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Abstract. In argumentation theory, Dung’s abstract framework pro-2 DUNG’S THEORY: A COUNTEREXAMPLE

vides a unifying view of several alternative semantics based on the Lth db is based he orimiti
notion of extension. Recently, a new semantics has been introducérdqe general theory proposed by Dung [5] is based on the primitive

to solve the problems related to counterintuitive results produced bQOt'On ofargumentation framework

literature proposals. In this semantics, an important role is played byyefinition 1 An argumentation framework is a pakF = (A

a recursive schema in the definition of extensions. This paper provggnere 4 is a set. and—C (A x A) is a binary relation onA.
that all the semantics encompassed by Dung’s framework adhere to N

this property, not previously considered in the literature, which weThe idea is that arguments are simply conceived as the elements of
call SCC-recursivenessVe argue that this notion plays a general the setA, whose origin is not specified, and the interaction between
role in the definition and computation of argumentation semantics. them is modeled by the binary relation of attaek

In the following, nodes that attack a givenc A are calledde-
featersof «, and form a set denoted gasrents(«):

74)>‘

1 INTRODUCTION
Definition 2 Given an argumentation framewokF = (A4, —)

Argumentation theory is a framework for commonsense reasonin nd a nodax € A. we defin ts(a) = {B e A| B i
which models the reasoning activity as the process of constructin ' elingarents{o @
arents(a) = (), thena is called aninitial node.

and comparing arguments supporting conclusions. Since their con-
struction proceeds by exploiting incomplete and uncertain informa- - Since we will frequently consider properties of sets of arguments,
tion, arguments usually conflict, and this is modeled bptiack re- it js useful to extend to them the notations defined for the nodes:
lation between them. As shown in [8], the variety of argumentation _ _
systems proposed in the literature differ along a number of dimenDefinition 3 Given an argumentation framewoAF = (A, —), a
sions, such as the language used to represent the arguments and fieglea € A and two setsS, P C A, we define:
form of conflict between them. In particular, different underlyarg i
gumentation semantiéstroduce in a declarative way the criteria to S—aiff 3 S: 6 —
determine, given a set of interacting arguments, which ones of them a—Siff3geS:a—4
emerge as ‘justified’ from the conflict. Almost all of the argumen- S — Piff3aecS,BeP:a—8
.tatlon semantics rely on the notion eXtensmnroughly con3|§tlng parents(S) = {a € A | a — S}
in a set of non-conflicting arguments: an argument is considered as
justified if it belongs to all of the extensions. However, as pointed outparents(S) = {a € Ala ¢ SAa — 5}
putln [8], two alterr)atlve approaches can be.followed n t.h'S respect: Acceptability and admissibility are the fundamental notions of
in the so-called unique-status approach a single extension is alwaﬁ \ :
. o o . . ung’s theory:
identified, while in the multiple-status approach several extensions
may exist for a specific set of arguments. Moreover, specific [g0po Definition 4 Given an argumentation framewodF = (A, —):
als also differ in the form the underlying semantics is introduced. For ) ) ) .
instance, in [5, 9, 3] a fixed point definition is exploited, while in [6] ® A setS C A s conflict-freeif and only if Aa, 8 € S such that
the semantics is defined inductively by means of the notion of level. « — . _ ) )

A unifying framework, able to encompass a large variety of pro-® An argumentr € A is acceptablevith respect to a sef C A iff
posals, has been proposed by Dung in [5]. Here different semantics V5 € A, if § — a thenalsaS — 5.
are introduced by means of fixed point definitions, all of them rely-® A setS C Alis admissibleff .5'is conflict-free and each argument
ing on the notion oaidmissible seHowever, it has been shownin[1] i S is acceptable with respect 19, i.e.V3 € A such thai3 — S
that Dung’s framework gives rise to counterintuitive results in some We have thats — 8.
examples concerning cyclic attgck rella.tl.onshlps: to dgal with them, & Building on the notion of admissible sets, Dung introduces three
new semantics based oniecursivedefinition of extension has been Lo -
. ) - semantics, i.ecomplete grounded and preferred semantics. The
introduced. In this paper, we show that also other existing seman- - . .
- . . . most satisfactory results are ensured by preferred semantics, which
tics adhere to this recursive schema, which therefore appears to be a

novel unifying concept underlying different argumentation theories défines the extensions as maximal admissible sets. Limitations of
9 P ying 9 ‘preferred semantics have been pointed out in [1]: to have an idea,

1 University of Brescia, Brescia, Italy email:{baroni, gia- Consider the argumentation frameworks shown in Figure 1, that dif-
comin} @ing.unibs.it fer only in the length of the leftmost cycle. It can be seen thBj




admits only one extension consisting of the ngdewhile AF5 ad- Definition 7 Given an argumentation framewokF = (A, —), a
mits three extensions whose intersection is empty. Thereforés setE C A and a strongly connected compon&he SCC(AF), we
justified inAF; while no argument is justified iIAF5. Thisturns out  define:

to be counterintuitive considering, for instance, that these argumenta- b

tion frameworks can be regarded as simple variants of the example & SP (E) = {a € S| (BN outparents(5)) — a}

conflicting witnesses proposed by Pollock in [7]. Here, the leftmost® 5~ (B) = {a € S | (E N outparents(S)) 7 a A3 €
cycle represents a set of witnesses such that each of them questions(ol}‘tparents(s) r;parents(g)) 1 E £ B}

the reliability of another one, and thisdercutrelation is arranged  ® ST(E) =S\ (S7(E)UST(E)) =

in a cycle. The two-length cycle on the right represents a couple of = {a € S | (E N outparents(S)) - a AVE €
arguments with contradictory conclusions, known in the literature as (Outparents(S) N parents(a)) E — 5}

Nixon Diamongdwher i nan rtion of one of the wit- . . . .
Ixon Diamondwhere, is based on an assertion of one of the wit In words, if the set is an extension, the sétD(E) consists of the

nesses. Intuitively, the I(_ength of the leftmost cycle, i.e. the numbernodes ofS attacked by from outsideS, the sets? (E) consists of
of witnesses, should be irrelevant. However, as described abave, pr.

. . . : the nodes of that are not attacked by and are defended ¥ (i.e.
ferred semantics give a different treatmenttoin the two cases. their defeaters from outsids are all attacked byg), and S” (E)

consists of the nodes éfthat are not attacked nor defendedByit
is easy to see tha&t” (E), ST(E) andSY (E) are determined only

@>\~ by the elements of’ that belong to the strongly connected compo-
o nents insccanc(S).
O o,

Finally, we need the notion afestriction of an argumentation
framework to a given subset of its nodes:

Definition 8 Let AF = (A, —) be an argumentation framework,
and letS be a setS C A. Therestrictionof AF to S is the argumen-
tation frameworkAF | s =< S, — N(S x S) >.

0.0 The semantics introduced in [1] uses a definition of extension that
(3] AF,

can be formulated as follows:

Definition 9 Given an argumentation framewokF = (A, —), a
Figure 1. Different handling of cycles by preferred semantics setlr C Alis an extension, denoted &5€ REar, ff

o £ € MZarif [SCC(AF)| =1
e VS € SCC(AF) (ENS) € RgAFl(SP(E)USU(E)) otherwise

where MZ ar denotes the set of maximal conflict-free setA Bf

3 ANEW ARGUMENTATION SEMANTICS _ _ o
It can be seen that this semantics overcomes the limitations of pre-

To solve the problems described above, a new approach has begsired semantics concerning odd-length cycles, in particular it en-
introduced in [1] which exploits the notion of strongly connected sures an equal treatment of the argumentation frameworks presented
components of the argumentation framework: in Figure 1. Actually, this is obtained by replacing the admissibility
- . . _ requirement with the less demanding notion of maximal conflict-free
Definition 5 Given an argumentation frameworkF = (A, ), set, arranged in a recursive schema, which is able to properly con-

Zvoar;r? ?25:]’ B toe BAaﬁLegat:t'ﬁ ?rlé'r\:%l?gm e_'mgrsc:r;]ﬁl og(t)f:]er:]rscltse d strain the set of extensions prescribed by the semantics. In the next
P o P o gy section, we show that this schema is not specific to our proposal, but

components oAF are the equivalence classes of vertices under theunderlies all semantics encompassed by Dung's framework.
relation of path-equivalence. The set of the strongly connected com-

ponents ofAF is denoted aSCC(AF).
4 ARGUMENTATION SEMANTICS: A

Given anodex € A, we will indicate the strongly connected com- RECURSIVE CHARACTERIZATION
ponenta belongs to aSCC(«). We extend to strongly connected

components the notion of defeaters, and we introduce the definitioﬁ'1 Extendlng Dung’s theory

of proper ancestors In order to accomplish our analysis, it is necessary to generalize
Dung’s theory by considering a specific sub&eof .4 from which
acceptable arguments (that compose the extensions) are selected. Ac-
cordingly, given an argumentation framewoklf® = (A, —) and a

setC C A, we consider admissible sets that are include@'in

Definition 6 Given an argumentation framewolkF = (A, —
) and a strongly connected componest € SCC(AF),
sccparents(S) = {P € SCC(AF) | P # SAP — S},
and sccanc(S) = sceparents(S) U U peoceparents(s) Sccanc(P).
A strongly connected componehisuch thatsccparents(S) = 0 is Definition 10 Given an argumentation framewokF = (A, —
calledinitial. ) and a setC C A, we defineASar(C) = {E C C |

. . L E is admissiblg.
It is well-known that the graph obtained by considering strongly

connected components as single nodes is acyekenc(S) include The notion of complete extension is introduced in [5] as a unifying
those strongly connected components that are antecedgimiguch  concept underlying various existing semantics. We directly introduce
a graph. the relevant definition in the context of the generalized framework.



Definition 11 Given an argumentation framewokkF = (4,—) 4.2 Admissible sets
and a setC’ C A, asetS C Ais acomplete extension i@ iff o o )
S € ASar(C), and every argumeni € C which is acceptable The characterization of admissible sets with respect to strongly con-

with respect taS belongs taS. The set of complete extensiongin nected components is achieved by Proposition 2, which requires two
will be denoted ag& or (C). preliminary lemmas (proofs are omitted due to space limitations).

In the generalized framework, the notion of preferred extension i§ emma 2 Given an argumentation frameworkF = (A, —), let
introduced as follows: E C A be an admissible set iAF, anda € A be an argument

Definition 12 Given an argumentation framewokl® = (A, —), acceptable with respect tB. DenotingSCC(«) as.S, we have that:
let us consider a set of argumer@sC .A. A preferred extension in -

C'is a maximal element (with respect to set inclusionfiSiap (C).  ® @ €5 (E);and _

The set of preferred extensionsGhwill be denoted ag€ Ar (C). e inthe argumentation frameworkF | (s» (g)usv (z)), @ IS accept-

. I ) able with respect t¢E N S).
In other termsE € PEar(C) if and only if E is a maximal set such

thatE? C C'andE is admissible. _ _Lemma 3 Given an argumentation framewolkF = (A, —), let
Arelevant question concerns the existence of a preferred extensiog - 4 pe a set of arguments such the§ € SCC(AF)
for any argumentation frameworkF and for all set€” C A. In this -

respect, we are able to extend Dung’s results: (ENS)e ASAFL( P myusU( )>( Y(E))
S E)US E

Theorem 1 Given an argumentation framewoA& = (4, —) and ) A
asetC C A: Given S € SCC(AF), if a € SY(E) is an argument accept-
able with respect to(E N S) in the argumentation framework

e The elements oflSAr (C), i.e. the admissible subsets@f form AF| gr (1050 (1) thena is acceptable with respect 1 in AT

a complete partial order.

o Forall I € ASar(C), thereisEl € PEar(C) such that” € E. Proposition 2 Given an argumentation frameworkF

= (A
Corollary 1 Given an argumentation framewotkF = (A4, —) let us consider a set of arguments C A. Then,VC C A, FE
and a setC C A, PEAr(C) is non empty, i.e. there is always a ASar(C) if and only ifv.S € SCC(AF)
preferred extensioly € PEAr(C).

—

)
€

ENS) e AS sY(EyncC
The grounded semantics, introduced by Pollock in [6], is probably ( ) AFL(sP (B)uUsU (2)) (S7(E) )

the most representative proposal in the context of the unique-statng

) . . roof: First, let us prove that iff is admissible then it satisfies
approach. In our framework, it can be defined in terms of the leas o .
. . L - e conditions relevant to a generic strongly connected component
fixed point of the characteristic function.

S € SCC(AF). According to the definition 0fASAr(C), E C C

Definition 13 With reference to an argumentation framewdrk = andVa € E, a is acceptable with respect #. As a consequence,
(A, —) and a set of argument§' C A, thecharacteristic function  on the basis of Lemma 2 we have that € (EN S), a € SY(E),
of AF in C, denoted a$'ar,c, is defined as follows: therefore(E N S) C (SY(E) N C). Moreover, by the same lemma

« is acceptable with respect (& N .S) in the argumentation frame-
work AF | sp(gyust (g))- This, as well as the fact thd is admis-
sible and therefore conflict-free, entails tif@ N S) is admissible
It is easy to see th@ ar, ¢ is monotonic (with respect t@). in the argumentation framewotkF'| (sr g)usv (k) and therefore
that(ENS) € ASAF%SP(E)US,J(E)) (SY(E)n ).
As far as the other direction of the proof is concerned, we first notice
that, by the hypothesi¥,S € SCC(AF) (ENS) C (SY(E)NC) C
(SN C), thereforeE C C': in order to prove the claim, we have only
Notice that by definitiorGEAr(C) C C. Also in this case we have to show thatE is admissible inAF.
a positive result concerning the existence of the grounded extensionet us first show thaf is conflict-free by reasoning by contradic-
Lemma 1 For any argumentation frameworkF = (A, —) and  tion, i.e. let us suppose that, § € £ : f — a. Let us denote
for all setsC' C A, GEAr(C) exists and is unique. SCC(a) (|n_ AF) _asS._CIearIy, it cannot be the case tr&@C_(a) =

) ) i SCC(B), since in this casé E N S) would not be conflict-free,

Finally, the following relation between grounded and complete exh,s contradicting the hypothesis conceming its admissibility in

tensions can be drawn: AF | (5P (myust (my)- As a consequencs, € (E N outparents(S)),
Proposition 1 Given an argumentation frameworkF = (A, —) thereforea € SP(FE) by the definition ofS” (F). However, this
and a set of argumenS C A, we have thaGEar(C) is the least  contradicts the fact that € (E N S), which according to the hy-
(with respect to set inclusion) complete extensiofVi(i.e. the least  pothesis is contained ifi¥ (E).
element irCE ar (C)). In order to complete the proof, we have to prove that a genedcE
is acceptable with respect . If we denoteSCC(«) (in AF) as

Therefore, a recursive formulation of the extended definitions alsg>: We have that & (EUﬂ ), and by the hypothes@g ns) e
covers the original ones. In the following subsections, we show that'SAFL sp 5 st (s, (57 (E) N C). Thereforea € S7(E), and
both admissible sets and all kinds of extensions can be recursively iS acceptable with respect t@& N S) in AF| spgyusv (g))-
characterized along strongly connected components. These basic fince the hypothesis entails thdt € SCC(AF) (E N S) €
sults will be exploited to obtain the general recursive schema finallyASAF L p ) (1), (S” (F)), Lemma 3 can be applied t, en-
presented in Section 5. tailing thatw is acceptable with respect 1o (in AF). O

Far,c: 2¢ _, 9¢

Far,c(Q) = {a| a € C, a acceptable with respect @}

Definition 14 Given an argumentation frameworkF = (A, —)
and a setC' C A, thegrounded extension oiF in C, denoted as
GEar(C), is the least (with respect t@) fixed point off' s, ¢

Dung’s original definitions are recovered by lettiig = A.



4.3 Complete semantics

The following proposition shows that also complete extensions are iRUCh that(

correspondence with a recursive decomposition along strongly co
nected components.

Proposition 3 Given an argumentation frameworkF
let us consider a sets of argumerdisC A. Then,VC
CEar(C)ifand only ifvS € SCC(AF)

(A=),

CAFE €

U
(ENS) €CEAFL 4p 50 sy, (S (E)NC)

Proof: As for the first direction of the proof, it! € CEAr(C) then
in particularkE' € ASar(C), therefore Proposition 2 entails that

VS € SCC(AF) (BN S) € ASAFL g st s, (SY(E)n c()l |

As a consequence, we have only to show tat € (SY(E) N

C) such thata is acceptable with respect t6E N S) in

AF | sp(pyusv gy, @ € (E N S). First, we notice that Lemma 3
can be applied te, since (1) entails thatS € SCC(AF) (ENS) €
ASAFL(SP(E)USU(E)) (SY(E)). On the basis of this lemma,is ac-
ceptable with respect t& (in AF). Moreover,a € (SY(E) N C),
therefore in particulatr € C'. As a consequence, from the hypothesis
thatE € CEar(C) itfollows thata € E and thereforex € (EN.S).

As for the other direction of the proof, according to Definition 11 we
have that/S € SCC(AF) the following conditions hold:

(ENS) € ASAFL 4p 050 sy, (ST (E)NC) (2

Va € (SY(E)NC) : a acceptable with respect (& N S)
in AFL(SP(E)USU(E)M o € (EﬂS) ( )
3

Thus, on the basis of (2) Proposition 2 entails that ASar(C),
therefore we have only to prove thdty € C such thata is ac-
ceptable with respect t&, o € E. DenotingSCC(«) asS (where
S € SCC(AF)), on the basis of Lemma 2 we have that SU (E),
sothain € (SY(E)NC), andw is acceptable with respect(&n.S)
in AF | sP(musv my)- Then, taking into account (3) we have that
a € (ENS), thereforen € E. O

4.4 Preferred semantics

Let us reason by contradiction, assuming that € SCC(AF)
E N S) is not maximal among the sets included in
ASARL (5P (1)050 (1)) (SY(FE)NC). According to Theorem 1, there

must be a sel’ such that

e (ENS)CEC (SY(E)nC),and
o B €ASAFL 4p 50 m), (ST (E)NO).

Taking into account thal is admissible iAF, Lemma 4 entails that
the setE’ £ E U E is admissible inAF. However, it is easy to see
that E is strictly contained inE’ and thatE’ C C, contradicting the
maximality of E among the admissible sets Af included inC'.

Let us turn now to the other direction of the proof, assuming that
VS € SCC(AF) (ENS) € PSAFl(SP(E>USU(E))(SU(E) nao).

On the basis of Proposition Z € ASar(C): in order to prove that

FE is also a preferred extension, we reason again by contradiction,
supposing thalE’ C C,E C E' : E' € PEar(C) (notice that

E’ exists by Theorem 1). SincE C E’, there must be at least a
strongly connected componefitc SCC(AF) such tha{ E N S) C
(E'NS): taking into account the acyclicity of the strongly connected
components, there exists in particufte SCC(AF) such that

VS € SCC(AF) : S € sccanc(S), (E'NS)=(ENS) (4)

5)
Since B/ € ASar(C), Proposition 2 entails thatE’ N S) €
)USU(E,))(S’U(E’) N C). Taking into account (4), it
is easy to see th&t’ (E') = SY(E) andS” (E') = ST (E), there-
fore (B 18) € ASAFL sp 5050 ), (5 (E) N C). However, on

the basis of (5) we have that’ N S)c (E'n S’),Acontradicting the
hypothesis that N S) € PEAF 4p )50 ), (SY(E)ynC). D

(ENnS)c (E'NS)

ASAFL gp g

4.5 Grounded semantics

In this section, we prove that the decomposition schema also holds
for grounded semantics.

Proposition 5 Given an argumentation framewo#kF

(A, =),
let us consider a set of arguments C A. Then,VC' C A,

CAELE=

Also preferred extensions fit the decomposition schema along;g,(C) if and only ifvS € SCC(AF)
strongly connected components, as shown by Proposition 4, based

on the following lemma (proof is omitted due to space limitations).

Lemma 4 Given an argumentation framewokF = (A4, —), let
E C Abe an admissible set iAF and letS € SCC(AF). Let ¥
be a set of arguments such th@ N S) € E C SY(E), and E
is admissible in the argumentation framewdkk'| sr gyusv (£))-

Then, we have that= U E) is admissible inAF.

Proposition 4 Given an argumentation frameworkF
let us consider a set of arguments C A. Then,vVC
PEar(C) if and only if¥'S € SCC(AF)

(A, =),

CAFE €

U
(ENS) € PEAFL 4o 50y (S (E)NC)

Proof: As far as the first direction of the proof is concerned, let us as
sume that € PEAr(C). By definition,E € ASar(C), therefore,
on the basis of Proposition 2, we have thiate SCC(AF)

U
(ENS) e ASAFL(SP(E)USU<E))(S (E)YNnQC)

U
(ENS) = GEAFL p ) 50y, (57 (E)NC)

Proof: Let us consider the first part of the proof, by supposing
that E = GEar(C). On the basis of Proposition  is in par-
ticular a complete extension if, i.e. E € CEar(C), there-
fore Proposition 3 entails thatS € SCC(AF) (E N S) €
CgAFl(SP(E)USU(E)) (SY(E)NC). Taking into account Proposition

1, we have to prove thatS € SCC(AF) (ENS) is the least element
(with respect to setinclusion) ®€ar | p ), sv s, (SY(E)NC).

We reason by contradiction, supposing that there is at least one
strongly connected component where the thesis is not verified. In
particular, since the strongly connected componentsiofnake up

an acyclic graph, we can chooSec SCC(AF) such that:

e VS ¢ SCC(AF) S e sccanc(S), (E N S)
GEAFl(SP(E)uSU(E)) (SU(E) NnC); and

° HE C (E N S), E = GEAFL(SAP(E)USU(E))(S’U(E) N C)



Note that in casé is initial, the first condition is trivially verified. ~ terizes all the considered semantics:

Moreover, the second condition follows from the fact that, on thepgfinition 15 A given argumentation semanticsS€C-recursivé
. AU . ?

basis of Lemma 1GEAr| «p s, (57 (B) N C) mustexist,  yith reference to a generic argumentation framewarR = (A, —

and according to Proposition 1 it is included in all the elements of) a setE C A is an extension iffZ € FGar(A),

CEAFL 4p yosv )y (ST (E) N C). where, for all set€>' C A, E € FGar(C) iff

Now, taking again into account that the strongly connected compo-

nents of AF make up an acyclic graph, it is easy to see that it is® VESG fs%g(f% i ECCS(AF)' =1 SUEYAC
possible to construct a s& such that: * < (AF) (ENS) € FOAFL 5p (mpusv iy (O (E)NC)

N otherwise
e VS € SCC(AF) : S € sccanc(S), (E'NS) = (ENS);
e (E'N g) =k where FGAr(C) is a function that, given an argumentation frame-
e VS € SCC(AF) (E'nS) = GEAFl(SP(E/ (SY(E") N work AF = (A, —) such that|SCC(AF)| = 1 and a setC' C A,

) usTEn) gives a subset &f*.
To this purpose, it is obviously possible to construct afewhich The function 7G3r(C), which we callbase function returns
satisfies the first two conditions concerning any strongly connecte¢he extensions of a generic argumentation framework with a unique
componentS € (S U sccanc(S). Thus, it turns out thas? (E7,) = strongly connected component. Since a particular SCC-recursive se-

SU(E) and SP(E;) — SP(E)’ and, as a Consequen(ﬁi sat- mantics is identified by its own base fUnCtiOn, it is interesting to
isfies the third condition too for any suc (taking into account hotice that to define an argumentation semantics it is sufficient to
the properties off and E stated above). Now’ can be obtained SPecify its behavior only on single-SCC argumentation frameworks.
Constructive|y fr'ornE‘:F by proceeding a|0ng the other Strong|y con- In particular, for traditional Complete, preferred and grounded se-
nected components of the defeat graph: in fast € SCC(AF) ~ mantics the base functioff Gy (C') tums out to beCEar(C),
(SY(E") N C) always exists by Lemma 1.  PEar(C) andGEAr(C), respectively, while for the new semantics
introduced in [1JFGAr(C) is MZ ar.

The importance of this result is twofold. First, it supports the de-
. R velopment of efficient and incremental algorithms based on local
sis of Proposition &’ € CEAr(C), while since(E' N S) = E C computations at the level of strongly connected components. In par-
(E N S)itis not true thatE C E’. However, this contradicts the ticylar, it is reasonable to suppose that a significant gain would be ob-
hypothesis that? = GEr(C), and as such the least complete ex- tained by developing an SCC-based variant of the backtracking algo-
tension inC' of AF (see Proposition 1). rithms to compute the extensions proposed in [4]. More significantly,
Let us turn now to the other direction of the proof, by supposing thagye family of SCC-recursive semantics appears to be a very general
V.S € SCC(AF) (ENS) = GEAFi(SP(E>USU(E)> (SY(E)NC).On  framework which eases the investigations of further argumentation
the basis of Proposition 1, we have thi# € SCC(AF)(E N S) € semantics exploiting alternative definitions of the base function (see
CEAFL 4P L5t () (SY(E) n C), therefore Proposition 3 entails [2]). Both directions will be explored in future work.
thatE € CE€ar(C). As a consequence, taking into account Proposi-
tion 1 we have only to prove thdi is the least element di€Ar (C).  ACKNOWLEDGEMENTS
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