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Abstract. This paper describes a learning system for the auto-
matic configuration of domain independent planning systems, based
on measurable features of planning problems. The purpose of the
Lazy Adaptive Multicriteria Planning (LAMP) system is to config-
ure a planner in an optimal way, concerning two quality metrics (i.e.
execution speed and plan quality), for a given problem according to
user-specified preferences. The training data are produced by run-
ning the planner under consideration on a set of problems using all
possible parameter configurations and recording the planning time
and the plan length. When a new problem arises, LAMP extracts
the values for a number of domain-expert specified problem features
and uses them to identify thek nearest problems solved in the past.
The system then performs a multicriteria combination of the perfor-
mances of the retrieved problems according to user-specified weights
that specify the relative importance of the quality metrics and selects
the configuration with the best score. Experimental results show that
LAMP improves the performance of the default configuration of two
already well-performing planning systems in a variety of planning
problems.

1 INTRODUCTION

Domain independent heuristic planning relies on ingenious tech-
niques, such as heuristics and search strategies, to improve the ex-
ecution speed of planning systems and the quality of their solutions
in arbitrary planning problems. However, no single technique has yet
proved to be the best for all kinds of problems. Many modern plan-
ning systems incorporate more than one such optimizing techniques
in order to capture the peculiarities of a wider range of problems.
However, to achieve the optimum performance these planners require
manual fine-tuning of their run-time parameters.

Few attempts have been made to explain which are the specific dy-
namics of a planning problem that favor a specific planning technique
and even more, which is the best setup for a planning system given
the characteristics of the planning problem. This kind of knowledge
would clearly assist the planning community in producing flexible
systems that could automatically adapt themselves to each problem,
achieving best performance.

This paper presents a learning system for dealing with the afore-
mentioned issue. The Lazy Adaptive Multicriteria Planning (LAMP)
system automatically configures the parameters (such as search di-
rection and agenda size) of a planner based on measurable character-
istics (such as number of actions per operator and mutual exclusions
between facts) of planning problems. Learning data are produced by
running the planner under consideration off-line on several planning
problems using all combinations of values for its parameters. When
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LAMP is faced with a new problem, it retrieves the recorded perfor-
mance (execution time and plan length) for all parameter configura-
tions of thek nearest problems and performs a multicriteria combi-
nation with user-specified weights. The configuration with the best
combined score is then used for running the planner with the new
problem.

The utility of LAMP was evaluated using two state-of-the-art do-
main independent planning systems. The results showed that LAMP
manages to increase their performance in a variety of planning prob-
lems. In addition, the use of different weights for planning speed and
plan length had the expected effect of biasing the planning systems
towards optimizing the corresponding performance criterion.

To further improve the results we also experimented with a feature
weighting method to deal with the potential noisy, interacting and
irrelevant features. Specifically, we adapted the RReliefF algorithm
[7] for attribute estimation in regression to the requirements of our
application domain.

The rest of the paper is organized as follows. Section 2 presents re-
lated work on automatic configuration of problem-solving systems.
Section 3 describes the features that were extracted from planning
problems. The next section describes the training data collection pro-
cess and the operation of the LAMP system, along with important
advantages and disadvantages. Section 5 presents our adaptation of
the RReliefF algorithm for feature weighting. Section 6 describes the
experimental setup and Section 7 the results and their discussion. The
last section concludes this work and points areas for improvements.

2 RELATED WORK

The idea of employing Machine Learning for the automatic config-
uration of problem-solving systems in order to solve specific prob-
lems effectively is not new. It has inspired researchers to develop
self-tuned AI systems that deal with problems in various areas, such
as Constraint Satisfaction, Planning and Machine Learning.

MULTI-TAC [6] is an Analytic Learning system for Constraint-
Satisfaction Problems (CSP). It automatically fine-tunes itself in or-
der to synthesize the most appropriate constraint satisfaction pro-
gram to solve a problem, using a library of heuristics and generic
algorithms.

Fink [3] has presented a methodology for selecting among differ-
ent search strategies and setting a time-bound for running the search.
The application domain that motivated him, was the PRODIGY plan-
ner [2] and the 3 different search strategies it employed. Fink’s
methodology relies mainly on statistical analysis of past performance
data. It extends this methodology with domain knowledge by con-
sidering just the problem size and using regression for predicting the
time-bound for the selected search strategy.

Two adaptive planners that were build with learning from perfor-
mance data of HAP (Highly Adjustable Planner) [10] are HAPRC



[11] and HAPNN [8]. Both are capable of automatically fine-tuning
their planning parameters based on features of the problem in hand.
The tuning of HAPRC is performed by a rule system, the knowl-
edge of which has been induced through the application of rule learn-
ing over a dataset containing performance data of past executions of
HAP. The tuning of HAPNN is performed through instance-based
learning that enables the incremental enrichment of its knowledge
and allows users to specify their level of importance on the criteria
of plan quality and planning speed.

The proposed system, LAMP (Lazy Adaptive Multicriteria Plan-
ning), uses a generalization of the learning methodology of
HAPNN that can be utilized by any modern parameterized domain-
independent planning system. In addition, it incorporates a feature
weighting approach.

Various approaches of automatic system tuning have recently ap-
peared in the domain of Machine Learning itself. Learning is em-
ployed in order to either select the best configuration of a learning al-
gorithm, or the most suitable one from a pool of learning algorithms,
based on measurable features of the learning problem at hand. Such
approaches are commonly referred to as Meta-Learning [9].

3 FEATURE EXTRACTION

An important decision in the design of any successful learning sys-
tem is the selection of appropriate experience (training data). For
LAMP this comes down to the selection of suitable problem features
that correlate with the performance of the different planner config-
urations. Therefore, a first necessary step that we performed was a
theoretical analysis of planning problems, in order to discover salient
features that could influence the choice of planning parameters.

Our main concern was to select attributes that their values are
easily calculated rather than complex attributes that would cause a
large overhead in the total planning time. Therefore, most of the at-
tributes come directly from the PDDL (Planning Domain Definition
Language) files, which are the default input to planning systems, and
their values can be promptly calculated.

A second concern which influenced the selection of attributes was
the fact that they should be general enough to be applied to all do-
mains and their values should not depend so much on the size of
the problem. Otherwise the knowledge learned from easy problems
would not be applied effectively to difficult ones. For example, in-
stead of using the number of mutexes (mutual exclusions between
facts) in the problem as an attribute that strongly depends on the size
of the problem (larger problems tend to have more mutexes), we di-
vide it by the total number of dynamic facts and this attribute (mutex
density) identifies the complexity of the problem without taking into
account the problem size. This is a general solution followed in all
situations where a problem attribute depends nearly linearly on the
size of the problem.

Taking the above into consideration we resulted in a set of 26 nu-
merical characteristics, which can be divided in two categories: The
first category refers to simple and easily measured characteristics of
planning problems, e.g. number of actions per operator, that source
directly from the input files. The second category consists of more
sophisticated characteristics that arise from features of modern plan-
ners, such as mutexes or orderings (between goals and initial facts).
These characteristics are useful even for the automatic configuration
of planners that do not exploit them, since they capture interesting
aspects of the problems’ morphology. Moreover, there exist very ef-
ficient implementations of techniques for sensing their values and the
overhead imposed by them is quite low.

4 THE LAMP SYSTEM

LAMP uses a lazy learning approach. Therefore, the training of the
system simply requires the collection of the training data. This pro-
cess is discussed in the following subsection. The second subsection
describes the methodology for selecting the optimal configuration
according to user preferences using the k Nearest Neighbors (kNN)
algorithm. The last subsection describes advantages and disadvan-
tages of LAMP compared to past related approaches.

4.1 Collection of training data

The training data concern the performance of the planning system
under consideration on a number of planning problems using all
combinations of values for its planning parameters. The whole pro-
cess of recording the training data is illustrated in Figure 1.
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Figure 1. The process of training data collection.

For each run of the planner we record the features of the problem,
the performance of the planner (steps of the resulting plan and re-
quired planning time) and the configuration of parameters. The latter
two are recorded straightforwardly as they are the input and output of
the planning system. For the efficient calculation of the problem fea-
tures we developed a problem analyzer that takes as input the PDDL
files of the planning problem and outputs the values of the features.

The training data were organized as a multi-relational data set,
consisting of 2 primary tables,problems(M rows) andparameters
(N rows), and a relation tableperformances(M ∗N rows), in order
to save storage space, enhance the search for thek nearest neighbors
and speed up the retrieval of the corresponding performances.

4.2 Selection of the optimal configuration

Given a new planning problempn, LAMP first calculates the values
of the problem features using the problem analyzer. Then thekNN
algorithm [1] is engaged in order to retrieve theids of thek nearest
problems from theproblemstable. In the implementation ofkNN we
use the Manhattan measure with the normalized values of the prob-
lem attributes to calculate the distance betweenpn and all problems
px in theproblemstable:

δ(pn, px) =
∑

f

|pn(f)− px(f)|
max(f)−min(f)

(1)

where f is a problem feature,pn(f) and px(f) the values of
this feature for problemspn andpx respectively andmax(f) and
min(f) are the maximum and minimum values of this feature.

The ids of thek nearest problems are then used by LAMP to re-
trieve the corresponding plan steps and planning time for all possi-
ble configurations from theperformancetable. The next step is to
combine these performances in order to suggest a single parameter
configuration with the optimal performance.



Optimal is however susceptible to user preferences, i.e. a shorter
plan is usually preferred than a longer one, but there are cases (e.g.
real time systems) where the planner must respond promptly even
at the expense of the quality of the resulting plan. Since, these two
criteria (fast planning, short plans) are contradictory, it is up to the
users to set up their priorities.

LAMP has the advantage of letting the users express their prior-
ities through two parameters:ws (weight of steps) andwt (weight
of time). The overall planner performance is calculated as a multi-
criteria combination of the steps and time based on these weights.
Specifically, the widely used Weighted Sum method [5] is applied
to obtain an overall score from the two criteria, which must first be
normalized.

Let Sij be the number of plan steps andTij be the required time to
build it for problemi (i=1..k) and planner configurationj (j=1..N).
First, we find the shortest plan and minimum planning time for each
problem among the tested planner configurations:

Smin
i = min Sij T min

i = min Tij

Then, we normalize the results by dividing the minimum plan
length and minimum planning time of each run with the correspond-
ing problem value.

Snorm
ij =

Smin
i

Sij
T norm

ij =
T min

i

Tij

Subsequently LAMP calculates an overall score as the average of
the normalized criteria weighted by the user-specified weights:

Scoreij = ws ∗ Snorm
ij + wt ∗ T norm

ij

Finally, LAMP averages the planner configuration scores across
thek nearest problems and outputs the one with the largest average.
The whole process is illustrated in Figure 2. 
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Figure 2. Predicting the best parameter configuration for a problem.

4.3 Advantages and disadvantages

LAMP allows users to specify their priorities for steps and time
through the values of the corresponding weights. As it is shown from
the experimental results, setting the weights in favor of either of the
criteria has the desired effect on the planner performance. This is a
very useful feature of LAMP that is feasible due to the use of a lazy
learning approach. An eager learning algorithm would require users
to wait until a new model is built for the specific weights, before it
can be used to predict the optimal planner configuration. This would
increase the complexity of the approach and lead to an inflexible sys-
tem.

Lazy learning offers another important advantage. It is not nec-
essary to train a different model when a new bunch of training data
are produced. This makes it possible to incrementally enrich LAMP
with new problems and thus enhance its predictive performance. For
each new problem, the training data collection process is followed
off-line and the produced data are added to theproblemsandperfor-
mancestables. LAMP can then immediately take advantage of this
new information, as it does not require re-training.

In addition, it is worth noting that LAMP can actually output a
vector of average scores for all parameter configurations instead of
a single parameter configuration. This can be exploited for example
in order to output the top 10 configurations and let the user decide
amongst them. Another useful aspect of the ordering of the configu-
rations for non time-critical applications is to run the planner with the
top performing configurations sequentially or in parallel and obtain
the smallest plan.

The disadvantages of LAMP are increased storage needs and time
during prediction. The system must locate thek nearest problems of
a new problem, which requires a scan of all records in theproblem
table and calculation of distances, and then retrieve the performances
throughk disk accesses at theperformancetable in the worst case.
However, there exist efficient indexing techniques for reducing the
complexity ofkNN queries in large databases. In any case, the clas-
sification time is only a fraction of the total planning time for real-
world planning problems.

5 FEATURE WEIGHTING

A known limitation of lazy learning algorithms of thek-nearest
neighbor (kNN) family is their sensitivity to irrelevant, redundant,
interacting and noisy features. As we were uncertain about the util-
ity of the features that were extracted from planning problems by the
domain-expert analysis, we decided to adopt a feature pre-processing
method.

Wettschereck et. al [12], argue that feature weighting methods tend
to outperform feature selection algorithms for tasks where some fea-
tures are useful but less important than others. In the same study it
has been shown that feature weighting methods that use performance
feedback to assign weight settings require less pre-processing, per-
form better in the presence of interacting features and generally re-
quire less training data to learn good settings. For the above reasons
that hold in our application domain, we decided to employ a perfor-
mance feedback feature weighting method.

Specifically, LAMP performs feature weighting based on the
adaptation of the Relief algorithm for attribute estimation in regres-
sion [7]. RReliefF’s estimateW [A] of the quality of an attributeA is
given by the following equation:

W [A] =
PdC|dAPdA

PdC
− (1− PdC|dA)PdA

1− PdC
(2)

wherePdA is the probability that the nearest instances to an in-
stance have different values for attributeA, PdC is the probability
that the nearest instances to an instance have different predictions
andPdC|dA is the probability that the nearest instances to an instance
with different values for attributeA have different predictions.

To approximate these probabilities, the RReliefF algorithm ran-
domly selectsm instancesRi from the training set and for each one
of them it finds itsk nearest instancesIj . For each of the nearest
instances it updates the probability estimates by considering the dif-
ference of the values of each attribute A betweenRi andIj and the
differences in predictions.



However, in our case the prediction is associated with a vector of
scores for the different configurations, instead of a single number.
To deal with this problem we employedPearson’s product-moment
correlation coefficient(r) that measures the linear correlation of two
such vectorsX, Y of sizen:

rXY =
n

∑
XY − (

∑
X)(

∑
Y )√

[n
∑

X2 − (
∑

X)2][n
∑

Y 2 − (
∑

Y )2]
(3)

This returns a number between -1 and 1, where 1 indicates posi-
tive correlation, -1 negative correlation and 0 no correlation. Within
RReliefF we estimate the difference in prediction as1 − rXY , so
that perfectly correlated configuration scores have 0 difference and
perfectly uncorrelated ones have a difference of 1.

6 EXPERIMENTAL SETUP

For the evaluation of the learning performance of LAMP, an actual
domain-independent planning system along with the descriptions of
several planning problems are required in order to collect the neces-
sary data. The next two subsections deal exactly with these issues.
The first describes the planning systems and the following the plan-
ning problems that were used.

6.1 The planning systems

LAMP was used for the automatic configuration of LPG [4] and HAP
[10], two publicly available state-of-the-art planning systems from
two different research groups working on domain-independent plan-
ning. LPG is a planning system that performs stochastic local search
in temporal Action Graphs. It can be customized through a number
of parameters, but for the purposes of this research we selected the 4
with the maximum impact on the performance of the planner, which
are outlined in Table 1. HAP is a planning system that performs a
classical search in the space of states. It uses various heuristic mech-
anisms in order to enhance this search. The system can be configured
through the 7 planning parameters that are outline in Table 1.

Table 1. The planning parameters of LPG and HAP and their value sets.

Planner Parameter Value Set

LPG Heuristic {1, 2}
Restarts {25, 50, 75}
Search Steps {100, 500, 1000}
IChoice {1, 2, 3, 4}

HAP Direction {0, 1}
Heuristic {1, 2, 3}
Weights (w1 andw2) {0, 1, 2, 3}
Penalty {10, 100, 500}
Agenda {10, 100, 1000}
Equal Estimation {0, 1}
Remove {0, 1}

6.2 The planning problems

For the production of training data we run LPG and HAP using all
possible parameter configurations on a total of 450 planning prob-
lems, which correspond to 30 planning problems from each of the
15 planning domains, outlined in Table 2. Some problems were not

solved by any configuration of LPG and HAP. These were excluded
from learning as they do not offer any information. The actual num-
ber of problems per domain that were used for training LAMP for
each planner are given in the last two columns of Table 2.

Table 2. Planning domains, their sources and the number of problems
solved by at least one configuration for each of the two planners.

Domain Source LPG HAP

Assembly New domain 30 29
Blocks-world (3 operators) Bibliography 30 30
Blocks-world (4 operators) AIPS 98, 2000 30 30
Driver AIPS 2002 30 30
Ferry FF collection 28 28
Freecell AIPS 2000, 2002 9 30
Gripper AIPS 98 30 30
Hanoi Bibliography 17 28
Sokoban New domain 15 28
Logistics AIPS 98, 2000 30 30
Miconic-10 AIPS 2000 28 30
Mystery AIPS 98 29 30
Tsp FF collection 30 30
Windows New domain 30 30
Zeno AIPS 2002 29 30

Total 395 443

7 RESULTS AND DISCUSSION

This section evaluates a) the usefulness of LAMP in boosting the per-
formance of the planning systems with and without feature weight-
ing, and b) the effect of the multicriteria weights on the performance
of the planner in terms of plan steps and planning time.

7.1 Evaluating the performance

10-fold cross-validation was used to accurately evaluate the auto-
matic configuration of LPG and HAP by LAMP. Specifically the
original sets of problems (395 for LPG and 443 for HAP) were split
into 10 problem sets of equal size. The training set for each fold was
used to calculate the feature weights using our adaptation of RReli-
efF and to find thek nearest problems for each of the problems in
the test set, using a) the weights selected by RReliefF, b) all weights
equal to 1.

The default configuration of each planner served as a baseline for
comparison with its automatic configuration as predicted by LAMP.
We used equal weightsws and wt for the two performance met-
rics and varied the number of nearest neighbors from 1 to 20. We
recorded the score of the default and predicted configurations on all
problems and calculated the averages. Figure 3 shows the average
score of LAMP with and without the feature weighting method for
the different number of nearest neighbors along with the score of the
default configurations for LPG and HAP.

A first conclusion stemming from the experimental results is that
LAMP manages to achieve a good boost in performance compared to
that of the default configurations of the planners, especially for values
of k greater than 2. The best results were noticed for a value ofk
equal to 10 and the feature weights that were calculated by RReliefF.
This led to a gain of 6% in the performance of LPG and 10% in the
performance of HAP.

The results show that LAMP manages to achieve better perfor-
mance in the automatic configuration of HAP than of LPG. A rea-
son behind this could be the fact that the training data for HAP are
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Figure 3. Average score of (a) LPG and (b) HAP using their default
configurations and the automatic configurations selected by LAMP with and

without the RReliefF feature weighting method.

10% more than that of LPG. Another reason is that HAP with 7 tun-
able parameters is more flexible than LPG that only has 4. It seems
plausible that the larger the space of configurations, the better the
adaptation. However, a larger configuration space imposes a higher
computational cost for training data collection.

A second conclusion from the experimental results is that RReli-
efF manages to increase the performance of LAMP on average, but
it does not seem to make a statistically significant contribution. This
probably means that Pearson’s product-moment correlation coeffi-
cient is not a suitable statistic for this kind of problems. The truth is
that the large number of degrees of freedom (70 for LPG and 862 for
HAP) make the coefficient unreliable, especially as it is insensitive
to whether the differences of the vectors concern the best perform-
ing configurations, that actually influence the selection of the best
configuration, or not.

7.2 Evaluating the multicriteria weights

In order to evaluate the effect of the multicriteria weights on the per-
formance of the planners, we run LAMP with three different sets of
weights: a)ws=1, wt=1, b) ws=1, wt=2, and c)ws=2, wt=1. Fig-
ure 4 compares the average normalized steps and time for the three
different weight settings for all nearest neighbors.
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Figure 4. Normalized steps and time of LPG and HAP.

An important conclusion from these graphs is that setting the
weights in favor of planning speed or plan quality has the desired
effect on the performance of the planners. We notice that normalized
steps are increased for larger weight to steps and decreased for larger
weight to time. The same applies to normalized time.

8 CONCLUSIONS AND FUTURE WORK

This work combines two important areas of Artificial Intelligence.
It utilizes Machine Learning to adapt domain independent Planning
systems to a) the given planning problem that they have to solve and
b) the preferences of the users in terms of plan quality and execu-
tion speed. The experimental results showed that LAMP generalizes
successfully from past runs of at least two well-performing planning
systems and manages to boost their performance on a variety of plan-
ning problems.

In the future we plan to find paths to further improve the perfor-
mance of LAMP. A first thing to research into is an effective feature
weighting or feature selection method, taking into account the vector
of scores. A related line of research involving Knowledge Engineer-
ing for Planning is the extraction of more informative features from
the planning problems. Finally we intend to investigate the effect of
a weighted distancekNN approach.
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