
Improving the Initialization and Repair Heuristics to
Effectively Solve the Pickup and Delivery Problems with

Time Windows
Vincent Tam and M.C. Kwan 1

Abstract. Pickup and delivery problems with time windows (PDP-
TW) are challenging yet realistic scheduling problems in which each
delivery vehicle is assigned to handle different pairs of pickup-and-
delivery requests. Our previous work successfully adaptedthe push
forward insertion heuristic (PFIH) for initialization, and proposed a
new swap operator to effectively solve PDP-TWs. In this paper, we
improved our adapted PFIH to efficiently obtain a better initial solu-
tion. Moreover, we proposed an adaptive swap (AD-Swap) operator
that can flexibly revise its neighborhood size for iterativeimprove-
ments. Our improved search prototype achieved remarkable results
against those of a tabu-embedded metaheuristic search or our pre-
vious work on a set of modified Solomon’s test cases. More impor-
tantly, our improved heuristics can easily be integrated into many
search schemes to solve other scheduling problems.

1 INTRODUCTION

In both Artificial Intelligence [1, 3] and Operations Research [2, 5],
delivery problem with time windows (DP-TW) notably represents a
class of challenging delivery problems with a wealth of published
results [1, 5, 6]. The main aim is to effectively schedule a fleet of
delivery vehicles in order to satisfy a number of customers’requests
with user-specified service time windows, thus restrictingeach de-
livery to occur within a limited period. Extending from DP-TWs,
the pickup and delivery problems with time windows (PDP-TW)[6],
with additional coupling constraints to request each pair of pickup
and delivery requests to be serviced by the same delivery vehicle,
represent a more general and challenging class of delivery problems
with wider applicability to modern logistics applicationsfor the land,
sea or air transport. Examples of PDP-TWs include the dial-a-ride
application and bus scheduling. Heuristics have been widely used for
vehicle routing due to their effectiveness. The push forward insertion
heuristic (PFIH) [5] was a route construction heuristic proposed by
Solomon to handle DP-TW. Basically, PFIH compares the cost of
inserting a new customer into the current route with the lowest pos-
sible cost against that of creating a new route. A modified PFIH was
proposed in [6] to handle PDP-TW.

For vehicle routing, many local search methods like the tabu
search [2] or genetic algorithms [1] often use the PFIH or itsvari-
ants to construct an initial solution before applying any heuristic op-
erators to optimize the objective value of the current solution. Tabu
search (TS) [2] is an example search strategy, with the use ofshort-
term memory to avoid cycling, to solve many practical combinatorial

1 Dept. of E.E.E., The University of Hong Kong, Pokfulam, HongKong.
email: vtam@eee.hku.hk

problems including timetabling [3], integrated circuit design and ve-
hicle routing [2]. Besides, genetic algorithm (GA) [1] is a type of
adaptive heuristic search based on natural evolution. A population
of chromosomes is generated and continuously modified by some
genetic operators to produce offsprings for another new generation
until a predefined stopping criterion is reached, or a locally optimal
solution is found. An example of GA is the GIDEON [1] algorithm.

In a previous work [7], a min-conflicts based micro-genetic algo-
rithm [1, 7] was adapted to solve PDP-TW. Moreover, two interest-
ing initialization heuristics namely the Align-Fold and Boomerang,
as alternatives to the adapted PFIH, together with a new Swapop-
erator for repairing the current solution were proposed to effectively
solve the PDP-TW. The proposed initialization and repair heuristic
operators were later integrated into 6 different search algorithms, and
obtained impressive results on a set of modified Solomon’s test cases.
In this paper, we firstly review the Align-Fold and adapted PFIH ini-
tialization methods, and then improve the adapted PHIF initialization
heuristic to aggressively look for a better initial solution in an effi-
cient manner. In addition, we proposed an adaptive swap (AD-Swap)
operator that can flexibly adjust its neighborhood size mostsuitable
for iterative improvements. Obviously, ourAD-Swap operator can
be regarded as a reduced version of the large neighborhood search
(LNS) method described in [4]. After all, our improved search pro-
totype achieved remarkable results against those of a tabu-embedded
metaheuristic search [2, 6] or our previous work on the set ofmodi-
fied Solomon’s test cases. More importantly, our improved initializa-
tion and repair heuristics were so generic and thus easily integrated
into many search schemes to possibly solve other optimization prob-
lems.

The paper is organized as follows. Section 2 reviews the basic
concepts and definitions about the PDP-TW. Section 3 considers the
original and improved versions of the initialization and repair heuris-
tics. Section 4 gives an empirical evaluation on the performance of
our improved heuristic search method against those of the original
search method and Li & Lim’s metaheuristic approach [6]. Lastly,
we conclude our work in Section 5.

2 PICKUP AND DELIVERY PROBLEMS WITH
TIME WINDOWS (PDP-TW)

Similar to DP-TW, pickup and delivery problems with time windows
(PDP-TW) are constrained optimization problems [3]. The formal
definition of PDP-TW [6, 7] is stated as follow. Given a node set
N = {n0, n1, n2, n3, . . . , nm} wheren0 always denotes the depot,
n1 tonm denote delivery or pickup locations for customers’ requests,



and the last indexm is always an even number, each individual cus-
tomer request is represented by a pair of delivery and pickuploca-
tions. Each delivery or pickup locationni wherei 6= 0 is associated
with a customer demandqi such thatqi > 0 for a pickup location
whereasqi < 0 for a delivery location, a service timesi, that is the
duration required to effectively service the customer demand at that
location, and an associated service time window[ei, li] whereei and
li denote the earliest and latest time to start the service. Thedeliv-
ery and pickup demandqi andqj belonging to the same customer
will have the same magnitude so thatqi + qj = 0 for ease of anal-
ysis. Besides, for any possible edge〈ni, nj〉, both the non-negative
distancedij and required travel timetij are specified. However, it
should be noted that due to the time-window constraints, notevery
possible edge is a feasible edge to construct a feasible route for any
vehicle when solving the DP-TW or PDP-TW. In other words, only
those edges〈ni, nj〉 that satisfy their corresponding time-window
constraints astoi + si + tij ≤ lj , restricting the vehicle concerned
to arrive at or before the latest service timelj after traveling from
the depot toni to nj with its completion of service atni, should be
considered.

In addition to the time-window constraints, several problem con-
straints must not be violated. First, each vehicle has a limited capac-
ity C that cannot be exceeded. Each vehicle must carry an amount
less than or equal toC. Second, all vehicles depart from and return
to the same depot n0, and share the same constraints time window
[E, L], whereE denotes the time a vehicle must have left the depot,
and L denotes the time a vehicle must have returned to the depot.
Third, a customer can only be serviced within the associatedservice
time window [ei, li]. That is, if a vehicle reached the customer ear-
lier thanei, the vehicle has to wait untilei. Lastly, the coupling con-
straints request that every pair of pickup and delivery locations must
be serviced by the same vehicle while the precedence constraints
specify that the pickup location must be serviced first. Clearly, the
objective functions vary depending on different applications. For in-
stance, in the dial-a-ride application, a common objectiveis to mini-
mize the inconvenience (often measured in term of the total waiting
time) as caused by the service to occur earlier or later than the ex-
pected time. Following [6], we consider in this paper an objective
cost function with4 parameters in descending order of importance
as follows: the number of vehicles used, the total travelingcost, the
total schedule duration, and the drivers’ total waiting time.

3 IMPROVED HEURISTICS TO SOLVE
PDP-TWs

Generally speaking, heuristics play a very significant rolein affect-
ing the overall performance of a local search method. When han-
dling the DP-TW or PDP-TW, heuristic operators can be classified
as intra-route or inter-route operators [7] depending on whether the
operator works within or between the route(s). Clearly, dueto the
’coupling’ nature of delivery and pickup nodes in PDP-TW, most
heuristics operators designed for DP-TWs need to be slightly modi-
fied to effectively tackle the PDP-TW. In the following subsections,
we are going to firstly consider the adapted push forward insertion
heuristic (PFIH) as originally applied in [6], followed by our pro-
posed improvement to aggressively look for a better initialsolution
for solving PDP-TWs efficiently. Later, we would compare theorigi-
nal and improved Swap operators using a flexible revision scheme to
adjust neighborhood size for iterative improvements.

3.1 Initialization heuristics

When handling PDP-TWs, with a sorted list of customer-pairsbased
on their combined distance from the depot, a local search algorithm
can proceed to construct an initial solution possibly usingone of our
proposed initialization heuristics detailed as follows:

• The Align-Fold Initialization Method
The initialization heuristic involves 2 phases: Align and Fold.
In the first Align stage, customer pairs are inserted into a ve-
hicle one by one from the sorted list of customer pairs in de-
scending order of their combined distance from the depot. When
a customer pair cannot be inserted into the current route due
to constraints violation, a new route will be created. The inser-
tion process continues until all customer pairs are routed.After
the Align Stage, there may be gaps of different sizes in the be-
ginning few routes, that can possibly be filled up by customer-
pairs (of smaller distance from the depot) shifted from the last
few routes. Such shifting and filling operation is called folding.
Folding requires a boundary line to be set among the vehicles.
Following the strategy to preset the number of ”virtual” vehi-
cles for constructing the initial solution in [9], we refer to re-
search results produced by Li and Lim [7] to determine the bound-
ary line for each case. For each customer-pair to be folded, we
compute the folding cost for every possible insertion position in
any upper vehiclei as i × (scheduled duration per route +
distance traveled by the vehicle per route). The position with
the least folding cost would be chosen. Obviously, we will iter-
atively try for more folding at a higher boundary line whenever
possible.

• The originally adapted PFIH
The push forward insertion heuristic (PFIH), originally designed
for DP-TWs, was successfully adapted [6] to tackle PDP-TWs.
The adapted PFIH basically considers each customer pair as asin-
gle unit of requests to be handled by every delivery vehicle.The
adapted algorithm is clearly specified in pseudo-code as follows.

(1) Start a new route to insert a “customer pair” taken from the
beginning of a customer-pairs list sorted in decreasing order of
their combined objective values (as described in Section 2);

(2) Remove a customer pair from the sorted customer-pairs list
while the list is not empty. After evaluatingall feasible posi-
tions ofcurrent route, insert the newly removed customer pair
into a position of thecurrent route which cause the least incre-
ment in the combined objective value;

(3) If the customer pair cannot be assigned to any position of the
current route, starts a new route and assign the customer pair to
this newly created route;

(4) Repeatstep (2) and (3)until all customer pairs are assigned.

• The improved best-fit PFIH
One obvious shortcoming of the originally adapted PFIH method
is that it does not even guarantee to return a locally optimalso-
lution with respect to all the available routes during the search.
Accordingly, we decided to improve the adapted PFIH to aggres-
sively look for the best-fit positions among all the existingroutes
for each customer pair for insertion with the following modifica-
tions to step (2) and (3) of the previous adapted PFIH algorithm:

(2*) Remove a customer pair from the sorted customer-pairs list
while the list is not empty. After evaluatingall feasible posi-
tions ofall route, insert the newly removed customer pair into



the best-fit position of any route which cause the least incre-
ment in the combined objective value;

(3*) If the customer pair cannot be inserted to any existing route,
starts a new route and assign the customer pair to this newly
created route;

Since our proposed improvement here actively examines all existing
routes for any better improvement, the quality of most initial solu-
tions generated by our improved best-fit PFIH (BPFIH) will always
outperform the solution quality generated by the original adapted
PFIH. However, the major concern is whether our proposed BP-
FIH can be efficient for execution. In fact, in a preliminary evalu-
ation of the BPFIH, we already found that our implemented BPFIH
could always return an initial solution in less than2 (wall clock) sec-
onds, almost the same time required by the original adapted PFIH,
for any of the56 modified Solomon’s test cases of PDP-TWs run-
ning on an Intel P42.8 GHz desktop computer. However, over these
56 tested PDP-TWs, the overwhelming initial solution qualitywas
guaranteed by our improved BPFIH with the total number of vehi-
cles used as549 and the total distance traveled as101, 999.95 stan-
dard units, such askm, whereas the figures obtained by the origi-
nal adapted PFIH were924 and148, 405.96 units respectively. This
drastic difference clearly indicates that our improved BPFIH can be
implemented and executed efficiently to obtain a much betterinitial
solution as compared to that of the originally adapted PFIH.

3.2 Repair heuristics

In the following, we consider two interesting repair heuristics,
namely the original and improvedSwap operators, to iteratively
improve the objective value of the current routing plan until a local
minimum is reached.

• The original Swap operator
The originalSwap operator works by a substantial modification
of the current solution. From each vehicle in the fleet, theSwap
operator will randomly pick up a few pairs of customers, remove
them from the vehicle and add them into a relocation pool. The
number of customer pairs to be removed from each vehicle
depends on fleet size. The major consideration is to keep the
relocation pool having roughly the same number of customersin
each swap. As an example, in our prototype implementation, we
arbitrarily set the Swap operator to remove around1/5 of total
number of customers into the relocation pool. When there is any
empty vehicle after removal of customers, the vehicle wouldbe
removed from the fleet. Then, the operator will randomly choose
a pair of customers from relocation pool and insert them intoany
vehicle based on the objective cost function described in Section
2. In case there is no possible position in any route to insertthe
customer pair(s) in the relocation pool, a new vehicle wouldbe
created. After all, theSwap operator is closely related to the
large neighborhood search (LNS) method [4], and can be viewed
as a reduced version of LNS, thus taking up less computational
resource, to repair the current solution for solving PDP-TWs
efficiently.

• The improved AD-Swap with adaptive reallocation pool size
The previousSwap operator suffers from two major drawbacks.
First, it is generally very difficult to determine a “suitable” relo-
cation pool size in each iteration for the same/different problems.
Second, theSwap operator is applied only once per search iter-
ation, and may sometimes create a poorer solution with a larger

number of vehicles used. In fact, theSwap operator can be more
appropriately used for iterative improvements in which theSwap
operator can be applied several times per search iteration to op-
portunistically look for a better solution with a flexibly adjustable
relocation size. The result is an adaptiveAD-Swap operator as
proposed in this paper.

Undoubtedly, bothSwap and AD-Swap randomly extract
customer-pairs from the existing solutions for re-insertion to look
for opportunistic improvements. However, other than the major dif-
ference in the reallocation pool size, we should carefully consider
the following difference in using the originalSwap against the im-
provedAD-Swap to solve PDP-TWs. First, the extracted customer-
pairs list will always be sorted in a decreasing order of the combined
distance traveled in the originalSwap whereas the same list will be
alternatively sorted and unsorted in the improvedAD-Swap so as
to allow more flexibility and thus possible improvements during the
search. Moreover, whenever the number of vehicles requiredexceeds
that of the currently best solution, a new vehicle will stillbe created,
and the search continues in the originalSwap whereas the search
will be simply halted and restarted in the improvedAD-Swap. In
other words, the number of vehicles required during the search is
“bounded” by that of the best solution found in the improvedAD-
Swap operator.

In addition to the aboveAD-Swap scheme, we try a search strat-
egy opposite to iterative deepening (ID) [7] so as to effectively con-
trol the resources used to explore the possible improvements during
the search. Instead of iteratively increasing the resourcelimit to ex-
plore various sub-trees in ID, we gradually reduce the relocation pool
size over iterations in order to minimize the computationaloverheads
involved in theAD-Swap scheme. The final result is the Iterative
Diminishing Swap (ID-Swap ) operator that is simply a variant of
theAD-Swap operator using a strategy to gradually diminishing the
relocation pool size.

4 AN EMPIRICAL EVALUATION

To demonstrate the effectiveness of our proposed improvement, our
improved initialization and repair heuristics were integrated into the
previous local search framework [7] as an improved optimizer named
(BPFIH + ID-Swap) to compare against the original optimizer
(PFIH+Swap) [7], another local optimizer (Align+Swap) using
the Align-Fold initialization method and theSwap operator, and Li
& Lim’s metaheuristic approach [6] integrating tabu searchand sim-
ulated annealing on a set of 56 modified Solomon’s test cases [6].
Basically, each problem instance has around100 customers. There
are totally 6 distinct classes, namely LC1, LC2, LR1, LR2, LRC1,
and LRC2. ’LC’ refers to cases with clustered distribution of cus-
tomers, ’LR’ refers to cases with uniform distribution of customers,
and ’RC’ refers to mixed customers types. ’1’ refers to smallvehicle
capacity whereas ’2’ refers to large vehicle capacity.

All of our search prototypes were implemented using the Vi-
sual C++ Version7.0. And all tests were run on a desktop com-
puter with Intel Pentium IV processor of2.8 GHz, 512 MB RAM,
and a hard disk of20 GB space. The operating system used was
the Microsoft Windows XP. It should be noted that the original
(PFIH+Swap) optimizer with a constant relocation pool size of10
customer pairs would halt after no improvement over30 consecutive
iterations whereas our improved (BPFIH + ID-Swap) optimizer
would keep on adjusting its relocation pool size from35 pairs with
a decrease of5 pairs after every240 iterations. And the improved
optimizer would stop after a total of1, 440 iterations.



Table 1 summarizes the overall results, in terms of the totalnum-
ber of vehicles used (

∑
TV ), the total distance traveled (

∑
TD)

and the sum of their products as
∑

(TV × TD), of the different
search proposals over all the56 modified cases. The smallest fig-
ure in each column was boldfaced for ease of comparison. Clearly,

Optimizers Overall Results

∑
TV

∑
TD

∑
(TV × TD)

Align + Swap 415 58, 743 479, 974
PFIH + Swap 417 58, 410 481, 426
BPFIH + ID-Swap 410 57,766 467, 197
Li & Lim’s approach 405 58, 185 462,873

Table 1. Overall results of different optimizers on all56 modified
benchmarks

the(BPFIH + ID-Swap) optimizer overwhelmingly excelled the
original (PFIH + Swap) and(Align + Swap) optimizer on both
TV and TD of overall results revealed in Table 1, demonstrat-
ing the effectiveness of our proposed improvements over theorig-
inal heuristics used. Besides, Li & Lim’s metaheuristic approach
achieved the best

∑
TV and

∑
(TV × TD) results while our pro-

posed(BPFIH + ID-Swap) optimizer obtained the best result in∑
TD. The (Align + Swap) optimizer achieved the second best

results among those of our heuristic search proposals. It should be
noted that the Li & Lim’s metaheuristic approach is very compli-
cated to implement with lots of parameter tuning. Yet it onlyexcelled
our overall result inTV × TD slightly by 3% less. On the other
hand, our direct heuristic approach of the(BPFIH + ID-Swap)
or (Align + Swap) optimizer is easy to implement.

Our optimizers against Li & Lim’s approach Performance statistics
Win Loss Tie

Align + Swap 5 30 21
PFIH + Swap 3 19 34
BPFIH + ID-Swap 9 9 38

Table 2. Comparing our proposed optimizers against Li & Lim’s results

Table 2 gives a direct comparison of our proposed(Align +
Swap), the original(PFIH+Swap) and refined(BPFIH+ID-
Swap) optimizer against Li & Lim’s metaheuristic approach based
on their individual results obtained on each test case. In terms of
number of wins, ties and loses, our refined(BPFIH + ID-Swap)
optimizer was surely the best among our search proposals with 9 re-
sults better than those of Li & Lim’s published results over the 56
test cases. The overall improvement could be explained by a better
initial solution generated by more ambitious BPFIH method and the
refinedID-Swap operator that aggressively looked for the greatest
improvements initially with a larger relocation pool size,and then
gradually decreasing the relocation size for opportunistic improve-
ments in the later stage.

Table 3 shows the detailed improvement of the(BPFIH + ID-
Swap) optimizer over Li & Lim’s metaheuristic approach on the
9 specific test cases of PDP-TW. Among the 9 winning cases as
shown in Table 3, there were more significant decreases inTD as
obtained by our improved(BPFIH + ID-Swap) optimizer on the

BPFIH + ID-Swap Li & Lim’s approach
Test Case TV TD TV TD

LC204 3 590.60(↓ 0.10%) 3 591.17
LR201 4 1253.23(↓ 0.84%) 4 1263.84
LR209 3 930.59(↓ 0.69%) 3 937.05
LRC106 11 1424.74(↓ 0.06%) 11 1425.53
LRC107 11 1230.14(↓ 0.0008%) 11 1230.15
LRC108 10 1147.43(↓ 0.05%) 10 1147.97
LRC201 4 1406.94(↓ 4.22%) 4 1468.96
LRC204 3 818.66(↓ 1.10%) 3 827.78
LRC206 3 1159.03(↓ 0.33%) 3 1162.91
LRC207 3 1062.05(↓ 25.45%) 3 1424.60

Table 3. Detailed improvement of our(BPFIH + ID-Swap) optimizer
over Li & Lim’s results on the9 winning cases

mixed LRC problems with larger vehicle capacity that flexibly allows
greater opportunity for improving the solutions after swapping cer-
tain customer pairs. On the other hand, as revealed in Table 2, there
were other9 cases where our improved optimizer lost to Li & Lim’s
approach in theTV or TD results. However, it should be noted that
our improved optimizer was simple and thus easy to implement/tune
as compared to Li & Lim’s metaheuristic approach integrating both
simulated annealing and tabu search that were undoubtedly more
complicated to implement/tune. Furthermore, all the published re-
sults obtained by Li & Lim’s metaheuristic approach were already
very much minimized and likely near-optimal as achieved through
their fine-tuned annealing schedule of the embedded simulated an-
nealing optimizer and its complex interaction with the tabusearch.
Therefore, it is in fact very difficult to further improve anyof their
published results on the set of56 modified test cases.

5 CONCLUDING REMARKS

In this paper, a formal definition [7] of the pickup and delivery prob-
lems with time windows (PDP-TW) was given as a more general and
challenging class of delivery problems. We proposed several inter-
esting initialization and repair heuristics, including the best-fit push
forward insertion heuristic (BPFIH) and the adaptive repair-based
AD-Swap operator to improve on the originally adapted push for-
ward insertion heuristic (PFIH) [10] and the previousSwap operator.
In general, our obtained results compared favorably against those of
Li & Lim’s tabu-embedded metaheuristic search proposal anda pre-
vious work [7] onSwap on a set of modified Solomon’s test cases.
Specifically, our(BPFIH+ID-Swap) optimizer outperformed Li
& Lim’s approach on9 test cases. This clearly demonstrates the fur-
ther optimizing capability of our improvedSwap operator over the
other heuristic approaches we have considered in this paper.

There can be many interesting directions for future investigations.
Examples include the investigation about the iterative-increasing
Swap (INCR-Swap) operator opposite to the iterative diminish-
ing resource allocation scheme. Besides, applying these improved
heuristics to solve other scheduling problems like the original deliv-
ery problems with time windows should be interesting.

ACKNOWLEDGEMENTS

We would like to thank the referees for their valuable comments. In
addition, we are grateful to Miss Lois Tseng who implementedthe
initial prototype of the(Align + Swap) optimizer used for experi-
mentation.



REFERENCES
[1] Braysy, O.: Genetic Algorithms for the Vehicle Routing Problem with

Time Windows. Special issue on Bioinformatics and Genetic Algorithms,
Arpakannus 1/2001.

[2] Glover, F.: Tabu Search - Part I. ORSA Journal on Computing, Volume 1,
Number 3, Summer, 1989.

[3] Holland, J.: Adaptation in Naturaland Artificial Systems. University of
Michigan Press, Ann Arbor, 1975.

[4] Jee, J.: Solving Vehicle Routing Problems with Time Windows using
Micro-Genetic Algorithms. Undergraduate Research Opportunity Project
(UROP) report, School of Computing, The National University of Singa-
pore, 1999/2000.

[5] Kancko, K., Yoshikawa, M., Nakakuki, Y.: Improving a Heuristic Re-
pair Method for Large-Scale School Timetabling Problems. Principles and
Practice of Constraint Programming - CP99, 5th International Conference,
Alexandria, Virginia, USA, October 11-14, 1999.

[6] Lau, H., Liang, Z.: Pickup and Delivery Problems with Time Windows:
Algorithms and Test Case Generation. inProceedings of the 13th IEEE
International Conference on Tools with Artificial Intelligence, Nov 7-9,
2001.

[7] Li, H., Lim, A.: A Metaheuristic for the Pickup and Delivery Problem with
Time Windows. inProceedings of the 13th IEEE International Conference
on Tools with Artificial Intelligence, Nov 7-9, 2001.

[8] Minton, S., Johnston, M., Philips, A., Laird, P.: Minimizing conflicts: a
heuristic repair method for constraint satisfaction and scheduling prob-
lems. Artificial Intelligence, 1992.

[9] Prosser, P., Shaw, P.: Study of greedy search with multiple improvement
heuristics for vehicle routing problems. Technical Report, RR/96/201,
Department of Computer Science, University of Strathclyde, Glasgow,
January 1997.

[10] Solomon, M.M.: Algorithms for the vehicle routing and scheduling prob-
lem with time windows. Operations Research,35:254-265, 1987.

[11] Tam, V., Tseng, L.: Effective Heuristics to Solve Pickup and Delivery
Problems with Time Windows. inProceedings of the 15th IEEE Interna-
tional Conference on Tools with Artificial Intelligence, Nov 3-5, 2003.

[12] Tsang, E.: Foundations of Constraint Satisfaction. Academic Press,
1993.


