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Abstract. The aim of this article is to revisit Dalal’s operator for
belief revision. Dalal has proposed a technique for revising belief
bases based on the minimization of a distance between interpreta-
tions. The result is a concrete operator that can be considered either
from a semantical point of view (distance between interpretations)
or from a syntactical point of view (number of atoms that have their
truth values changed). Dalal has shown that the so-called Alchour-
rón, Gärdenfors and Makinson (AGM) postulates are satisfied by its
operator. The AGM postulates constrain the revision process so that
minimal changes occur in the belief set. In this article, our contri-
bution is twofold: first, we improve Dalal’s algorithm by avoiding
multiple satisfiability checking, which are NP-complete tasks. Our
algorithm requires only one NP-stage if beliefs are expressed in a
specific syntax, namely the prime implicates and prime implicants.
Second, we propose a new distance based on the number of prime
implicates in contradiction with the incoming new information. We
argue that in some cases changing a minimal set of propositional
symbols do not necessarily entail minimal changes.

1 INTRODUCTION

The description of the dynamics of beliefs are mainly influenced by
the so-called AGM postulates [1]. These postulates states that min-
imal changes should occur in the initial belief base in order to in-
troduce in a consistent way a conflicting statement. Following these
principles, several operators have been proposed [2, 11, 12, 13, 16].
In [6], Dalal proposes a theory of knowledge revision based on
the AGM principles. Dalal defines a semantic measure for minimal
change and introduces a syntactical revision operator, that respects
the semantical definition. The intuitive idea behind Dalal’s notion of
minimal change is to change the smallest number of propositional
symbols truth values. This notion is also shared in several contri-
butions both in the belief revision area and in the belief update area
(see [14] for a review). The revision technique proposed by Dalal has
some caveats. First, it requires multiple satisfiability checking which
is a NP-complete problem. Second, changing one propositional sym-
bol truth value may lead to significant changes if this symbol fre-
quently appears in the formulas of the initial belief base. Thus, the
notion of minimal change which seems to be fair according to Dalal
is actually biased by the structure of the belief base.

In this paper we improve Dalal’s revision operator by avoid-
ing these two problems. First, we avoid these multiple satisfiability
checking by expressing beliefs in a specific syntax. We show that
if beliefs are represented with sets of prime implicates and prime
implicants, Dalal’s revision operator can be deeply improve since it
�
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requires only one NP task. Second, we propose a new notion of min-
imal change based on the number of prime implicates concerned by
a propositional symbol.

The paper is organized as follows: in section 2, we present logical
definitions of prime implicates and prime implicants in terms of dis-
junctive normal forms and conjunctive normal forms. In section 3,
we present an algorithm for computing prime implicates and prime
implicants of a belief base when this belief base is expressed as a set
of clauses. In section 4, we recall the AGM postulates and the Dalal’s
procedure for belief revision. In section 5, we revisit Dalal’s operator
by, first, improving the algorithm and, second, improving the notion
of minimal change in Dalal’s framework. Section 6 concludes the
paper by considering some open issues.

2 PRELIMINARIES

Let �����
	 �������� 	���� be a set of propositional symbols and �������
��� �������� � � ��� the set of their associated literals, where ������	 � or
� � �"!�	 � . A clause # is a disjunction [9] of literals: #$�$� �&%'�'�' % �)(�* and a dual clause, or term, is a conjunction of literals:+ �,� �.- '�'�' - �)(�/ .

Given a propositional logic language 0213�54 and an ordinary for-
mula 68790:13�54 , there are algorithms for converting it into a conjunc-
tive normal form (CNF) and into a disjunctive normal form (DNF)
(e.g., [18, 20, 21]). The CNF is defined as a conjunction of clauses,
#<;>=@?A�B# �)- '�'�' - #DC , and the DNF as a disjunction of terms,+ ;>=@?E� + �@% '�'�' % +GF

, such that 69HI#<;>=@?EH + ;J=@? .
A clause # is an implicate [14, 15, 17] of a formula 6 iff 6LK �M# ,

and it is a prime implicate iff for all implicates #<N of 6 such that
# N K �O# , we have #PK�Q# N , or syntactically [19], for all literals
�,7R# , 6�SK �T1U#,VW�X���Y4 . We define �<��? as a conjunction of prime
implicates of 6 such that 6WHZ�<��? . A term

+
is an implicant of a

formula 6 iff
+ K ��6 , and it is a prime implicant iff for all implicants+ N of 6 such that

+ K � + N , we have
+ N K � +

, or syntactically, for
all literals �[7 +

, 1 + V����D�X4\SK ��6 . We define � �@? as a disjunction
of prime implicants of 6 such that 6AH]� �^? . In propositional logic,
implicates and implicants are dual notions, in particular, an algorithm
that calculates one of them can also be used to calculate the other
[5, 21].

Alternatively, prime implicates and implicants can be defined as
special cases of CNF (or DNF) formulas, that consist of the smallest
sets of clauses (or terms) closed for inference, without any subsumed
clauses (or terms), and not containing a literal and its negation. In the
sequel, conjunctions and disjunctions of literals, clauses or terms are
treated as sets.

The prime canonical forms are important in knowledge represen-
tation, because theories compiled into them can be queried in poly-
nomial time for consistency, validity, clause entailment, implicants,
equivalence, sentential entailment and model enumeration [7].



Given a formula 6 , represented by a conjunctive normal form
#<;J=@? and by a disjunctive normal form

+ ;J=@? , we introduce the
concept of a conjunctive quantum, defined as a pair 13� � =���4 , where �
is a literal that occurs in 6 and = � � #<;J=@? is its set of conjunctive
coordinates that contains the subset of clauses in #<;J=^? to which
literal � belongs. Dually, we define a disjunctive quantum as a pair
13� � =��Y4 , where � is a literal that occurs in 6 and =�� � + ;J=.? is
its set of disjunctive coordinates that contains the subset of terms in+ ;J=@? to which literal � belongs. A quantum is noted ��� . The ra-
tionale behind the choice of the name quantum is to emphasize that
we are not interested in an isolated literal, but that our minimal unit
of interest is the literal and its situation with respect to the theory in
which it occurs.

Example 1 Consider the theory � given by the following CNF:
�
	 !�	 � % 	 � % 	��  	 !�	 � % !�	 ���	 	�� % !�	 � % !�	�� � 	 !�	 � % !�	����	 	�� % !�	 � % 	�� � 	 !�	�� % !�	 �

The literals that occur in � can be represented by the following
set of conjunctive quanta: 3

�X!�	������ � � ���� � 	���� �� � !�	�� � � � � � � � �� � 	������ � �� � !�	�� � � � � � �� � 	�� � � � �� �
The quantum notation can be used to characterize �<��? and � �@?

of a formula 6 , given by one #<;J=^? and one
+ ;>=@? . Let

+ �
� �^- '�'�' - ��( be a term represented by a set of conjunctive quanta,

� �! "� - '�'�' - � ��#"( .
+

is an implicant of 6 if $ (�&% � = �� ��#<;J=@? , i.e.,+
contains at least one literal that belongs to each clause in #<;>=�? ,

spanning a path through #<;J=@? , and no pair of contradictory literals.
To be a prime implicant, a term

+
has to satisfy a non redundancy

condition, i.e., each of its literals should represent alone at least one
clause in #<;>=@? . To define this condition, we introduce the notion
of exclusive coordinates. Given a term

+
and a literal ���:7 +

, the
exclusive conjunctive coordinates of � in

+
, defined by '= �� �,= �� V

$ (��% � � �)(% � =
�� , are the clauses in set = �� , to which no other literal of+

belongs. Using this notion, the non redundancy condition can be
written as: *�+�7A� � �������, � � '= �� S�.- . The exclusive coordinates play
an important role in the proposed revision method (see Section 5.2).
Dually, a clause #��,� � % '�'�' % �)( represented by a set of disjunctive

quanta, � �! /� % '�'�' % � �!#/( , such that $ (�0% � = �� � + ;J=@? , with no pair
of tautological literals allowed, is an implicate. Again # is a prime
implicate if it satisfies the non redundancy condition, expressed by
*�+&7 � � �������, � � '= �� �]= �� V1$ (�2% � � �)(% � =

�� S�3- , where '= �� is the set
of exclusive disjunctive coordinates of � � in # .

Example 2 Consider the theory � introduced in example 1. The
set

+ � �X!�	 ����� � � ���� � !�	 � � � � � � � � �� � !�	 � � � � � � �� � is an implicant of �
because the union of the conjunctive coordinates associated with
its quanta is equal to the set of clauses in #<;J=�4 . The exclu-
sive conjunctive coordinates of the quanta in

+
are given by:

!�	 ��� �� � !�	 � � �� � !�	 � �� . The fact that !�	�� has empty exclusive coordi-
nates indicate that

+
is not a prime implicant.

Given a theory 6 , it is possible to determine the sets of conjunctive
and disjunctive quanta that, respectively, define � �^? with respect to
�<��? and �<��? with respect to � �@? . This minimal quantum notation is
an enriched representation for prime implicates and implicants sets,
in the sense that it explicitly contains the “holographic” relation be-
tween literals in one form and the clauses (or terms) in which they
occur in the other form.
� To simplify the notation, the sets of conjunctive coordinates contain the

clause numbers instead of the clauses themselves.

3 PRIME IMPLICANTS/IMPLICATES

The proposed revision method makes intensive use of the prime im-
plicants and the prime implicates of a formula represented in the
quantum notation. In this section, we sketch an algorithm [3] that
builds such representations. The basic idea of the algorithm is, given
a propositional theory 6 represented by #<;>= ? (respectively, by+ ;>=@? ), calculate the set � �@? (respectively �<��? ). We describe the
algorithm that generates � �^? given #<;J=@? , the algorithm that gen-
erates �<��? given

+ ;J=@? being its exact dual.
The algorithm receives a CNF representation, calculates the con-

junctive coordinates of all its literals, and begins a search in a state
space where each state is represented by a set of quanta that represent

an incomplete prime implicant:
+ �T� �! "� - '�'�' - � �!#"( . Successor

states are generated by adding to the set a new quantum, consistent
with the quanta already present in the state and that respects the non
redundancy condition (see Section 2). Each incomplete prime impli-
cant

+
has an associated gap, defined as the set of clauses to which

none of its associated literals belong: 576���#<;J=@?5V8$ (�0% � = �� .
The initial states are singletons, each one of them contains the

quantum associated with a literal that belongs to one specific clause
# � 7R#<;J= ? , e.g., a clause that contains the most frequent literal in
#<;>=@? . Once an initial clause is adopted, the problem reduces to a
set of independent search problems, one for each initial state, because
any path through #<;J=@? must pass exactly by one literal in clause
# � .

Finally, the final states are defined as those that correspond to com-
plete prime implicants, i.e., those that span a complete path through
#<;>=@? . This condition can be directly verified by the following
property of the conjunctive coordinates of the associated quanta:
$ (�0% � = �� � #<;J=@? or 5 6 �9- .

At each search step, usually several quanta would qualify as possi-
ble extensions to a given incomplete prime implicant. To avoid dupli-
cate states, we restrict which quanta can be added using the following
procedure. Let

+
be an incomplete prime implicant and : 6 a set of

quanta, each one of which can be used to extended
+

. Initially, we
sort :�6 according to some quality criterion, e.g., maximal intersec-
tion of conjunctive coordinates with the state gap. Let � �);� and � �=<�
be two quanta in : 6 , such that � �);� is better than � � <� . The new state

obtained by adding � �=;� to
+

is allowed to be extended in the future

with � � <� , but the state obtained by adding � � <� to
+

is not allowed

to be extended by � �);� . This means that each state
+

must remember
its origins, in the form of a list > 6 of forbidden quanta4 .

Example 3 Consider a state
+

with a list of forbidden quanta >?6
and a set of possible extensions given by :!6T� ��� �  � � � �)@� � � �=A� � ,
where : 6 is already sorted according to the adopted quality crite-
rion. The possible successors states are:

B + � � + $>�X� �  � � with >C6  �D>E6F$ � � � �  �B + � � + $>�X� �)@� � with >C6 @ �D>E6F$ � � � �)@ � � �  � �
B + � � + $>�X� �)A� � with >C6 A �D>E6F$ � � � �)A � � �  � � � �)@� �
where � � � ; is the quantum associated with literal !^� � .

Besides not including contradictory nor redundant literals, each
state should not be extended by a quantum that generates a contradic-

� The non contradiction condition test can also be implemented using the
same list of forbidden quanta, it is only necessary to add to this list the
negation of each quantum included in the state.



tion with respect to the gap clauses, i.e., for each state
+

, the follow-
ing theory in CNF must be consistent: �Y#�V + K # 7 5 6 � , where,
given a clause or a term

�
, we note

�
, the clause or term obtained

from
�

by flipping all its literals. This condition can be extended to
take into account, not only the negation of the literals in the state, but
also the literals in the forbidden list > 6 (that already includes

+
).

The new theory that must be consistent is: �X#,V > 6 K�#M7 5 6 � .
This additional restriction greatly reduces the number of succes-

sor states, because the forbidden list includes not only the negation
of state literals, but also all literals that are not included in the state
to avoid state repetition and those that were detected as potentially
contradictory when the algorithm tried to extend the state with them.
This non contradictory theory, analogously to the Davis-Putnam al-
gorithm [8], is simplified at each step by unit resolution and sub-
sumption and all the non redundant literals that occur in it as unitary
clauses are included simultaneously into the state, further reducing
the number of successors.

Example 4 Consider the theory � introduced in example 1. Using
the proposed dual transformation algorithm, it is possible to deter-
mine the following set of prime implicants, represented as sets of
quanta: � 	 !�	������ � � ���� - !�	�� � � � � � �� - 	�� � � � ��� 	 !�	 ����� � � ���� - !�	 � � � � � � � � ��

One more application of the dual transformation5 determines the
prime implicates. The pair 13�<� � � �54 corresponding to the theory, in
quantum notation is given by:

�<� � �� 	 !�	�� � �� % !�	���� �� ��	 !�	�� � �� - !�	���� �� - 	�� � ��� 	 !�	�� � �� % 	���� �� � 	 !�	�� � �� - !�	������ � ���
	 !�	 ����� � ��

4 REVISION

To change an agent’s belief base, we can either add new belief or
delete a previously existing belief [12]. The first characteristic of
belief revision is that we need extra-logical criteria in order to de-
cide which sentences should be retracted or kept among the multi-
ples choices. The second characteristic concerns the change func-
tion: general properties may be asserted even if we do not define the
function. Such properties are described by the AGM postulates [1]:
they describe some prerequisites for the belief contraction and revi-
sion functions. These postulates describe how changes should occur
based on the following main principles: minimal change and syntax
independence.

4.1 AGM Postulates

Given a belief base represented by a theory � , an interpretation � is
a truth assignment to all the propositional symbols that occur in � .
If � is true in � , then � is a model of � , i.e., � 7�������1 �&4 where������1 �&4 is the set of all models of � . Given a new information 	 that
contradicts � , the revised belief base ��
�	 is obtained by minimally
changing the models of � in such a way that 	 holds in at least some
of them. According to [16], a revision function should satisfy the
following postulates:

� In fact, this second application is not necessary, because, once the prime
implicants are known, there are polynomial time algorithms to calculate
the prime implicates [7].

(R1) �
�	 implies 	 .
(R2) If � - 	 is satisfiable then �
�	JHD� - 	 .
(R3) If 	 is satisfiable then �
�	 is also satisfiable.
(R4) If � � HD� � and 	 � H�	 � then � � 
�	 � HD� � 
�	 � .
(R5) 1 �
�	.4 - 6 implies �
:1�	 - 6 4 .
(R6) If 1 ��
�	@4 - 6 is satisfiable then ��
@1�	 - 6 4 implies 1 ��
�	.4 - 6 .

4.2 Dalal’s Approach

In [6], Dalal defines minimal change, as the change in the truth value
of only one propositional symbol, but not to be biased in favor of any
one of them, he adopts as the smallest unit of change all changes in
truth values of all possible single propositional symbols. This notion
is formalized by the following function, where

�
is a set of interpre-

tations and
+ +�����1�� � �2N 4 is the number of propositional symbols that

take different truth values in � and � N :� � 1 � 4�� �
F�� � �!� N K + +�����1�� � � N 4�" + �

In the same way, given the theory � , we can define the formula
5 � 1 �D4 , through its models, by �#�$��1 5 � 1 �&4 4�� � � 1�������1 �&4 4 . 5 � can
be seen as a generalization operator that takes a formula and returns
a subset of its logical closure. Using these notions, Dalal defines the
revision operator 
 in such a way that �%
&	8�95 ( 1 �D4�$>�'	@� , where, is the least value of + for which 	 evaluates to true in some inter-
pretation in the set � � 1�������1 �&4 4 .

Dalal presents a technique to obtain 5 ( 1 �&4 as a syntactical trans-
formation of � . For each propositional symbol 	 � , he defines the
sets �)(* ; and �,+* ; such that (i) they do not contain 	 � , and (ii)
� H 1 	 � - � (* ; 4 % 1U!�	 � - � +* ; 4 . These sets can be obtained by replacing
	 � by true or false, respectively, in � . He also defines the resolvent
of � with respect to 	�� as -$.�� * ; 1 �D4^�.��(* ; % �,+* ; and, finally, proves
the following theorem:

5 � 1 �&4��0/ � for +.� � �-$.�� *  1 5 � + � 1 �D4 4 % �� % - .�� *21 1 5 � + � 1 �&4 4 for +&3 �

Example 5 Consider the theory � of example 1 and the new infor-
mation 	 , given by �<�24 �T1 	 �@% 	 � 4 - 	 � and � �54 � 1 	 � - 	 � 4 %
1 	 �&- 	���4 . Using � � 4 , we calculate the resolvents for the proposi-
tional symbols that occur in 	 :- .�� *  1 �D4��]1U!�	�� - 	 ��4 % !�	 �- .�� * @ 1 �D4��]1U!�	 � - !�	 � - 	 � 4 % !�	 �- .�� * A 1 �D4��]1U!�	 � - 	 � 4 % 1U!�	 � - !�	 � 4

Therefore, we get:

5 � 1 �D4���!�	 �.% !�	 �)% 1U!�	 � - 	 � 4
and the revised theory is given by:

5 � 1 �&4�$J�'	^�<�]1 	 �.- !�	 ��- 	���4 % 1U!�	 �.- 	 ��- 	���4

5 PROPOSED APPROACH

The revision technique proposed by Dalal requires, at each step, a
logical consistency verification between 5 � 1 �&4 and 	 . This verifi-
cation, a satisfiability test, is a NP-Complete task and is one of the
main drawback of Dalal’s approach. We propose to avoid this mul-
tiple satisfiability checking, by representing the formula � by prime
implicants/implicates.



5.1 Prime Implicants

Let � be a belief base and 	 a new belief that is contradictory with
� . First, we calculate the prime implicants of � and 	 , given by � � 4
and � � 4 , respectively, using the dual transformation algorithm.

Only this first step is NP-Complete.

Second, we calculate the following set of terms:

� ��� + K + � + 4�$R1 + 49V + 4 4 � + 4 7>� �54 and
+ 4R79� ��4.�

It is possible to calculate, for each term
+

in the set
�

, the number
of literals that have been deleted from the associated

+ 4 in order to
make it consistent with

+ 4 . This number is given by , 6M�EK + 4��+ 4 K . We define the revised belief base as the following DNF:

+ ;J= 4�� 4 ��� + 7 � such that , 6 is minimal �
This second step is polynomial time on the size of � � 4 and
� � 4 .

The following theorem establishes that the proposed revised belief
base is equivalent to the one defined in [6].

Theorem 1 Given a propositional belief base � and a new contra-
dictory information 	 , 5 ( 1 �&4�$ �'	@�<H + ;>= 4�� 4 , with , � , 6 .
Proof: We assume, without lose of generality, that � is represented
by � � 4 , then the definition of 5 ( 1 �&4 can be written as:

5 ( 1 �&4^� �
� *
#	�
-$.�� � *

# � 1 �D4

where the 
 	 (�� ’s are all the the subsets of � � � 	 � ������ 	 � � of size, built up from the propositional symbols that occur in � . The defi-
nition of -$.�� now becomes: - .�� � *

# � 1 �&4^�.�)(� * #� % �,+� * #	� , where �)(� *
#	�and � +� *

# �
do not contain the propositional symbols in 
 	 (�� and are

defined in such a way that:

��H 1��* � � *
#�
	 - � (� *

#	� 4
% 1��* � � *

#�
!�	 - � +� *

#	� 4

Given the definition of , 6 , for ,�� , 6 each -$.�� � *
#� contains at

least one literal that is contradictory with 	 and therefore 5 ( 1 �&4!$
�2	@� is contradictory. On the other hand, for , � , 6 , the set of those- .�� � *

#� that are not contradictory with 	 correspond exactly to the
elements of

+ ;J= 4�� 4 . �
Corollary 1 The syntactical definition of the revision operator 
 sat-
isfies R1 � R6, as defined in Section 4.1.

5.2 Another Minimum

Dalal’s definition of minimal change considers the truth value of a
propositional symbol as the minimal information chunk and explic-
itly decides not to be biased in favor of any one of them. We claim
that this is a sensible choice only if the belief base � consists of a
conjunction of literals. If � is a more complex formula, e.g., a con-
junction of clauses, then the relative importance of a literal in a given
model of � is already biased and depends on the structure of the for-
mula, in the sense that flipping one or another propositional symbol
truth value may cause quite different effects on the formula.

In Section 5.1, we choose the terms of the revised belief base+ ;J= 4�� 4 among those terms
+ 7 �

that have the minimum , 6

and proved that this choice corresponds to Dalal’s notion of mini-
mal change. To take into account the structure of � , we assume that
� is represented by �<� 4 and � � 4 and observe that, according to
the quantum notation, each literal in a term

+ 4 7 � � 4 represents
a certain number of clauses in �<� 4 . Next, we assume that a clause
in the conjunctive set �<� 4 , which is unique and non subsumed by
any other, corresponds better to the idea of a knowledge unit than a
literal in

+ 4 . Finally, we choose to include in the revised base the
terms

+
that are associated with sets

+ 4�� + 4 whose literals have
the smaller set of exclusive conjunctive coordinates. This can be for-

malized as follows. Let
+ 4�� + 4 � �X� �  "� ������ � � #"( � be the set

of literals of
+ 4 that conflict with

+ 4 represented in quantum no-
tation and '= �� their associated exclusive coordinates (see Section 2).
We define ' , 6��EK $ (�0% � '= �� K and introduce a new revision operator ' 

defined by:

+ ;>= 4��� 4 ��� + 7 � such that ' , 6 is minimal � (1)

This new operator measures the degree of change, with respect to
a model, by the number of clauses in �<�!4 that are invalidated by
flipping a propositional symbol truth value.

Example 6 Consider the same theory � of example 1 and the new
information 	 of example 5. The elements of the set

�
are given by

the following table:

+ + 4�� + 4
	 � - 	 � - 	 � �Y!�	 � � !�	 � � 	 � � � � 	 � � 	 � �<���X!�	�� � �� � !�	���� �� �
!�	 �@- 	 ��- 	�� �Y!�	 ��� !�	 � � � �
	 �X� 	 ���:�I�Y!�	 ����� � �� �
	 � - !�	 � - 	 � �Y!�	 � � !�	 � � � �
	 � � 	 � �:�I�Y!�	�� � �� �
!�	 �@- 	 ��- 	�� - 	�� �Y!�	 ��� !�	�� � 	���� � � 	 �Y� 	����<���X!�	 ��� �� �
The first term is always eliminated, because it has , 6 � �

and
the literals to be deleted represent two clauses in �<� 4 (clauses 0 and
2). All the remaining terms have , 6 � �

and would be chosen by
Dalal’s algorithm, resulting in the same revised belief base that was
calculated in example 5:

1U!�	 �.- 	 ��- 	 ��4 % 1 	 �.- !�	 ��- 	���4
that correspond to the following set of prime implicates: 1U!�	 � %
!�	 � 4 - 1 	 �.% 	 � 4 - 	 � .

But, if we take into account the size of the conjunctive coordinate
sets of the literals to be deleted, then only the last two terms would
be chosen and the resulting revised belief base would be:

1U!�	 � - 	 � - 	 � - 	 � 4 % 1 	 � - !�	 � - 	 � 4
that correspond to the following set of prime implicates: 1 	 � % 	���4 -
1U!�	 � % 	���4 - 1U!�	 � % !�	 � 4 - 1 	 � % 	 � 4 - 	�� .

For a belief base !�	 ��- !�	 ��- 1U!�	�� % !�	 � 4 , i.e., the same as �
but without 	 � , Dalal’s method returns the same result. In this case,
the proposed method returns � ' 
2	8� 	 � - !�	 �^- 	�� that correspond
to the following set of prime implicates: 	 �@- !�	 �)- 	�� .

It can be seen that, as expected, the proposed method preserves
one original clause in both cases: clause !�	 � - 	 � for � and clause
!�	 � for � without 	�� . In both cases, Dalal’s method does not pre-
serve any clause.

The status of the proposed method with respect to the AGM pos-
tulates is given by the following theorem6:
�

The proofs of the theorems 2 and 3 are presented in [4].



Theorem 2 The revision operator ' 
 satisfies R1 � R6, as defined in
Section 4.1.

Both procedures, the one that calculates the revised belief base ac-
cording to Dalal’s definition, based on , 6 , and the new proposed pro-
cedure, that uses ' , 6 , assume that the belief base � is represented by
� ��4 . An interesting property of the new proposed revision method is
that the revised belief base can also be determined from �<� 4 . Con-
sider as before that new information 	 is given by � � 4 . Initially, for
each

+ 4 7>� � 4 , we calculate the set of clauses that are inconsistent
with

+ 4 :

#���� ���.1 + 4 4����Y# K #]7J�<� 4 and # � + 4 �
The DNF of the revised belief base is given by the prime impli-

cants of the theory whose CNF is given by �<� 4 VW#��������.1 + 4 4 ex-
tended with unitary clauses containing the literals in

+ 4 , for those+ 4 associated with the sets #���� ���.1 + 4 4 with minimum size. More
formally, let �9+	�$� � + 4 K + 4 7$� � 4 and K #���� �
� 1 + 4 4 K
is minimal � , the revised base is given by:

+ ;J= 4 � � 4 � �
6�� �� � �

+ � 13�<� 4GVJ#���� ���.1 + 4 4 $ �Y�X��� K �W7 + 4 �Y4
(2)

where
+ � is the dual transformation described in Section 3.

Theorem 3 The revised belief base obtained by equation 1 is equiv-
alent to the revised belief base obtained by equation 2.

Although this method for determining
+ ;>= 4 � � 4 is potentially

much more expensive than the previously presented one, the fact that
the result is exactly the same shows that the proposed revision really
deletes the minimum number of prime implicates of � in such a way
that the resulting theory is consistent with 	 .

6 CONCLUSION

This paper presented a new syntactical method to calculate the belief
revision operator introduced by Dalal [6] that requires only one NP-
complete calculation instead of multiple NP-complete calculations.
The method is based on a special representation for the prime im-
plicants/implicates normal forms, called the quantum notation, and
an algorithm to calculate this representation, given a CNF or DNF
normal form, is also introduced.

The paper also introduced a new belief revision operator, based
on the idea that one clause in the unique prime implicate normal
form is a better candidate for a minimal information chunk than the
one propositional truth value change, the semantic option chosen by
Dalal.

The algorithms presented in the paper have been implemented
in Common Lisp [22] and tested with the theories in the SATLIB
(http://www.satlib.org/) benchmark.

In our future work, we plan to apply our approach to belief up-
date. Namely, we want to revisit belief update operators such as the
operator proposed by Forbus [10].
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