
Flexible Demand Assignment Problem
∗@Fan Wang and ∗Andrew Lim and +Hong Chen 1

Abstract. This paper proposed a state-of-the-art local
search for solving Flexible Demand Assignment problem
(FDA) which considers the balance between revenue and cost
in demand assignment. Different than the published studies,
our research splits the FDA problem into three core subprob-
lems as operators for neighborhood construction. The three
specified subproblems One Bin Repack, Two Bins Repack
and Unpack are proposed completely based on mathemati-
cal modelling, computational complexity, executive conditions
and greedy solving methods. Benchmark experimental results
have shown that the proposed local search improved to the
best published heuristics by 2.34%.

1 Introduction

In business operations and manufacturing societies, the de-
mand assignment model is quite popular and widely applied.
Considering the various configurations of products and raw
materials, the operations planners have to seek the optimal as-
signment results to minimize the cost. For instance, the well-
know bin packing problem [3] studies how to use the minimal
number of bins to cover all required items satisfying the ca-
pacity constraint that the total size of the items in each bin
cannot exceed the corresponding fixed capacity of that bin.

However, in most real applications in manufacturing and
supply chain management, the planner must incorporate the
revenue versus cost trade-off in the production planning deci-
sion, namely Flexible Demand Assignment (FDA). The task of
FDA is to exploit demand flexibility during production plan-
ning to optimize both revenues and costs. Compared with
the classical demand assignment model, such as the bin pack-
ing problem, each item in the FDA has a flexible demand
rather than the fixed demand. Under the capacity constraint
that the total size of the items in each bin cannot exceed
the corresponding fixed capacity of that bin, the goal of FDA
is to find the optimal net contribution to balance the rev-
enues and costs, rather than to minimize costs only. The FDA
model generalizes both the well-know capacitated plant loca-
tion problem with single-source constraints [2] [6] and the bin
packing problem [8] [7]. It is therefore NP-hard. The standard
bin packing and capacitated plant location problem assume
fixed item size or fixed demand, whereas the FDA model ac-
counts for expandable items or flexible demand.

The FDA problem was first studied by Barlakrishnan and

1 ∗Department of Industrial Engineering and Engineering Manage-
ment, Hong Kong University of Science and Technology, Clear
Water Bay, Hong Kong. + Department of Computer Science and
Technology, Tsinghua University, Beijing, China. @ Correspond-
ing Author, email: fanwang@ust.hk

Geunes. The FDA was formulated as a profit-maximizing
mixed-integer programming model with an embedded pack-
ing subproblem using “expandable” items [1]. A lot of tech-
niques in operation research have been proposed to solve the
FDA, which include a Lagrangian relaxation scheme that de-
composes the FDA into a set of knapsack subproblems, La-
grangian based heuristic, bin packing based heuristic and lin-
ear programming routing heuristic.

This paper proposes a new local search under a specified
neighborhood to solve the FDA problem efficiently. Compared
with the published methods, the new local search heuristic is
simple, more accuracy and has a shorter running time. In our
research, we first studied a key component subproblem of the
FDA - Single Bin FDA (SBFDA). Then, three specified oper-
ators for neighborhood construction were discussed in terms
of modelling, executive conditions and solving methods. A
state-of-the-art local search heuristic was then developed un-
der these three operators. The experimental results on bench-
mark data have shown that the proposed simple local search
outperforms all the published methods significantly.

2 Problem Statement

We state the FDA problem formally by the following nota-
tions. Let I be the set of items and J be the set of bins. For
each item i(i ∈ I), Ri represents the constant unit revenue for
i. li, ui denote the minimum (lower) and maximum (upper)
size of item i. For each bin j(j ∈ J), Cj denotes the fixed
cost while Wj means its capacity. We also denote r as the
unit recycling cost if the capacity of a bin is not fully occu-
pied. Given the above parameters of item set I and bin set
J , the task of the FDA is to decide which bin to use, which
items to assign to each selected bin, and for each item, what
item size to produce within its specified size range. The FDA
maximizes the net contribution to profit, defined as the total
revenue from items less the cost and the recycling costs of the
used bins, whose objective function is formulated as follows:

(FDA) Maximize∑
i∈I

∑
j∈J

Risij −
∑
j∈J

Cjzj − r
∑
j∈J

(Wjzj −
∑
i∈I

sij)

subject to
(1) Assignment:∑

j∈J
xij = 1,∀i ∈ I

(2) Item size range:
lixij ≤ sij ≤ uixij ,∀i ∈ I, j ∈ J
(3) Bin capacity:∑

i∈I
sij ≤ Wjzj ,∀j ∈ J , and

(4) Nonnegativity and integrality
sij ≥ 0, xij ∈ {0, 1}, zj ∈ {0, 1},∀i ∈ I, j ∈ J

where there are three sets of decision variables:
(1) Bin selection: zi = 1 if bin j is used, 0 otherwise;
(2) Item-to-bin assignment: xij = 1 if item i is assigned to

bin j, 0 otherwise;
(3) Item sizing: sij = size of item i assigned to bin j.
If the minimum size is equal to the maximum size for each

item, e.g. li = ui,∀i ∈ I, the FDA problem is reduced to the
capacitated facility location problem with the restriction that
each customer must be assigned to a single facility. Further-
more, the FDA can be reduced to a one dimension bin packing
problem when all fixed-sizing items have the same unit rev-
enue and all bins are identical in cost and capacity. Hence,
FDA is an NP-hard problem because of the NP-hardness of
the bin packing problem [4].

3 Single Bin Flexible Demand Assignment

In this section, we will present a special case of FDA, FDA
for single bin, and prove its optimal solution.

If there is only one bin, the question of FDA becomes
how to pack all the items into a single bin to maximize the
net contribution. We call this problem Single Bin Flexible
Demand Assignment (SBFDA) and it is formulated as
follows:

(SBFDA) Maximize∑
i∈I

Risi − C − r(W −
∑

i∈I
si)

subject to
Item size range:
li ≤ si ≤ ui,∀i ∈ I, and
Bin capacity:∑

i∈I
si ≤ W

We present a greedy algorithm to obtain the optimal
solution for SBFDA in Algorithm 1. The input instances
are split into three cases: (1) if the capacity of the bin is
bigger than the total upper size of all the items, we expand
all the items to their upper sizes to obtain the revenue in
maximum; (2) if the capacity of the bin is smaller than
the total lower size of all items, we return the output
”Impossible”, which means it is impossible to pack all the
items into the bin; (3) in the third case, we first pack all the
items into the bin by their lower size. Then the size of each
item is expended one by one from its lower size to its upper
size, in the order of their revenue, until the bin is fully packed.

PROPOSITION 1. The solution obtained by algorithm
Greedy-SBFDA is the optimal one for SBFDA.

Proof : Figure 1 illustrates the proof. We proof it by contra-
diction as follows. For an instance {{Ri}, C, W, r, {li, ui}}, the
optimal solution is denoted as {s∗}. Since {s∗} is not obtained
by the method of algorithm Greedy-SBFDA where items
are resized in order of their revenues, there should be two
items i and j satisfying Ri > Rj and s∗i − li < s∗j − lj . Then,
we can modify s∗i and s∗j to obtain a better solution than
{s∗}, i.e. s′i = min{ui, s

∗
i + (s∗j − lj)} and s′j = s∗i + s∗j − s′j .

Therefore, we have Ris
′
i + Rjs

′
j > Ris

∗
i + Rjs

∗
j . In the

above modification, since the total size of all the items keeps
unchange, we get a better net contribution after resizing
items i and j. Hence, {s∗} is not the optimal solution for
SBFDA.

Algorithm 1 Greedy-SBFDA

if
∑

i∈I
ui ≤ W then

return {si = ui},∀i ∈ I;
end if
if

∑
i∈I

li ≥ W then
return ”Impossible”;

end if
if

∑
i∈I

li ≤ W <
∑

i∈I
ui then

set si = li,∀i ∈ I;
I ′ = sort(I, Ri);
SumSize =

∑
i∈I

si;
while SumSize < W do

i = Pop(I ′);
if SumSize + (ui − li) ≤ W then

si = ui, SumSize = SumSize + (ui − li);
else

si = si + (W − SumSize), SumSize = W ;
end if

end while
return {si},∀i ∈ I;

end if

W

Objective Function

Item’1

Item’2

Item’|I|

Sum(Rili)-C

Sum(Riui)-C

Recycling cost

Sum(li) Sum(ui)

Figure 1. Proof of PROPOSITION 1

4 Neighborhood

In this section, three efficient operators are created for neigh-
borhood construction of search. In fact, they are the three core
subproblems of FDA. Their mathematical modelling, compu-
tational complexity, executive conditions and solving methods
will be discussed.

4.1 One Bin Repack

One Bin Repack (1-Repack) resizes all the items within one
bin (denoted as “Bin 1”) to obtain the maximum net contribu-
tion, illustrated in Figure 2. The goal of 1-Repack is to modify
the size of each item within its specified size range to increase
the total revenue while the recycling cost is decreased. It is
clear to see that 1-Repack is the same as SBFDA which can
be solved by Algorithm 1 optimally in O(|J |) time. The ex-
ecutive condition of 1-Repack is

∑
xi1

ui > W1 in the current
solution. Otherwise, the repack gives no added-value to the

net contribution if all the items have been expanded to their
upper size at the beginning.

Figure 2. 1-Repack

4.2 Two Bins Repack

Illustrated by Figure 3, the Two Bins Repack (2-Repack)
operator includes two steps: first, we unpack all the original
items from two bins (denoted as “Bin 1” and “Bin 2”);
second we repack all the unpacked items into these two
empty bins to obtain the maximum net contribution. The
executive condition of 2-Repack is either

∑
xi1=1

ui > W1

or
∑

xi2=1
ui > W2. Otherwise, such a repack gives no

added-value to the net contribution if all the items have been
resized to their upper sizes in the beginning.

Figure 3. 2-Repack

The goal of the 2-Repack operator can be modelled by the
following mix-integer programming model.

(2-Repack) Maximize∑
i∈I

2∑
j=1

Risij −
2∑

j=1

Cjzj − r

2∑
j=1

(Wj −
∑
i∈I

sij)

subject to
Assignment:
xi1 + xi2 = 1,∀i ∈ I
Item size range:
lixij ≤ sij ≤ uixij ,∀i ∈ I, j = 1, 2
Bin Capacity:∑

i∈I
sij ≤ Wj ,∀j = 1, 2, and

Nonnegativity and integrality
sij ≥ 0, xij ∈ {0, 1}, zj ∈ {0, 1}∀i ∈ I, j ∈ J

PROPOSITION 2: The problem 2-Repack is NP-hard.
Proof : We set a special instance to reduced the 2-Repack

problem to a Partition-2 problem [4]. Assume it has fixed
item size, i.e., li = ui = ki(∀i ∈ I) and unique bin capacity

W1 = W2 =

∑
i∈I

ki

2
, the problem becomes that how to

assign these sizes ({ki}) into two parts (W1 and W2) such

that
∑

i∈Bin1
ki =

∑
i∈Bin2

ki exactly. Because of the NP-
hardness of the Partition-2 problem, the 2-Repack problem
is also NP-hard.

We will develop a two-stage algorithm to solve the 2-
Repack problem: 2-Partition + 1-Repack. The high level part
2-Partition focuses on partitioning items into two parts. Once
the partition is determined, 1-Repack is applied to obtain
the best resizing solution for the items in each bin. Here, we
have two strategies for the high level 2-Partition stage:

1. Exact Algorithm: using DFS with pruning to enumerate all
possible partition solutions;

2. Local Search Heuristic: a local search heuristic with “opt-
2” neighborhood where two items in separate bins are ex-
changed to produce a new solution in each iteration.

4.3 Unpack

Suppose there are N bins originally (N = |J |). The Unpack
operator first unpacks all the items in one bin (denoted
as “Bin 1”). Then it repacks all the above unpacked items
(denoted as I∗ = {i|i ∈ Bin1}) to the N − 1 remaining bins
(denoted as J ′ = J −{1} including “Bin 2”, “Bin 3”, ..., “Bin
N”) and resizes both the adding items I∗ and the original
remaining items I − I∗ for each bin. Different from operators
1-Repack and 2-Repack, the Unpack operator can reduce
the number of selected bins. Figure 4 illustrates the Unpack
operator.

.

.

.

Figure 4. Unpack

The goal of Unpack is to determine which remaining bin
should receive each unpacked item and how to resize all the
items to get the maximum net contribution. The following
mix-integer programming model formulates the problem of
Unpack.

(Unpack) Maximize∑
i∈I

∑
j∈J′

Risij −
∑
j∈J

Cj − r
∑
j∈J′

(Wj −
∑
i∈I

sij)

subject to
Assignment:∑

j∈J′ xij = 1,∀i ∈ I∗

Item size range:
lixij ≤ sij ≤ uixij ,∀i ∈ I, j ∈ J ′

Bin Capacity:∑
i∈I

sij ≤ Wj ,∀j ∈ J ′ , and

Nonnegativity and integrality
sij ≥ 0,∀i ∈ I, j ∈ J ′ and xij ∈ {0, 1},∀i ∈ I∗

PROPOSITION 3. The problem Unpack is NP-hard.
Proof : We set a special instance that all items are located

in “Bin 1” and the remaining N −1 bins are empty originally,
i.e., xi1 = 1, xij = 0,∀i ∈ I, j ∈ J ′. Hence, the problem
Unpack is reduced to our original FDA problem whose
NP-hardness has been proved. Therefore, problem Unpack is
NP-hard.

A greedy heuristic is proposed to solve the Unpack
problem, described in the following four steps, where
W ′

j = Wj −
∑

i∈I
xij lij ,∀j ∈ J ′ is defined as the potential

left space for each remaining used bin.
[Step 1]: fix all items to their lower sizes, i.e.,

sij = lixij ,∀i ∈ I and j ∈ J ;
[Step 2]: sort the remaining bins of J ′ in the decreasing

order of their potential left size W ′
j ,∀j ∈ J ;

[Step 3]: use the Best-Fit Decreasing scheme from solving
the one dimension bin packing problem to add unpacked
items of I∗ one by one into the remaining bins J ′;

[Step 4]: resize all items in each bin by using operator
1-Repack.

The above heuristic consists two parts. First, the sizes of
all the items are fixed to their lower sizes and the Best-Fit
scheme is applied to the assignment of the unpacked items
greedily. Then, for each bin, the size of their own items are
resized optimally by SBDFA.

Here, we will also discuss a special case of Unpack where
a new constraint is added so that each bin can be inserted
into at most one item only. We call it Single Unpack which
is formulated by the above mix-integer programming model
plus the following Single Assignment constraint:

Single Assignment:∑
i∈I∗ xij ≤ 1,∀j ∈ J ′

PROPOSITION 4. Problem Single Unpack can be
solved optimally in polynomial time if the number of remain-
ing bins is not smaller than the number of unpacked items,
i.e., |J ′| ≥ |I∗|.

Proof : We model the problem Single Unpack as a Max-
imum Weighted Bipartite Matching [5]. An undirected
weighted graph G = (V, E) is built as shown Figure 5. The
vertices set is the union of two disjoint sets - V = I∗ ∪ J ′

where I∗ represents the set of unpacked items and J ′ means
the set of remaining bins. Moreover, the weight of the edge
eij between the vertex i(i ∈ I∗) and the vertex j(j ∈ J ′) is
assigned by the added-value of net contribution if item i is
inserted into bin j. It can be calculated by SBFDA directly.
Numerous polynomial-time algorithms have been published
to find the optimal solution for Maximum Weighted Bipartite
Matching in polynomial time, such as the classical Hungarian
Algorithm. Hence, the problem Single Unpack can be solved
optimally in polynomial time.

5 Local Search

In this section, we will describe the local search heuristic al-
gorithm for solving FDA.

i*
1

i*
2

i*
| I*|

Bin 2

Bin 3

BinN

e 12

e13

e1N

e|I*|N

.

.

.
.
.
.

Item s

Bins

Figure 5. Single Unpack modelled by Weighted Bipartite
Matching Graph

5.1 Initial Solution

In the part of initial feasible solution generation, there are
two tasks - to determine the initial fixed size of each item
and to which bin it should be assigned. We have two ways to
determine the initial size of each item:

1. Random Distribution (RD): assign a random size to each
item between its specified upper size and lower size;

2. Uniform Distribution (UD): generate several initial in-
stances of item size on uniform distribution, i.e., sij =

q (ui−li)
p

+ li, q = 0, 1, · · · , p, where p is the number of in-
stances.

Moreover, three methods are applied to assign the items with
fixed size to the bins:

1. Best-Fit Decreasing (BFD): sort the items in decreasing
order of size, and sequentially assign them (in the sorted or-
der) to the open bin that has the least capacity remaining
after packing the item. If the current item does not fit in any
open bin, a new bin is opened.

2. Worst-Fit Decreasing (WFD): sort the items in decreas-
ing order of size, and sequentially assign them (in the sorted
order) to the open bin that has the most capacity remaining
after packing the item. If the current item does not fit in any
open bin, a new bin is opened.

3. Random-Fit Decreasing (RFD): sort the items in decreas-
ing order of size, and sequentially assign them (in the sorted
order) to any random open bin that has enough capacity to
pack the item. If none of the open bins have enough capacity
to pack the current item, a new bin is opened.

5.2 Algorithm

The local search algorithm is described in Algorithm 2. For
each initial solution, the local search is iterated many times. In
each iteration, first, the 1-Repack and 2-Repack operators are
run alternately to improve the the solution. If no improvement
could be found for the current solution by these two operators,
the Unpack operator is then applied.

6 Computational Results

In this section, we will show the assessment of effectiveness
of our local search for solving FDA, by comparing it to the

Algorithm 2 Local search for solving FDA

for m = 1 to M do
{M is the number of initial solutions}
call initial solution generation(m);
repeat

repeat
call 1-Repack operator;
call 2-Repack operator;

until No improvement found;
call Unpack operator;

until No improvement found;
end for
return CurrentBestSolution;

published methods under the benchmark data (Balakrishnan
2003).

The benchmark data was set up to evaluate the perfor-
mance of the heuristics for a wider range of parameter varia-
tion. There are five sets of data in total to consider the follow-
ing five impacts of different parameters on the performance
of various components in the solving methods:

Set 1: Nonidentical item sizes with one FDA instance;
Set 2: Large item size range with fixed bin capacity;
Set 3: Large variation of item size range with fixed median

of size and bin capacity;
Set 4: Variation of bin capacity with fixed distribution of

item size;
Set 5: Variation of unit revenue
Each set of data has 15 random instances - 5 instances each

of small (20 items), medium (40 items), and large (60 items)
problems. While, the number of available bins is from 5 to 24.

Based on the computational results supported by Geunes
on the same benchmark data (Balakrishnan 2003), Table 1
presents the average percentage that our local search heuristic
outperforms the published heuristics - CPLEX (a widely used
standard branch-and-bound solving software), LP-R (Lin-
ear Programming Rounding heuristic), BPEI (Bin-Packing
heuristic with Expandable Items) , LR (Lagrangian Relax-
ation) and BestP (the best result among LP-R, BPEI and
LR). The last row shows the overall improvement gap for the
whole benchmark data. Here, the results of CPLEX was ob-
tained based on the FDA mix-integer model within 4-hour
running time limit.

From the performance results of the four published heuris-
tics, in summary, the solution found by CPLEX is better than
the other three published heuristics. However, the accuracy
of the solutions found by CPLEX decreases as instance size
increases. It is due to the 4-hour running time limit. When
instance size increases, the branch-and-bound method cannot
generate enough nodes in the search tree. From the heuristic
of the bin packing problem, BPEI has the worst performance
in Set 1 where there are different bin capacities in the in-
stances. Different from BPEI, the performance of LR remains
constant even as we vary the parameters. From the exper-
imental results, our local search outperforms the above four
methods, improving CPLEX by 0.72%, LP-R by 7.32%, BPEI
by 4.28%, LR by 2.34% and BestP by 1.57% on average. In ad-
dition, the average running time for the local search is within
minutes. Moreover, the results produced by the proposed lo-
cal search are close extremely to the upper bound results.

We also compare the performance of the various methods of
initial solution generation for our local search. In terms of the
initial assignment of items, RFD is better than both the BFD
and the WFD heuristics from bin packing. We can clearly un-
derstand the difference between bin packing and FDA in this
point of view that a more diverse initial solution will bene-
fit the search of FDA. Similarly, RFD-RD outperforms RFD
since much more diversity will be added to the initial solution.

Table 1. Improvement Gap (%)

Improve to
Data CPLEX LP-R BPEI LR BestP
Set 1 0.52 10.56 7.93 2.70 2.70
Set 2 0.14 7.45 6.33 2.08 1.65
Set 3 0.38 6.36 2.35 0.76 0.62
Set 4 1.46 7.59 0.96 4.25 0.90
Set 5 1.19 4.49 2.79 1.96 1.66

Overall 0.72 7.32 4.28 2.34 1.57

7 Conclusions

FDA problem is an interesting and useful extension of the
bin packing problem. It considers the balance between rev-
enue and cost in demand assignment. Different than the pub-
lished studies, our research focus on the state-of-the-art ap-
proximation algorithm by splitting the problem into many
core subproblems as operators for neighborhood construction.
The three specified subproblems One Bin Repack, Two Bins
Repack and Unpack are proposed completely based on math-
ematical modelling, computational complexity, executive con-
ditions and greedy solving methods. Benchmark experimen-
tal results show that the above neighborhood helps the local
search to find an accurate solution effectively and significantly.

REFERENCES
[1] A. Balakrishnan and J. Geunes, ‘Production planning with

flexible product specifications: an application to specialty steel
manufacturing’, Oper. Res., 51(1), 94–112, (2003).

[2] J. Barcelo and J. Cansanovas, ‘A heuristic lagrangian algo-
rithm for the capacitated plant location problem’, Eur. J.
Oper. Res., 15, 212–226, (1984).

[3] M.R. Garey E.G. Coffman and D.S. Johnson, Approxima-
tion algorithms for bin-packing - An updated survey, 49–106,
Springer-Verlag, New York, 1984.

[4] M.R. Garey and D.S. Johnson, W.H. Freeman and Co., New
York, 1979.

[5] D.S. Johnson and C.C. McGeoch, Network flows and matching:
First DIMACS implementation challenge.

[6] J.G. Klincewicz and H. Luss, ‘A lagrangian relaxation heuristic
for capacitated facility location with single-source constraints’,
J. Oper. Res. Soc., 37(5), 495–500, (1986).

[7] R. Korf, ‘An improved algorithm for optimal bin packing’, in
Proceedings of the International Joint Conference on Artifi-
cial Intelligence (IJCAI-03), pp. 1252–1258, Acapulco, Mex-
ico, (August, 2003).

[8] R. Korf, ‘A new algorithm for optimal bin packing’, in Pro-
ceedings of the National Conference on Artificial Intelligence,
AAAI-02, pp. 731–736, Edmonton, Alberta, Canada, (July,
2002).

