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Abstract. In argumentation theory, Dung’s abstract framework pro-
vides a unifying view of several alternative semantics based on the
notion of extension. Recently, a new semantics has been introduced
to solve the problems related to counterintuitive results produced by
literature proposals. In this semantics, an important role is played by
a recursive schema in the definition of extensions. This paper proves
that all the semantics encompassed by Dung’s framework adhere to
this property, not previously considered in the literature, which we
call SCC-recursiveness. We argue that this notion plays a general
role in the definition and computation of argumentation semantics.

1 INTRODUCTION

Argumentation theory is a framework for commonsense reasoning,
which models the reasoning activity as the process of constructing
and comparing arguments supporting conclusions. Since their con-
struction proceeds by exploiting incomplete and uncertain informa-
tion, arguments usually conflict, and this is modeled by anattack re-
lation between them. As shown in [8], the variety of argumentation
systems proposed in the literature differ along a number of dimen-
sions, such as the language used to represent the arguments and the
form of conflict between them. In particular, different underlyingar-
gumentation semanticsintroduce in a declarative way the criteria to
determine, given a set of interacting arguments, which ones of them
emerge as ‘justified’ from the conflict. Almost all of the argumen-
tation semantics rely on the notion ofextension, roughly consisting
in a set of non-conflicting arguments: an argument is considered as
justified if it belongs to all of the extensions. However, as pointed
out in [8], two alternative approaches can be followed in this respect:
in the so-called unique-status approach a single extension is always
identified, while in the multiple-status approach several extensions
may exist for a specific set of arguments. Moreover, specific propos-
als also differ in the form the underlying semantics is introduced. For
instance, in [5, 9, 3] a fixed point definition is exploited, while in [6]
the semantics is defined inductively by means of the notion of level.

A unifying framework, able to encompass a large variety of pro-
posals, has been proposed by Dung in [5]. Here different semantics
are introduced by means of fixed point definitions, all of them rely-
ing on the notion ofadmissible set. However, it has been shown in [1]
that Dung’s framework gives rise to counterintuitive results in some
examples concerning cyclic attack relationships: to deal with them, a
new semantics based on arecursivedefinition of extension has been
introduced. In this paper, we show that also other existing seman-
tics adhere to this recursive schema, which therefore appears to be a
novel unifying concept underlying different argumentation theories.
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2 DUNG’S THEORY: A COUNTEREXAMPLE

The general theory proposed by Dung [5] is based on the primitive
notion ofargumentation framework:

Definition 1 An argumentation framework is a pairAF = 〈A,→〉,
whereA is a set, and→⊆ (A×A) is a binary relation onA.

The idea is that arguments are simply conceived as the elements of
the setA, whose origin is not specified, and the interaction between
them is modeled by the binary relation of attack→.

In the following, nodes that attack a givenα ∈ A are calledde-
featersof α, and form a set denoted asparents(α):

Definition 2 Given an argumentation frameworkAF = 〈A,→〉
and a nodeα ∈ A, we defineparents(α) = {β ∈ A | β → α}. If
parents(α) = ∅, thenα is called aninitial node.

Since we will frequently consider properties of sets of arguments,
it is useful to extend to them the notations defined for the nodes:

Definition 3 Given an argumentation frameworkAF = 〈A,→〉, a
nodeα ∈ A and two setsS, P ⊆ A, we define:

S → α iff ∃β ∈ S : β → α

α → S iff ∃β ∈ S : α → β

S → P iff ∃α ∈ S, β ∈ P : α → β

parents(S) = {α ∈ A | α → S}

outparents(S) = {α ∈ A | α 6∈ S ∧ α → S}

Acceptability and admissibility are the fundamental notions of
Dung’s theory:

Definition 4 Given an argumentation frameworkAF = 〈A,→〉:

• A setS ⊆ A is conflict-freeif and only if 6 ∃α, β ∈ S such that
α → β.

• An argumentα ∈ A is acceptablewith respect to a setS ⊆ A iff
∀β ∈ A, if β → α then alsoS → β.

• A setS ⊆ A is admissibleiff S is conflict-free and each argument
in S is acceptable with respect toS, i.e.∀β ∈ A such thatβ → S

we have thatS → β.

Building on the notion of admissible sets, Dung introduces three
semantics, i.e.complete, grounded, and preferred semantics. The
most satisfactory results are ensured by preferred semantics, which
defines the extensions as maximal admissible sets. Limitations of
preferred semantics have been pointed out in [1]: to have an idea,
consider the argumentation frameworks shown in Figure 1, that dif-
fer only in the length of the leftmost cycle. It can be seen thatAF1



admits only one extension consisting of the nodeφ2, while AF2 ad-
mits three extensions whose intersection is empty. Therefore,φ2 is
justified inAF1 while no argument is justified inAF2. This turns out
to be counterintuitive considering, for instance, that these argumenta-
tion frameworks can be regarded as simple variants of the example of
conflicting witnesses proposed by Pollock in [7]. Here, the leftmost
cycle represents a set of witnesses such that each of them questions
the reliability of another one, and thisundercutrelation is arranged
in a cycle. The two-length cycle on the right represents a couple of
arguments with contradictory conclusions, known in the literature as
Nixon Diamond, whereφ1 is based on an assertion of one of the wit-
nesses. Intuitively, the length of the leftmost cycle, i.e. the number
of witnesses, should be irrelevant. However, as described above, pre-
ferred semantics give a different treatment toφ2 in the two cases.
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Figure 1. Different handling of cycles by preferred semantics

3 A NEW ARGUMENTATION SEMANTICS

To solve the problems described above, a new approach has been
introduced in [1] which exploits the notion of strongly connected
components of the argumentation framework:

Definition 5 Given an argumentation frameworkAF = 〈A,→〉,
two nodesα, β ∈ A are path-equivalentiff either α = β or there is
a path fromα to β and a path fromβ to α. The strongly connected
components ofAF are the equivalence classes of vertices under the
relation of path-equivalence. The set of the strongly connected com-
ponents ofAF is denoted asSCC(AF).

Given a nodeα ∈ A, we will indicate the strongly connected com-
ponentα belongs to asSCC(α). We extend to strongly connected
components the notion of defeaters, and we introduce the definition
of proper ancestors:

Definition 6 Given an argumentation frameworkAF = 〈A,→
〉 and a strongly connected componentS ∈ SCC(AF),
sccparents(S) = {P ∈ SCC(AF) | P 6= S ∧ P → S},
and sccanc(S) = sccparents(S) ∪

⋃
P∈sccparents(S) sccanc(P ).

A strongly connected componentS such thatsccparents(S) = ∅ is
called initial.

It is well-known that the graph obtained by considering strongly
connected components as single nodes is acyclic:sccanc(S) include
those strongly connected components that are antecedent toS in such
a graph.

Definition 7 Given an argumentation frameworkAF = 〈A,→〉, a
setE ⊆ A and a strongly connected componentS ∈ SCC(AF), we
define:

• SD(E) = {α ∈ S | (E ∩ outparents(S)) → α}
• SP (E) = {α ∈ S | (E ∩ outparents(S)) 6→ α ∧ ∃β ∈

(outparents(S) ∩ parents(α)) : E 6→ β}
• SU (E) = S \ (SD(E) ∪ SP (E)) =

= {α ∈ S | (E ∩ outparents(S)) 6→ α ∧ ∀β ∈
(outparents(S) ∩ parents(α)) E → β}

In words, if the setE is an extension, the setSD(E) consists of the
nodes ofS attacked byE from outsideS, the setSU (E) consists of
the nodes ofS that are not attacked byE and are defended byE (i.e.
their defeaters from outsideS are all attacked byE), andSP (E)
consists of the nodes ofS that are not attacked nor defended byE. It
is easy to see thatSD(E), SP (E) andSU (E) are determined only
by the elements ofE that belong to the strongly connected compo-
nents insccanc(S).

Finally, we need the notion ofrestriction of an argumentation
framework to a given subset of its nodes:

Definition 8 Let AF = 〈A,→〉 be an argumentation framework,
and letS be a setS ⊆ A. Therestrictionof AF to S is the argumen-
tation frameworkAF↓S =< S,→ ∩(S × S) >.

The semantics introduced in [1] uses a definition of extension that
can be formulated as follows:

Definition 9 Given an argumentation frameworkAF = 〈A,→〉, a
setE ⊆ A is an extension, denoted asE ∈ REAF, iff

• E ∈ MIAF if |SCC(AF)| = 1
• ∀S ∈ SCC(AF) (E ∩ S) ∈ REAF↓

(SP (E)∪SU (E))
otherwise

whereMIAF denotes the set of maximal conflict-free sets ofAF.

It can be seen that this semantics overcomes the limitations of pre-
ferred semantics concerning odd-length cycles, in particular it en-
sures an equal treatment of the argumentation frameworks presented
in Figure 1. Actually, this is obtained by replacing the admissibility
requirement with the less demanding notion of maximal conflict-free
set, arranged in a recursive schema, which is able to properly con-
strain the set of extensions prescribed by the semantics. In the next
section, we show that this schema is not specific to our proposal, but
underlies all semantics encompassed by Dung’s framework.

4 ARGUMENTATION SEMANTICS: A
RECURSIVE CHARACTERIZATION

4.1 Extending Dung’s theory

In order to accomplish our analysis, it is necessary to generalize
Dung’s theory by considering a specific subsetC of A from which
acceptable arguments (that compose the extensions) are selected. Ac-
cordingly, given an argumentation frameworkAF = 〈A,→〉 and a
setC ⊆ A, we consider admissible sets that are included inC:

Definition 10 Given an argumentation frameworkAF = 〈A,→
〉 and a setC ⊆ A, we defineASAF(C) = {E ⊆ C |
E is admissible}.

The notion of complete extension is introduced in [5] as a unifying
concept underlying various existing semantics. We directly introduce
the relevant definition in the context of the generalized framework.



Definition 11 Given an argumentation frameworkAF = 〈A,→〉
and a setC ⊆ A, a setS ⊆ A is a complete extension inC iff
S ∈ ASAF(C), and every argumentα ∈ C which is acceptable
with respect toS belongs toS. The set of complete extensions inC

will be denoted asCEAF(C).

In the generalized framework, the notion of preferred extension is
introduced as follows:

Definition 12 Given an argumentation frameworkAF = 〈A,→〉,
let us consider a set of argumentsC ⊆ A. A preferred extension in
C is a maximal element (with respect to set inclusion) ofASAF(C).
The set of preferred extensions inC will be denoted asPEAF(C).

In other terms,E ∈ PEAF(C) if and only if E is a maximal set such
thatE ⊆ C andE is admissible.

A relevant question concerns the existence of a preferred extension
for any argumentation frameworkAF and for all setsC ⊆ A. In this
respect, we are able to extend Dung’s results:

Theorem 1 Given an argumentation frameworkAF = 〈A,→〉 and
a setC ⊆ A:

• The elements ofASAF(C), i.e. the admissible subsets ofC, form
a complete partial order.

• For all F ∈ ASAF(C), there isE ∈ PEAF(C) such thatF ⊆ E.

Corollary 1 Given an argumentation frameworkAF = 〈A,→〉
and a setC ⊆ A, PEAF(C) is non empty, i.e. there is always a
preferred extensionE ∈ PEAF(C).

The grounded semantics, introduced by Pollock in [6], is probably
the most representative proposal in the context of the unique-status
approach. In our framework, it can be defined in terms of the least
fixed point of the characteristic function.

Definition 13 With reference to an argumentation frameworkAF =
〈A,→〉 and a set of argumentsC ⊆ A, thecharacteristic function
of AF in C, denoted asFAF,C , is defined as follows:

FAF,C : 2C → 2C

FAF,C(Q) = {α | α ∈ C, α acceptable with respect toQ}

It is easy to see thatFAF,C is monotonic (with respect to⊆).

Definition 14 Given an argumentation frameworkAF = 〈A,→〉
and a setC ⊆ A, thegrounded extension ofAF in C, denoted as
GEAF(C), is the least (with respect to⊆) fixed point ofFAF,C .

Notice that by definitionGEAF(C) ⊆ C. Also in this case we have
a positive result concerning the existence of the grounded extension:

Lemma 1 For any argumentation frameworkAF = 〈A,→〉 and
for all setsC ⊆ A, GEAF(C) exists and is unique.

Finally, the following relation between grounded and complete ex-
tensions can be drawn:

Proposition 1 Given an argumentation frameworkAF = 〈A,→〉
and a set of argumentsC ⊆ A, we have thatGEAF(C) is the least
(with respect to set inclusion) complete extension inC (i.e. the least
element inCEAF(C)).

Dung’s original definitions are recovered by lettingC = A.
Therefore, a recursive formulation of the extended definitions also
covers the original ones. In the following subsections, we show that
both admissible sets and all kinds of extensions can be recursively
characterized along strongly connected components. These basic re-
sults will be exploited to obtain the general recursive schema finally
presented in Section 5.

4.2 Admissible sets

The characterization of admissible sets with respect to strongly con-
nected components is achieved by Proposition 2, which requires two
preliminary lemmas (proofs are omitted due to space limitations).

Lemma 2 Given an argumentation frameworkAF = 〈A,→〉, let
E ⊆ A be an admissible set inAF, andα ∈ A be an argument
acceptable with respect toE. DenotingSCC(α) asS, we have that:

• α ∈ SU (E); and
• in the argumentation frameworkAF↓(SP (E)∪SU (E)), α is accept-

able with respect to(E ∩ S).

Lemma 3 Given an argumentation frameworkAF = 〈A,→〉, let
E ⊆ A be a set of arguments such that,∀S ∈ SCC(AF)

(E ∩ S) ∈ ASAF↓
(SP (E)∪SU (E))

(SU (E))

Given Ŝ ∈ SCC(AF), if α ∈ ŜU (E) is an argument accept-
able with respect to(E ∩ Ŝ) in the argumentation framework
AF↓(ŜP (E)∪ŜU (E)), thenα is acceptable with respect toE in AF.

Proposition 2 Given an argumentation frameworkAF = 〈A,→〉,
let us consider a set of argumentsE ⊆ A. Then,∀C ⊆ A, E ∈
ASAF(C) if and only if∀S ∈ SCC(AF)

(E ∩ S) ∈ ASAF↓
(SP (E)∪SU (E))

(SU (E) ∩ C)

Proof: First, let us prove that ifE is admissible then it satisfies
the conditions relevant to a generic strongly connected component
S ∈ SCC(AF). According to the definition ofASAF(C), E ⊆ C

and∀α ∈ E, α is acceptable with respect toE. As a consequence,
on the basis of Lemma 2 we have that∀α ∈ (E ∩ S), α ∈ SU (E),
therefore(E ∩ S) ⊆ (SU (E) ∩ C). Moreover, by the same lemma
α is acceptable with respect to(E ∩ S) in the argumentation frame-
work AF↓(SP (E)∪SU (E)). This, as well as the fact thatE is admis-
sible and therefore conflict-free, entails that(E ∩ S) is admissible
in the argumentation frameworkAF↓(SP (E)∪SU (E)), and therefore
that(E ∩ S) ∈ ASAF↓

(SP (E)∪SU (E))
(SU (E) ∩ C).

As far as the other direction of the proof is concerned, we first notice
that, by the hypothesis,∀S ∈ SCC(AF) (E∩S) ⊆ (SU (E)∩C) ⊆
(S ∩C), thereforeE ⊆ C: in order to prove the claim, we have only
to show thatE is admissible inAF.
Let us first show thatE is conflict-free by reasoning by contradic-
tion, i.e. let us suppose that∃α, β ∈ E : β → α. Let us denote
SCC(α) (in AF) asS. Clearly, it cannot be the case thatSCC(α) =
SCC(β), since in this case(E ∩ S) would not be conflict-free,
thus contradicting the hypothesis concerning its admissibility in
AF↓(SP (E)∪SU (E)). As a consequence,β ∈ (E ∩ outparents(S)),
thereforeα ∈ SD(E) by the definition ofSD(E). However, this
contradicts the fact thatα ∈ (E ∩ S), which according to the hy-
pothesis is contained inSU (E).
In order to complete the proof, we have to prove that a genericα ∈ E

is acceptable with respect toE. If we denoteSCC(α) (in AF) as
S, we have thatα ∈ (E ∩ S), and by the hypothesis(E ∩ S) ∈
ASAF↓

(SP (E)∪SU (E))
(SU (E) ∩ C). Therefore,α ∈ SU (E), and

α is acceptable with respect to(E ∩ S) in AF↓(SP (E)∪SU (E)).
Since the hypothesis entails that∀S ∈ SCC(AF) (E ∩ S) ∈
ASAF↓

(SP (E)∪SU (E))
(SU (E)), Lemma 3 can be applied toα, en-

tailing thatα is acceptable with respect toE (in AF). 2



4.3 Complete semantics

The following proposition shows that also complete extensions are in
correspondence with a recursive decomposition along strongly con-
nected components.

Proposition 3 Given an argumentation frameworkAF = 〈A,→〉,
let us consider a sets of argumentsE ⊆ A. Then,∀C ⊆ A, E ∈
CEAF(C) if and only if∀S ∈ SCC(AF)

(E ∩ S) ∈ CEAF↓
(SP (E)∪SU (E))

(SU (E) ∩ C)

Proof: As for the first direction of the proof, ifE ∈ CEAF(C) then
in particularE ∈ ASAF(C), therefore Proposition 2 entails that

∀S ∈ SCC(AF) (E ∩ S) ∈ ASAF↓
(SP (E)∪SU (E))

(SU (E) ∩ C)

(1)
As a consequence, we have only to show that∀α ∈ (SU (E) ∩
C) such that α is acceptable with respect to(E ∩ S) in
AF↓(SP (E)∪SU (E)), α ∈ (E ∩ S). First, we notice that Lemma 3
can be applied toα, since (1) entails that∀S ∈ SCC(AF) (E∩S) ∈
ASAF↓

(SP (E)∪SU (E))
(SU (E)). On the basis of this lemma,α is ac-

ceptable with respect toE (in AF). Moreover,α ∈ (SU (E) ∩ C),
therefore in particularα ∈ C. As a consequence, from the hypothesis
thatE ∈ CEAF(C) it follows thatα ∈ E and thereforeα ∈ (E∩S).
As for the other direction of the proof, according to Definition 11 we
have that∀S ∈ SCC(AF) the following conditions hold:

(E ∩ S) ∈ ASAF↓
(SP (E)∪SU (E))

(SU (E) ∩ C) (2)

∀α ∈ (SU (E) ∩ C) : α acceptable with respect to(E ∩ S)
in AF↓(SP (E)∪SU (E)), α ∈ (E ∩ S)

(3)
Thus, on the basis of (2) Proposition 2 entails thatE ∈ ASAF(C),
therefore we have only to prove that∀α ∈ C such thatα is ac-
ceptable with respect toE, α ∈ E. DenotingSCC(α) asS (where
S ∈ SCC(AF)), on the basis of Lemma 2 we have thatα ∈ SU (E),
so thatα ∈ (SU (E)∩C), andα is acceptable with respect to(E∩S)
in AF↓(SP (E)∪SU (E)). Then, taking into account (3) we have that
α ∈ (E ∩ S), thereforeα ∈ E. 2

4.4 Preferred semantics

Also preferred extensions fit the decomposition schema along
strongly connected components, as shown by Proposition 4, based
on the following lemma (proof is omitted due to space limitations).

Lemma 4 Given an argumentation frameworkAF = 〈A,→〉, let
E ⊆ A be an admissible set inAF and letS ∈ SCC(AF). Let Ê
be a set of arguments such that(E ∩ S) ⊆ Ê ⊆ SU (E), and Ê

is admissible in the argumentation frameworkAF↓(SP (E)∪SU (E)).

Then, we have that(E ∪ Ê) is admissible inAF.

Proposition 4 Given an argumentation frameworkAF = 〈A,→〉,
let us consider a set of argumentsE ⊆ A. Then,∀C ⊆ A, E ∈
PEAF(C) if and only if∀S ∈ SCC(AF)

(E ∩ S) ∈ PEAF↓
(SP (E)∪SU (E))

(SU (E) ∩ C)

Proof: As far as the first direction of the proof is concerned, let us as-
sume thatE ∈ PEAF(C). By definition,E ∈ ASAF(C), therefore,
on the basis of Proposition 2, we have that∀S ∈ SCC(AF)

(E ∩ S) ∈ ASAF↓
(SP (E)∪SU (E))

(SU (E) ∩ C)

Let us reason by contradiction, assuming that∃Ŝ ∈ SCC(AF)
such that(E ∩ Ŝ) is not maximal among the sets included in
ASAF↓

(ŜP (E)∪ŜU (E))
(ŜU (E)∩C). According to Theorem 1, there

must be a set̂E such that

• (E ∩ Ŝ) ⊂ Ê ⊆ (ŜU (E) ∩ C), and
• Ê ∈ ASAF↓

(ŜP (E)∪ŜU (E))
(ŜU (E) ∩ C).

Taking into account thatE is admissible inAF, Lemma 4 entails that
the setE′ , E ∪ Ê is admissible inAF. However, it is easy to see
thatE is strictly contained inE′ and thatE′ ⊆ C, contradicting the
maximality ofE among the admissible sets ofAF included inC.
Let us turn now to the other direction of the proof, assuming that
∀S ∈ SCC(AF) (E ∩ S) ∈ PEAF↓

(SP (E)∪SU (E))
(SU (E) ∩ C).

On the basis of Proposition 2,E ∈ ASAF(C): in order to prove that
E is also a preferred extension, we reason again by contradiction,
supposing that∃E′ ⊆ C, E ⊂ E′ : E′ ∈ PEAF(C) (notice that
E′ exists by Theorem 1). SinceE ⊂ E′, there must be at least a
strongly connected componentS ∈ SCC(AF) such that(E ∩ S) ⊂
(E′∩S): taking into account the acyclicity of the strongly connected
components, there exists in particularŜ ∈ SCC(AF) such that

∀S ∈ SCC(AF) : S ∈ sccanc(Ŝ), (E′ ∩ S) = (E ∩ S) (4)

(E ∩ Ŝ) ⊂ (E′ ∩ Ŝ) (5)

Since E′ ∈ ASAF(C), Proposition 2 entails that(E′ ∩ Ŝ) ∈
ASAF↓

(ŜP (E′)∪ŜU (E′))
(ŜU (E′) ∩ C). Taking into account (4), it

is easy to see that̂SU (E′) = ŜU (E) andŜP (E′) = ŜP (E), there-
fore (E′ ∩ Ŝ) ∈ ASAF↓

(ŜP (E)∪ŜU (E))
(ŜU (E) ∩ C). However, on

the basis of (5) we have that(E ∩ Ŝ) ⊂ (E′ ∩ Ŝ), contradicting the
hypothesis that(E ∩ Ŝ) ∈ PEAF↓

(ŜP (E)∪ŜU (E))
(ŜU (E)∩C). 2

4.5 Grounded semantics

In this section, we prove that the decomposition schema also holds
for grounded semantics.

Proposition 5 Given an argumentation frameworkAF = 〈A,→〉,
let us consider a set of argumentsE ⊆ A. Then,∀C ⊆ A, E =
GEAF(C) if and only if∀S ∈ SCC(AF)

(E ∩ S) = GEAF↓
(SP (E)∪SU (E))

(SU (E) ∩ C)

Proof: Let us consider the first part of the proof, by supposing
that E = GEAF(C). On the basis of Proposition 1,E is in par-
ticular a complete extension inC, i.e. E ∈ CEAF(C), there-
fore Proposition 3 entails that∀S ∈ SCC(AF) (E ∩ S) ∈
CEAF↓

(SP (E)∪SU (E))
(SU (E)∩C). Taking into account Proposition

1, we have to prove that∀S ∈ SCC(AF) (E∩S) is the least element
(with respect to set inclusion) inCEAF↓

(SP (E)∪SU (E))
(SU (E)∩C).

We reason by contradiction, supposing that there is at least one
strongly connected component where the thesis is not verified. In
particular, since the strongly connected components ofAF make up
an acyclic graph, we can chooseŜ ∈ SCC(AF) such that:

• ∀S ∈ SCC(AF) : S ∈ sccanc(Ŝ), (E ∩ S) =
GEAF↓

(SP (E)∪SU (E))
(SU (E) ∩ C); and

• ∃Ê ⊂ (E ∩ Ŝ), Ê = GEAF↓
(ŜP (E)∪ŜU (E))

(ŜU (E) ∩ C).



Note that in casêS is initial, the first condition is trivially verified.
Moreover, the second condition follows from the fact that, on the
basis of Lemma 1,GEAF↓

(ŜP (E)∪ŜU (E))
(ŜU (E) ∩ C) must exist,

and according to Proposition 1 it is included in all the elements of
CEAF↓

(ŜP (E)∪ŜU (E))
(ŜU (E) ∩ C).

Now, taking again into account that the strongly connected compo-
nents ofAF make up an acyclic graph, it is easy to see that it is
possible to construct a setE′ such that:

• ∀S ∈ SCC(AF) : S ∈ sccanc(Ŝ), (E′ ∩ S) = (E ∩ S);
• (E′ ∩ Ŝ) = Ê;
• ∀S ∈ SCC(AF) (E′ ∩ S) = GEAF↓

(SP (E′)∪SU (E′))
(SU (E′)∩

C)

To this purpose, it is obviously possible to construct a setE′
∗ which

satisfies the first two conditions concerning any strongly connected
componentS ∈ (Ŝ ∪ sccanc(Ŝ). Thus, it turns out thatSU (E′

∗) =
SU (E) and SP (E′

∗) = SP (E), and, as a consequence,E′
∗ sat-

isfies the third condition too for any suchS (taking into account
the properties ofE andÊ stated above). Now,E′ can be obtained
constructively fromE′

∗ by proceeding along the other strongly con-
nected components of the defeat graph: in fact∀S ∈ SCC(AF)
GEAF↓

(SP (E′)∪SU (E′))
(SU (E′) ∩ C) always exists by Lemma 1.

Now, by Proposition 1, we have that∀S ∈ SCC(AF) (E′ ∩ S) ∈
CEAF↓

(SP (E′)∪SU (E′))
(SU (E′)∩C). As a consequence, on the ba-

sis of Proposition 3E′ ∈ CEAF(C), while since(E′ ∩ Ŝ) = Ê ⊂
(E ∩ Ŝ) it is not true thatE ⊆ E′. However, this contradicts the
hypothesis thatE = GEAF(C), and as such the least complete ex-
tension inC of AF (see Proposition 1).
Let us turn now to the other direction of the proof, by supposing that
∀S ∈ SCC(AF) (E∩S) = GEAF↓

(SP (E)∪SU (E))
(SU (E)∩C). On

the basis of Proposition 1, we have that∀S ∈ SCC(AF)(E ∩ S) ∈
CEAF↓

(SP (E)∪SU (E))
(SU (E) ∩ C), therefore Proposition 3 entails

thatE ∈ CEAF(C). As a consequence, taking into account Proposi-
tion 1 we have only to prove thatE is the least element ofCEAF(C).
We reason by contradiction, assuming that the grounded extension
E′ = GEAF(C), which must exist by Lemma 1 and is a subset ofE

by Proposition 1, is strictly included inE. Thus, there must be at least
a strongly connected componentS such that(E′ ∩ S) ⊂ (E ∩ S):
since the strongly connected components form an acyclic graph,
there is in particular a strongly connected componentŜ such that:

∀S ∈ SCC(AF) : S ∈ sccanc(Ŝ), (E′ ∩ S) = (E ∩ S) (6)

(E′ ∩ Ŝ) ⊂ (E ∩ Ŝ) (7)

Moreover, sinceE′ = GEAF(C) ∈ CEAF(C), on the basis
of Proposition 3 applied toŜ it must be the case that(E′ ∩
Ŝ) ∈ CEAF↓

(ŜP (E′)∪ŜU (E′))
(ŜU (E′) ∩ C). Taking into account

(6), it is easy to see that̂SU (E′) = ŜU (E) and ŜP (E′) =
ŜP (E), therefore(E′ ∩ Ŝ) ∈ CEAF↓

(ŜP (E)∪ŜU (E))
(ŜU (E) ∩ C).

However, according to (7) we have that(E′ ∩ Ŝ) is strictly in-
cluded in(E ∩ Ŝ), contradicting the hypothesis (referred toŜ) that
(E ∩ Ŝ) = GEAF↓

(ŜP (E)∪ŜU (E))
(ŜU (E) ∩ C) and therefore, on

the basis of Proposition 1, that(E ∩ Ŝ) is the least element of
CEAF↓

(ŜP (E)∪ŜU (E))
(ŜU (E) ∩ C). 2

5 A GENERAL SCHEMA FOR
ARGUMENTATION

The above results suggest to introduce a new fundamental concept
for argumentation semantics, calledSCC-recursiveness, that charac-

terizes all the considered semantics:

Definition 15 A given argumentation semantics isSCC-recursiveif,
with reference to a generic argumentation frameworkAF = 〈A,→
〉, a setE ⊆ A is an extension iffE ∈ FGAF(A),
where, for all setsC ⊆ A, E ∈ FGAF(C) iff

• E ∈ FG∗
AF(C) if |SCC(AF)| = 1

• ∀S ∈ SCC(AF) (E ∩S) ∈ FGAF↓
(SP (E)∪SU (E))

(SU (E)∩C)

otherwise

whereFG∗
AF(C) is a function that, given an argumentation frame-

work AF = 〈A,→〉 such that|SCC(AF)| = 1 and a setC ⊆ A,
gives a subset of2A.

The functionFG∗
AF(C), which we call base function, returns

the extensions of a generic argumentation framework with a unique
strongly connected component. Since a particular SCC-recursive se-
mantics is identified by its own base function, it is interesting to
notice that to define an argumentation semantics it is sufficient to
specify its behavior only on single-SCC argumentation frameworks.
In particular, for traditional complete, preferred and grounded se-
mantics the base functionFG∗

AF(C) turns out to beCEAF(C),
PEAF(C) andGEAF(C), respectively, while for the new semantics
introduced in [1]FG∗

AF(C) isMIAF.
The importance of this result is twofold. First, it supports the de-

velopment of efficient and incremental algorithms based on local
computations at the level of strongly connected components. In par-
ticular, it is reasonable to suppose that a significant gain would be ob-
tained by developing an SCC-based variant of the backtracking algo-
rithms to compute the extensions proposed in [4]. More significantly,
the family of SCC-recursive semantics appears to be a very general
framework which eases the investigations of further argumentation
semantics exploiting alternative definitions of the base function (see
[2]). Both directions will be explored in future work.
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