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Abstract. A Soft Computing technique based on the combination
of neural networks and a genetic algorithm has been developed for
the discovery and optimization of new catalytic materials when ex-
ploring a high-dimensional space.
One possible application of this technique is the optimization of the
catalytic performance of new solid materials by exploring simultane-
ously a big number of variables as elemental composition, manufac-
ture procedure variables, etc. Another application is the optimization
of process conditions in catalytic reactors at industrial scale. Con-
sidering the high temporal and financial costs required for synthesiz-
ing and empirically testing potential solid catalysts, the application
of Soft Computing techniques in this field seems really interesting,
as the number of experiments could be reduced. The proposed sys-
tem has been validated using two hypothetical functions, based on
the modelled behaviour of multi-component catalysts explored in the
field of combinatorial catalysis. Moreover, this Soft Computing tech-
nique has been applied to an industrial problem, being possible to
obtain an optimize Ti-silicate catalyst for the epoxidation of olefins.

1 INTRODUCTION

One of the main objectives of the chemical industry consists of the
production of highly efficient catalysts that allow reactions to be pro-
duced in better conditions from the economic, safety and versatility
point of view. The financial benefits of an efficient catalyst are enor-
mous: lower operating costs, higher purity products, safer operating
conditions, etc. However, the discovery of new catalysts by the tradi-
tional method is an arduous and rather unpredictable trial-and-error
process [15].

The application of new technologies like automation, microme-
canics, microelectronics, etc. in chemistry and materials science has
increased exponentially the throughput of experiments, being possi-
ble at present to screen libraries of hundreds of materials in a single
day under realistic test conditions.

In the field of catalysis, these new experimental tools for mate-
rials synthesis, catalytic testing and physico-chemical characterisa-
tion enable to explore simultaneously a large number of variables
like multi-component catalyst formulation, synthesis conditions, cat-
alyst activation conditions, etc. The growth of those accelerated tools
was accompanied with the development of software techniques for
data management, multi-variable experimental design and data min-
ing. The research in catalysis applying accelerated experimental tools
combined with powerful computational techniques constitutes the
so-called combinatorial catalysis.
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An important issue in combinatorial catalysis is how to design the
experiments in order to explore and optimize the high-dimensional
solution space minimising the number of trials to achieve a solution.
The most suited procedure for the optimization of multi-dimensional
problems are the stochastic procedures, being the genetic algorithm
(GA) specially useful for their application in the field of combinato-
rial catalysis, since (i) GA uses a population of points to conduct the
search, being this approach appropriate for high-throughput tools, (ii)
the objective is to find an approximate global maximum and (iii) GA
tolerates noisy experimental data.

A promising novel approach [4], [9] is the combination of power-
ful data mining tools with high-dimensional optimization algorithms,
in such a way that the knowledge extracted from all the previous ex-
perimentations can be applied in the design of the new subset of cat-
alysts to be experimentally screened in the next optimization step. In
the present work, we describe a new optimization architecture em-
ploying a Soft Computing technique [18], [2] based on a genetic al-
gorithm (GA) coupled with an artificial neural network (ANN).

2 AIMS OF THE WORK

The discovery and optimization of new catalytic materials is a huge
process, due to its high temporal and economical costs. The main
purpose of this work is to develop a method that could reduce the
number of samples to be empirically tested, and also explore effi-
ciently the whole multi-variable space. Specifically, our approach is
based on the combination of neural networks and a genetic algo-
rithm. The genetic algorithm, based on real codification, allows to
deal with different problems in chemical engineering. Also, the neu-
ral network simulates the reaction process and allows to calculate the
fitness functions used by the genetic algorithm. Thus, the developed
architecture would be applied in the optimization of catalytic per-
formance of new solid materials by exploring simultaneously a big
number of variables as elemental composition, manufacture proce-
dure variables, etc. On the other hand, this technique would be em-
ployed in the optimization of process conditions in catalytic reactors
at industrial scale.

Moreover, this proposed Soft Computing technique seems suit-
able to be used in the combinatorial catalyst field. On the one hand,
artificial neural networks are suitable tools for modelling and predic-
tion of complex catalytic systems and have been applied in cataly-
sis, including different applications like the design of solid catalysts
[5], [7], [8], [12] for different reactions of interest. It has also been
described [4] the employment of ANNs for modelling experimen-
tal data derived from high-throughput experimentation, namely from
evolutionary strategies in material discovery. Another application of
ANN in catalysis deals with the modelling experimental kinetic data



[1], [13], being possible to obtain kinetic models for prediction of
catalytic reactor performance.

On the other hand, the GA is an effective optimization technique,
among other aspects, because it is a stochastic algorithm. It relies
on random elements in parts of its operations rather than being de-
termined by specific rules. Some recent applications of this kind of
algorithms in catalysis field are [16], [17]. Hence, the combination
of GA with an ANN seems suitable [11].

3 METHODOLOGY

A new optimization architecture based on the combination of a neural
network and a genetic algorithm has been followed. In figure 1, a
scheme of the architecture is shown.

Initially, a setting up process for establishing the Soft Computing
parameters and the initial population is carried out. Next, samples
of actual population are experimentally tested and then a training
process of the ANN is taken. After that, the genetic algorithm is ap-
plied in order to obtain the next generation of samples, employing the
ANN in its crossover operator. Then, the generation is empirically
tested in the reactor to obtain its empirical results. The whole pro-
cess is repeated again, starting from the ANN retraining with these
new empirical values.
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Figure 1. Soft computing architecture applied to experimental design in
catalysis

In the setting up process, the GA parameters are established.
Moreover, an initial set of individuals is obtained following a pro-
cess that guarantees enough diversity to start with. In this process,
several random generations are created and a statistical population
study is done in order to select the most diverse initial population.

In the experimental process, the current generation is tested empir-
ically in the reactor. Therefore, experimental results of the behaviour
of the samples are obtained. Those results will be lately used by the
GA to calculate the fitness value of each sample. In the case of a
simulated study, hypothetical functions can be used replacing exper-
imentation at lab scale.

Regarding the ANN training process, the results of the initial gen-
eration are used for training different neural network topologies, em-
ploying several training algorithms, in order to determine which one
can better model the reaction behaviour. If needed, more generations
can be used for selecting a suitable neural network. Lately, each
subsequently generation that has been empirically tested is divided
into training and test samples. The training set is used to retrain the
best neural network stored, whereas the test samples are employed to

compare the stored and the retrained neural networks. The one with
the lowest MSE error is selected and stored. Finally, the GA provides
a new generation of samples based on its mutation and crossover
operators. During the crossover process, the GA uses the ANN to
simulate the reaction process. So, the ANN allows to predict the in-
formation necessary to calculate the fitness function of each sample.
This genetic algorithm is detailed in the following section.

3.1 Genetic algorithm

The genetic algorithm attempts to find the optimal solution to the
problem by investigating many possible solutions simultaneously.
Over a number of generations, goods traits dominate the population,
resulting in an increase of the quality of the solutions. The efficient
working of the genetic algorithm requires a quick feedback of the
fitness values of the samples.

3.1.1 Genetic algorithm codification

Genetic algorithms are a very powerful tool, but they could be dan-
gerous if the problem codification is not appropriate. If the selected
codification for the problem was wrong, it would be possible that
the algorithm would solve a different optimization problem from the
one under study. In the problems faced in this paper, each variable
belongs to a continuous domain so it has been decided to adopt real
codification [6], [10].

In the codification, not only the element values are studied (such
as chemical concentrations, kinetic values, etc.), but also there are
some rules that guide and restrict the genetic algorithm. Specifically,
the maximum and minimum quantities for each element, subset and
set of elements are taken into account. Moreover, the number of el-
ements and subsets of them that can be selected in each moment is
determined. The maximum and minimum values are required both
because of the rules of the nature and economical reasons (for exam-
ple, there are good materials but very expensive, which should not
exceed some composition limits as the final catalyst would be very
expensive and not productive).

Concretely, each sample or chromosome is formed by zero or more
compounds and conditions. The compounds include those elements
whose chemical value must sum up 100%. On the other hand, a con-
dition represents a set of elements that have some properties in com-
mon or have to be studied all together (but the chemical values of
their elements do not have to sum up 100%).

A compound can have one or more sections. Each section groups
together those elements that follow specific characteristics. More-
over, sections are divided into subsections, which contain the ele-
ments of the sample.

Regarding conditions, they are split into types, subtypes and the
final elements. In figure 2 a chromosome formed by only one condi-
tion is shown.

All samples can be represented by the array of values of all pos-
sible elements that belong to the final sample. Not selected elements
will have zero value.

3.1.2 Genetic algorithm operators

The GA designs the new generations of samples using mutation
and crossover operators. Mutation operator modifies randomly genes
with a new value. The number of genes to mutate in each individual
is a parameter of the GA. Thus, the mutation is an explorer opera-
tor which looks for new solutions and prevents system to converge
quickly on a local maximum, avoiding loss of genetic diversity.
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Figure 2. Example of a chromosome codification formed by one condition

On the other hand, the crossover operator employed is based on
confidence intervals [10]. This operator is associated with the ca-
pacity of interpolation (exploitation), related to the belonging of an
individual to a confidence interval built from the best individuals of
the population (parents). It is also associated with the capacity of ex-
trapolation (exploration), derived from itsnot belonging to the same
confidence interval. To obtain that confidence interval, three new in-
dividuals formed by the lower ends, upper ends and means of the par-
ent samples are calculated. When an individual is crossed, the new
genes are obtained from the original ones, their belonging to the con-
fidence interval and the fitness values of the three confidence interval
individuals. In order to calculate this fitness value, it is required to
predict their catalytic results by means of the ANN, which simulates
the reaction process.

4 EXPERIMENTAL

The proposed system has been validated using two hypothetical func-
tions, based on the modelled behaviour of multi-component cata-
lysts explored in the field of combinatorial catalysis. Lately, this Soft
Computing technique has been applied to an industrial problem.

4.1 GA parameters optimization

An analysis of the different parameters of the GA has been carried
out. In this study the GA was used separately from the rest of the ar-
chitecture to avoid possible interferences. Therefore, the GA is em-
ployed alone and no ANN retraining process is taken. However, the
GA makes use of the predictions of a modelled ANN for its crossover
operator. Therefore, an initial generation was used for training and
testing several neural networks in order to find the most suitable
ANN topology for the problem under study. This ANN turned out to
be a multi-layer perceptron with 5 input nodes, 10 hidden nodes and
2 output nodes, trained with Backpropagation Momentum (learning
factor=0.8, momentum term=0.8).

All generations provided by the genetic algorithm were validated
by a hypothetical function previously used in [17] with another op-
timization approach. This hypothetical function (1) describes the de-
pendency of the catalyst composition with the final catalytic perfor-
mance in the oxidative dehydrogenation of propane and it replaces
the experimental process. This function was selected to allow com-
parison between [17] approach and our proposed method.

The catalyst variables considered in this model are the content of
five different elements: V, Mg, Mo, Mn and Fe. The objective func-
tion (1) to be maximized is the propylene yield (Y%), which absolute

maximum is around 7.5%.

Y = Y1Y2 (1)

Y1 = [66xV xMg(1−xV −xMg)+2xMo−0.1(xMn +xFe)] (2)

Y2 = [66xV xMg(1−xV −xMg)−0.1xMo+1.5(xMn+xFe)] (3)

∑
xi = 1, xi ≥ 0 (4)

In all the following studies, five runs of the algorithm were made
for each combination of parameter values, starting from the same
initial generation.

4.1.1 Study of mutation parameters

The aim of this study was to determine the best parameters for the
mutation process. The mutation probability (MP) and the number of
genes to mutate (Gen) were modified with the values: MP=5%, 10%,
15% and 20%; Gen=1, 2, 3, 4 and 5. The rest of parameters were
fixed to:α=0.5, population=50, parents=20%.

The evolution of the mean quality of each generation for the com-
binations of the mutation parameters is shown in figure 3. The com-
bination MP=5% and Gen=1 was chosen, as it allowed the GA to
obtain a good evolution of the quality through all generations.

Quality Evolution through Mutation Parameters Optimization Process
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Figure 3. Mean quality evolution in the study of mutation parameters

4.1.2 Study of crossover parameters

Theα parameter (which determines the size of the confidence inter-
val used by the crossover operator) and the parents parameter were
modified with:α = 0.3, 0.5, 0.7 and 0.9; parents=10%, 20%, 30%
and 40%. The other parameters were set to: population=50, MP=5%,
Gen=1. In figure 4 the evolution of the quality average for each com-
bination of these parameters is shown. The combinationα=0.9, par-
ents=10% is chosen.

4.1.3 Study of population parameter

The number of samples in each population is modified as follows:
population=25, 50, 75 and 100. The other parameters were set to:
PM=5%, Gen=1,α=0.9, parents=10%. In figure 5 the evolution of
the quality average is shown. All combinations were very similar, so
population=50 was chosen as this value is nearer to the real capacity
of the reactor.
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4.1.4 Discussion

The proposed Soft Computing technique has provided better results
for the hypothetical function (1) comparing to those results obtained
in [17]. In that paper the maximum quality value found was 7.5% and
six generations were needed with a population of 100 individuals. In
our case, only one generation is needed to obtain the maximum, with
a population of 25 individuals (figure 6). Moreover, the mean quality
of the samples evolves rapidly to the maximum, reaching near val-
ues from the 4th generation, whereas in [17] the mean quality comes
closer to those values from the 10th generation, employing in both
cases a population of 50 samples. Furthermore, that optimization al-
gorithm is more sensitive to the number of samples of the population.
Thus it needs more than 100 samples to reach the maximum quality
value whereas our approach obtains good results with only 25 sam-
ples.
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4.2 Soft computing technique validation

Another hypothetical function (5), based on the modelled behaviour
of multi-component catalyst explored in the field of combinatorial
catalysis, has been applied to validate the whole proposed method.

Y (x1, x2, x3, x4, x5) = zi(x1, x2)+zj(x2, x3)zk(x3, x4, x5) (5)

where:
∑

xi = 100, xi ≥ 0

zi(u, v) = 0.6g(100u− 35, 100v − 35) +

0.75g(100u− 10, 100v − 10) + 1g(100u− 35, 100v − 10)

zj(u, v) = 0.4g(100u− 10, 100v − 30)

zk(u, v, w) = 5 + 25(1− (1 + (u− 0.3)2 +

(v − 0.15)2 + (w − 0.1)2)0.5)

g(u, v) = 100− (u2 + v2)0.5 +

50(sin(1(u2 + v2)0.5))/((u2 + v2 + 0.001)0.5)

In figure 7, a representation of this hypothetical function is shown.
The maximum values are in the lighter areas (values closer to 550).
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Figure 7. Representation of the hypothetical function in the planes
containing the absolute maximum of the function: A) Varying x1 and x2

with (x3,x4,x5)=(0.3,0.15,0.1); B) Varying x2 and x3 with
(x1,x4,x5)=(0.11,0.15,0.1)

A suitable ANN model of this function was obtained, training and
testing several ANN topologies with different training algorithms.
A multi-layer perceptron with 5 input nodes, 4 nodes in the 1st
hidden layer, 3 nodes in the 2nd hidden layer and 1 output node,
trained with Backpropagation algorithm with momentum (learning
factor=0.8, momentum term=0.8) was selected.

An initial generation was obtained in the setting up step of our
proposal (figure 1). Then, the rest of the Soft Computing technique
(configured with the best GA parameters obtained in the previous
studies) was applied with the same initial generation, making five
runs. In figure 8 the evolution of the mean quality values and the
maximum values achieved in each generation for the five runs are
shown. It can be observed that from the 6th generation good quality
results are obtained. In all tests, the ANN only used samples from
about five generations in its retraining process.

4.3 Application to industrial catalysis

The Soft Computing technique was finally applied to a real industrial
problem, trying to optimize Ti-silicate catalysts for the epoxidation
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of olefins. In this case, it is needed to establish the value of four
variables.

An initial random generation of 37 samples was used to determine
an ANN model, studying several topologies and training algorithms.
In this case, a multi-layer perceptron with 4 input nodes, 2 nodes in
first hidden layer, 1 node in second hidden layer and 2 output nodes,
trained with Backpropagation algorithm with Momentum (learning
factor=0.8 and momentum term=0.5) was selected. This ANN model
was combined with the GA in order to develop new industrial cata-
lysts, following the Soft Computing method proposed. Thus, three
generations of 37 samples have been synthesised and tested.

Through the NN-GA optimization process, an important improve-
ment in the activity and selectivity of the starting materials has been
achieved as it can be observed in figure 9. This figure shows the cy-
clohexane epoxide yields for the 3 evolved generations (3x37 sam-
ples). Moreover, the best catalyst found ( 2th generation, sample 32)
improves in a 15% the catalytic performance (epoxide yield) with
respect to the best previously reported catalyst [3].

To summarize, a highly active and selective catalyst for the epox-
idation of cyclohexene has been found, that can be applied to the
epoxidation of other olefins, specially propylene. Epoxides are start-
ing materials for commodity products like plastics or drugs [14]. The
best materials have low titanium contents, and were extracted and
silylated. These materials have a Ti-MCM-41 structure and a very
hydrophobic surface.
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Figure 9. Quality evolution of samples of the Ti-silicate catalyst for the
epoxidation of oleofins

5 CONCLUSIONS

The high-speed catalysis experimentation was guided by artificial
intelligent techniques, i.e., a hybrid algorithm consisting of a GA

coupled with a neural network. Specifically, this Soft Computing al-
gorithm seems to be a new useful tool for the intelligent discovery
of new catalytic materials, since it has appropriate tools for high-
dimensional optimization but maintains in memory the whole ”his-
tory” of the search. Summarizing, in the future this method could be
used to reduce the screening of statistically-poor active materials.

Although we have applied our technique to catalysis, our proposed
codification is general enough to be applied to other chemical fields.
Moreover, the codification enables to carry out more deeper studies,
not only optimizing the configuration of the samples, but also allow-
ing the analysis of the elements that compose the samples (for ex-
ample, identifying the elements that appear in the best samples more
frequently, in which percentage, etc.).
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