185 462,873

Table 3. Detailed improvement of ofBPFIH + ID-Swap) optimizer
over Li & Lim’s results on thed winning cases
Table 1. Overall results of different optimizers on &b modified
benchmarks

mixed LRC problems with larger vehicle capacity that flexiallows

greater opportunity for improving the solutions after spiag cer-
the(BPFIH + I D-Swap) optimizer overwhelmingly excelled the  tain customer pairs. On the other hand, as revealed in Tabhe
original (PFIH + Swap) and(Align + Swap) optimizer on both  \vere other9 cases where our improved optimizer lost to Li & Lim’s
TV and TD of overall results revealed in Table 1, demonstrat- approach in thd'V or T'D results. However, it should be noted that
ing the effectiveness of our proposed improvements oveotiie  our improved optimizer was simple and thus easy to impleftere
inal heuristics used. Besides, Li & Lim's metaheuristic mggh g5 compared to Li & Lim’s metaheuristic approach integgatioth
achieved the best} T'V and} (T'V x T'D) results while our pro-  simulated annealing and tabu search that were undoubtedig m
posed(BPFIH + ID-Swap) optimizer obtained the best resultin complicated to implement/tune. Furthermore, all the aiteld re-
>.TD. The (Align + Swap) optimizer achieved the second best gyjts obtained by Li & Lim’s metaheuristic approach weresatty
results among those of our heuristic search proposalsolildtbe very much minimized and likely near-optimal as achievedigh
noted that the Li & Lim’s metaheuristic approach is very cdimp  their fine-tuned annealing schedule of the embedded sietlikat-
cated to implement with lots of parameter tuning. Yet it cegelled  nealing optimizer and its complex interaction with the taearch.
our overall result i’V x T'D slightly by 3% less. On the other  Therefore, it is in fact very difficult to further improve amf their

hand, our direct heuristic approach of tePF1H + ID-Swap) published results on the set& modified test cases.
or (Align + Swap) optimizer is easy to implement.

Our optimizers against Li & Lim’s approach Performance statistics 5 CONCLUDING REMARKS

Win | Loss | Tie N . .
Align + Swap 5 30 31 In this paper, a formal definition [7] of the pickup and detiverob-
PFIH + Swap 3 19 34 lems with time windows (PDP-TW) was given as a more generl an
BPFITH + ID-Swap 9 9 38 challenging class of delivery problems. We proposed séweter-

esting initialization and repair heuristics, including thest-fit push

forward insertion heuristic (BPFIH) and the adaptive refbaised
Table 2. Comparing our proposed optimizers against Li & Lim's result ~ AD-Swap operator to improve on the originally adapted push for-

ward insertion heuristic (PFIH) [10] and the previdtisap operator.

In general, our obtained results compared favorably agtinse of

Li & Lim’s tabu-embedded metaheuristic search proposalapte-

Table 2 gives a direct comparison of our propogedign + vious work [7] onSwap on a set of modified Solomon'’s test cases.
Swap), the original(PFI H 4+ Swap) and refined BPFIH + I D- Specifically, ou{ BPFIH + I D-Swap) optimizer outperformed Li
Swap) optimizer against Li & Lim’s metaheuristic approach based & Lim’s approach orp test cases. This clearly demonstrates the fur-
on their individual results obtained on each test case. imdeof  ther optimizing capability of our improveSwap operator over the
number of wins, ties and loses, our refifgdlP F'I H + I D-Swap) other heuristic approaches we have considered in this paper
optimizer was surely the best among our search proposatweé- There can be many interesting directions for future ingasibns.
sults better than those of Li & Lim’s published results ovee 56 Examples include the investigation about the iteratieréasing
test cases. The overall improvement could be explained sttarb  Swap ( NCR-Swap) operator opposite to the iterative diminish-
initial solution generated by more ambitious BPFIH method the  ing resource allocation scheme. Besides, applying thepeoirad
refinedl D-Swap operator that aggressively looked for the greatestheuristics to solve other scheduling problems like theioaigdeliv-
improvements initially with a larger relocation pool siznd then  ery problems with time windows should be interesting.
gradually decreasing the relocation size for opportunisstiprove-
ments in the later stage.
Table 3 shows the detailed improvement of (&P F I H + I D- ACKNOWLEDGEMENTS

Swap) optimizer over Li & Lim’'s metaheuristic approach on the Wwe would like to thank the referees for their valuable comtsem
9 specific test cases of PDP-TW. Among the 9 winning cases agddition, we are grateful to Miss Lois Tseng who implemerttesl

shown in Table 3, there were more significant decreasé&slinas initial prototype of the( Align + Swap) optimizer used for experi-
obtained by our improve(BPF1H + I D-Swap) optimizer onthe  mentation.
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