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Abstract.
The generation of explanations is considered as a main asset of

knowledge-based systems. In this paper we show that current ap-
proaches of generating explanations for constraint satisfaction prob-
lems fall short. These approaches can lead to spurious explanations
with respect to a proposed (or selected) solution. We introduce an
extension of current explanation principles such that all explanations
of properties regarding a proposed solution are well-founded expla-
nations.

1 Introduction

The generation of explanations has a long tradition in expert systems.
For example in the area of sales supporting systems [7] a knowledge-
based software application helps the customer to find the right prod-
uct (configuration) for her needs. In sales support systems as well
as configuration systems the customer has to answer various ques-
tions and finally one product or a manageable number of products
is presented. Constraint-based methods became a key technology in
this area because they offer enough expressive power to represent
the relevant knowledge. In addition a huge library of concepts and
algorithms is available to efficiently solve various reasoning tasks.

In such applications a solution represents a product or a service a
customer can purchase. Explanations are generated in order to give
feedback. For example because you, as a customer, told us that com-
fortable cars are important to you we included a special sensor sys-
tem in our offer that helps you to park your car easily. Such expla-
nations are exploited by customers in various ways, e.g., to increase
the confidence in a solution or to facilitate trade-off decisions [4].

In this paper we focus on the question which (customer) decisions
led to certain properties of a solution (product). Current approaches
employ the abduction principle in order to generate minimal expla-
nations for a set of assertions. We show that these approaches output
explanations which are based on spurious solutions, thus leading to
wrong reasons why certain customer choices result in particular fea-
tures of a specific product. Based on this observation we propose a
new concept of (minimal) well-founded explanations which elimi-
nates spurious explanations. For the construction of an algorithm we
explore important properties of this new concept. The new algorithm
can be easily integrated with existing constraint satisfaction problem
solvers with acceptable additional computation costs.

In Section 2 we introduce a working example which is exploited in
Section 3 to show the problems with current approaches. In Section 4
we present an analysis of these problems and motivate our new con-
cept. Section 5 introduces well-founded explanations. An algorithm
for the computation of well-founded explanations is given in Section
6 followed by a discussion of related work.
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2 Example

For the introduction of our concept we take an example from a car
configuration domain. Let us assume the customers can select various
packages for a car. We distinguish between abusiness packageand a
recreation package. The recreation package includes a video-camera
on the rear side of the car which allows watching the distance to an
obstacle behind the car. This technical device supports the customer-
oriented product functioneasy parking. Note, that customers may
not be interested in the technical details a priori but may request them
for justifying their confidence in a solution. The business package in-
cludes a sensor system in the back bumper which also supports easy
parking. However, this sensor system is incompatible with the recre-
ation package for technical reasons (a tow-bar comes along with the
recreation package preventing the assembly of the sensor system).
Note, that from a customer point of view, the video-camera and the
sensor system support thesameproduct functionality. In addition,
the business package includes a radio with a GSM-telephone (GSM-
radio) which supports hands-free mobile communication.

This domain can be modeled as a constraint satisfaction prob-
lem by the following variables and constraints. The set of variables
V is {biz-pack, rec-pack, video, sensor, GSM-radio, easy-parking,
free-com}. Unary constraints define the domains of the variables. For
simplicity we assume for each variable the domain{y, n}.

Further constraints are specified by the following tables:
cr,v :2 If rec-packis chosen thenvideomust be assembled (and

vice versa).
cb,r,s : If biz-packis chosen andrec-packis not chosen thensensor

is assembled.rec-packandsensorare incompatible.
cr,v :
rec-pack video

y y
n n

cb,r,s :
biz-pack rec-pack sensor

y y n
y n y
n y n
n n n
n n y

cv,s,e : If videoor sensoris assembled theneasy-parkingis sup-
ported (and vice versa).

cv,s,e :
video sensor easy-parking

n n n
y n y
n y y
y y y

The constraint connecting the variablesbiz-packandGSM-radio
is calledcb,g. cg,f connectsGSM-radioandfree-com. The tables for
these two constraints are identical to the table ofcr,v.

Let us assume that a customer chooses the business package and

2 Variables are abbreviated by their first letter(s).



the recreation package. Consequently, the configured car includes a
video-camera and a GSM-radio. Functions supported by such a car
are easy-parking and hands-free mobile communication. More for-
mally, if the customer sets{biz-pack = y, rec-pack = y}, then
the solution to the constraintsC = {cr,v, cb,r,s, cv,s,e, cb,g, cg,f}
representing the configured car assignsvideo = y, sensor = n,
GSM-radio=y, easy-parking= y, free-com= y.

Let us assume that this solution is presented to the customer. If
the customer asks which choices led to these functions of thespe-
cific configuredcar clearly the following answer must be provided.
Easy parking is supported because the car comes with a video cam-
era. This video camera is included because it is included in the recre-
ation package. Note, that business package is not responsible for easy
parking in our case because the sensor system cannot be included.

Our goal is to provide concepts and algorithms which are able
to compute such explanations automatically. In particular we must
identify those parts of the user input and the knowledge base which
explain features of a given solution. In the following we will review
the standard approach for generating explanations which turns out to
allow problematic outputs.

3 Problems with the current approach

Abduction is the widely accepted concept for defining explanation
[3, 8, 11]. The basic idea of these proposals are to use entailment (|=)
to explain outputs of a problem solving process. Following [8, 11] we
base our concept on constraint satisfaction.

More formally, a constraint satisfaction problem (CSP)(C,V,D)
[8] is defined by a set of variablesV, a set of constraintsC, and a
global domainD. Each constraint has the formc(xi, . . . , xj) where
xi, . . . , xj aren variables inV and c is ann-ary constraint pred-
icate. Eachn-ary constraint predicate has an associatedn-ary re-
lation R(c) ⊆ Dn. A mappingv : V → D of variables to val-
ues represented by a set of values associated to variables{(xk =
vxk )|xk ∈ V ∧ vxk = v(xk)} satisfies a constraintc(xi, . . . , xj) iff
(vxi , . . . , vxj ) ∈ R(c). Such a mappingv is a solution of the CSP
iff it satisfies all constraints inC.

A set of constraintsC is satisfiable iff the CSP with variables
V (C) and constraintsC has a solution. A CSP(C,V,D) is trivially
satisfied ifV or C is empty. We also writeC |= ⊥ in the case where
⊥ is a unary constraint with arbitrary variable and empty relation,
i.e., the CSP is not satisfiable. A mappingv : V → D is a solution
of (C,V,D) iff C ∪ {(xk = vxk )|xk ∈ V (C) ∧ vxk = v(xk)} is
satisfied. Consequently, finding a solution of a CSP is mapped to the
problem of checking the consistency of a set of constraints.

Entailment is defined as usual:

Definition 1 (Junker) A constraintφ is a (logical) consequence of a
set of constraintsC with variablesV (C) iff all solutions of the CSP
with variablesV (C∪φ) and constraintsC also satisfy the constraint
φ. We writeC |= φ in this case.

Junker [8] gives the following definition of an explanation (rsp.
argument) based on a propagation operatorΠ.

Definition 2 (Junker) LetΠ be a propagation operator,(C,V,D) a
consistent CSP, andφ a constraint.

A subsetC of C is called aΠ-argument forφ andC iff φ ∈ Π(C).
C is a minimalΠ-argument forφ and(C,V,D) iff no proper subset
of C is aΠ-argument forφ and(C,V,D) .

Π(C) corresponds to the unique minimal fixpoint that contains
C. In caseΠ is correct and complete the testφ ∈ Π(C) can be
formally replaced byC |= φ, i.e., every solution ofC is a solution of
φ. Consequently, Junker follows the abduction principle for defining
explanations (arguments)3.

Example continued: There are two minimal explanations (argu-
ments) foreasy-parking= y4:

EXP1:{rec-pack= y, cr,v, cv,s,e} |= easy-parking= y, which
is intended. However, there is a second minimal explanation:

EXP2:{biz-pack= y, cb,r,s, cr,v, cv,s,e} |= easy-parking= y.

Consequently, on one handrec-pack= y is part of a minimal expla-
nation foreasy-parking= y but on the other handbiz-pack= y is
also part of an alternative minimal explanation foreasy-parking= y.
Note, that the original solution (for which we are generating expla-
nations) includes a video camera. Clearly, the second explanation is
not correct with respect to the original solution since easy parking is
provided by a video-camera and the video-camera is included by the
recreation package and not by the business package.

The reason for this spurious explanation lies in the fact that if
we choose the business package then either the sensor or the video-
camera is assembled, depending on the choice regarding the recre-
ation package. In both variants of such a car easy parking is sup-
ported. However, the customerhas chosenthe recreation package
which implied the video-camera. An explanation of a consequence
of user inputs must be based on the solution implied by these user
inputs. Reducing the set of user inputs in order to find minimal ex-
planations allows potentially more solutions (logical models) which
may lead to a wrong argumentation. Consequently, the second expla-
nation says that if the business package is chosen then all solutions
will provide easy parking, regardless of other customer choices and
solutions presented to the customer.

4 Analysis and outline of the new concept

In the following we will elaborate our argumentation in more detail
and outline the basic ideas of our new concept for eliminating spu-
rious explanations. We will apply the concept of projection which is
defined according to relational algebra in databases. Let constraint
c have variablesxi, . . . , xj (and possibly others). The projection
of constraintc on xi, . . . , xj (written asc{xi, . . . , xj}) is a con-
straint with variables derived from the variables ofc by removing all
variables not mentioned inxi, . . . , xj , and the allowed tuples ofc
are defined by a relationR(c{xi, . . . , xj}) consisting of all tuples
(vxi , . . . , vxj ) such that a tuple appears inR(c) with xi valuevxi ,
. . ., xj valuevxj . A constraint with no variables is trivially satisfied.

Subsequently, we compare the solutions of the original problem
and of the two minimal explanations EXP1 and EXP2. The only
solution based on the set of all constraintsC and all user inputs
rec-pack= y andbiz-pack= y (the original CSP) is:

rec biz vid sen eas gsm fre
y y y n y y y

For the explanation ofeasy-parking= y where we use EXP1 (i.e.,
the user inputrec-pack= y andcr,v, cv,s,e), the solutions implied
for the original variablesV are

3 Junker partitions the set of constraints in explainers and a background the-
ory. In order to simplify our presentation we omit this partitioning. This
partitioning can be introduced in our concepts easily.

4 We consider user inputs as additional constraints.



solution rec biz vid sen eas gsm fre
1 y y y n y y y
2 y n y n y n n

In both solutionseasy-parkingis y. Solution 1 is identical to the
solution of the original CSP. However, Solution 2 differs in the vari-
ables{biz-pack, GSM-radio, free-com} from the original CSP. So we
might argue that an explanation eventually exploits values of vari-
ables which are out of the scope of the original solution and there-
fore might lead to a spurious explanation. However, in order to derive
easy-parking= y we only need the constraintscr,v, cv,s,e. Conse-
quently, variables{biz-pack, GSM-radio, free-com} are superfluous
to deriveeasy-parking= y. Even not all variables incr,v, cv,s,e

are necessary for the derivation. If we analyzecv,s,e then we rec-
ognize that settingvideo to y implies easy-parking= y, regard-
less of the value ofsensor. Consequently, the relevant variables in
our case arerec-pack, video, and easy-parking. The solutions of
{rec-pack= y, cr,v, cv,s,e} and the solutions of the original CSP
projected on these relevant variables are identical.

For the explanation ofeasy-parking= y where we use EXP2 (i.e.,
the user inputbiz-pack= y and the constraintscb,r,s, cr,v, cv,s,e),
the solutions implied for the original variablesV are

solution rec biz vid sen eas gsm fre
1 y y y n y y y
2 n y n y y y y

Since we only needcb,r,s, cr,v, cv,s,e for the explanation,
the variables not included in these constraints are irrelevant for
this explanation. All other variables in these three constraints
(i.e., biz-pack, rec-pack, video, sensor, easy-parking) are needed.
For example if we delete the variablevideo then {biz-pack =
y, cb,r,s, cr,v{r}, cv,s,e{s, e}} 6|= easy-parking= y.

The solutions w.r.t. these relevant variables are
solution rec biz vid sen eas

1 y y y n y
2 n y n y y

The argumentation foreasy-parking= y must show that in both
solutions (in both logical models)easy-parking= y is contained. In
particular, the constraintcb,r,s, and the user inputbiz-pack= y imply
eithersensor= y or rec-pack= y. rec-pack= y impliesvideo= y.
In both caseseasy-parking= y is implied bycv,s,e. Please note, that
this argumentation uses variable settings which are not contained in
the original solution, e.g., the car we are talking about comes with a
video and not with a sensor equipment. We consider such an argu-
mentation as spurious because it argues with a possible world which
is apparently not possible under the current settings.

The principal idea of our approach is, that an explanation based on
constraintsC for a constraintφ and for a specific solution∫ must im-
ply φ and the possible solutions of the explanation must be consistent
with the specific solution∫ (w.r.t. the relevant variables).

5 Well-founded explanations

The following definitions of explanation will lead to a more concise
explanation compared to previous approaches [8]. We not only con-
sider the relevance of constraints but also investigate the relevance
of variables. The goal is to compute a minimal explanation consist-
ing of constraints and variables needed to deduce a certain property.
Constraints and variables in such an explanation are exploited to con-
struct anunderstandableargumentation chain for the user [1]. For the
introduction of our concepts we need the application of projection on
a set of constraints.C{V } is defined by applying the projection on
V ⊆ V to all c ∈ C, i.e.,C{V } = {c{V ∩V (c)}|c ∈ C}. V (c) are

the variables ofc.

Definition 3 Let (C,V,D) be a satisfiable CSP,φ a constraint.
A tuple(C, V ) whereC ⊆ C andV ⊆ V is an explanation forφ

in (C,V,D) iff C{V } |= φ.
(C, V ) is a minimal explanation forφ in (C,V,D) iff there exists

noC′ ⊂ C and noV ′ ⊂ V s.t.(C′, V ) or (C, V ′) or (C′, V ′) is an
explanation forφ in (C,V,D) .

Example cont.: ({rec-pack = y, cr,v, cv,s,e}, {rec-pack, video,
easy-parking}) is a minimal explanation foreasy-parking= y.

For the computation of minimal explanations we employ the fol-
lowing monotonicity property.

Remark 1 If C{V } 6|= φ then for allV ′ ⊆ V holdsC{V ′} 6|= φ.
The same applies for deleting constraints. However, it could be the
case that(C′, V ) and (C, V ′) are minimal explanations forφ in
(C,V,D) andC′ ⊂ C andV ′ ⊂ V .

We employ a CSP to find a solution for a user. Such a solution is
described by a set ofsolution relevantvariablesS which comprise
all or a subset of variables of the CSP. We make the reasonable as-
sumption, that there is enough information provided by the user (or
about the user) such that the CSP unambiguously defines the values
of variablesS. More formally,∫ = {(xk = vxk )|xk ∈ S ∧ (C |=
xk = vxk )}. For example in car configuration the user has to provide
enough information such that a car is well-defined. Information gath-
ering is the task of an elicitation process [10, 1]. Our approach deals
with the generation of explanations of properties of a (possible) so-
lution for a user. Consequently, a user can explore various solutions
and can ask for an explanation regarding the relation between user
decisions and properties of a specific solution.

Subsequently, the projection∫{V } of a solution∫ on variablesV
is defined as{(xk = vxk )|xk ∈ V ∧ (xk = vxk ) ∈ ∫}.

The definition of well-founded explanations for a propertyφ w.r.t.
a user solution∫ is based on the following idea. First, an explanation
(C, V ) for φ, i.e.,C{V } |= φ must show that every solution (log-
ical model or sometimes called possible world model) ofC{V } is
a solution (a model) forφ. Second, ifC{V } allows some possible
world models with value assignments of solution relevant variables
S other than those assigned in∫ then the explanation ofφ is based
on possible world models which are in conflict to the original solu-
tion ∫ (which was presented to the user). Therefore we must assure
that every possible world (solution) ofC{V } is consistent with the
variable assignment of∫ .

Definition 4 Let (C,V,D) be a satisfiable CSP,∫ the solution of
(C,V,D) for the solution relevant variablesS, (C, V ) an explana-
tion for φ.

A tuple(C, V ) is a well-founded (WF) explanation forφ w.r.t. ∫ iff
every solutions{S} of (C{V }, V,D) is a part of∫ (i.e.,s{S} ⊆ ∫ ).

(C, V ) is a minimal well-founded (MWF) explanation forφ w.r.t.
∫ iff there exists noC′ ⊂ C and noV ′ ⊂ V s.t.(C′, V ) or (C, V ′)
or (C′, V ′) is a WF explanation forφ in (C,V,D) w.r.t. ∫ .

Remark 2 Let (C,V,D) be a satisfiable CSP,(C, V ) an explana-
tion for φ and ∫ the solution of(C,V,D) for the solution relevant
variablesS.

1. An explanation (C, V ) is a well-founded explanation for
(C,V,D) w.r.t. ∫ iff C{V } |= ∫{V }.

2. If (C,V,D) is satisfiable andC |= φ then there always exists a
well-founded explanation forφ.



3. It could be the case that for a satisfiable(C,V,D) and aφ s.t.C |=
φ and ∫ the solution of(C,V,D) for S there exists no minimal
explanation ofφ which is also well-founded.

By applying Definitions 3, 4 and Remark 2.1 the subsequent corol-
lary follows immediately which characterizes well-founded explana-
tions based on logical entailment.

Corollary 1 Let(C,V,D) be a satisfiable CSP and∫ the solution of
(C,V,D) for the solution relevant variablesS.

A tuple(C, V ) whereC ⊆ C andV ⊆ V is a well-founded expla-
nation forφ w.r.t. ∫ iff C{V } |= φ ∧ ∫{V }.

Example cont.: Let a car be characterized by the solution relevant
variablesvideo, sensor, GSM-radiowhich describe the configuration
needed for manufacturing.({rec-pack= y, cr,v, cv,s,e}, {rec-pack,
video, easy-parking}) is a MWF explanation foreasy-parking= y
w.r.t. the solution (car configuration)video = y, sensor = n,
GSM-radio = y. It entails easy-parking = y and video = y.
({biz-pack = y, cb,r,s, cr,v, cv,s,e}, {biz-pack, rec-pack, video,
sensor, easy-parking}) is a minimal explanation foreasy-parking=
y but it is not well-founded since it does not entailvideo = y,
sensor= n.

6 Computing minimal well-founded explanations

The following remarks are exploited for the design of an algorithm
that computes MWF explanations. The truth value ofC{V } |=
∫{V } is non-monotonic w.r.t. the addition or deletion of variables
of V . For example althoughC{V } 6|= ∫{V } there could exist a
non emptyV ′ ⊂ V s.t. C{V ′} |= ∫{V ′}. Reducing (or adding)
variables reduces (adds) constraints on both sides of the entailment
relation.

For the computation we employ a propagation operatorΠ as de-
scribed above and following [8]. Additions and deletions of con-
straints are performed by an add and delete operator. LetΠ(∅) := ∅
and Π(C) := add(Π(C′), c) for setsC′ ⊂ C ⊆ C and C =
C′ ∪ {c}. Π(C′) := delete(Π(C), c). Deleting a variablex in a set
of constraints corresponds to deletion ofn − 1 equality constraints
wheren is the number of constraintsc wherex is a variable, i.e.,
x ∈ V (c).

Remark 3.1. and 3.2. say that if we lost the well-founded property
becauseC{V } 6|= φ by deleting constraints or variables this property
cannot be restored by additional deletions. Remark 3.3. states that if
we lost the property ofC{V } |= ∫{V } (e.g., by variable deletions)
and this property can be restored by additional variable deletions,
then there is a maximal set of variablesVm ⊂ V s.t. C{Vm} |=
∫{Vm}. Remark 3.4. and 3.5. tell us that if we have minimized the
variables w.r.t. toφ or ∫ then this minimality property is preserved if
we delete constraints. Consequently, we can first minimize variables
and then constraints.

Remark 3 Let (C,V,D) be a satisfiable CSP,∫ the solution of
(C,V,D) for the solution relevant variablesS, andφ a constraint.

1. if C{V } 6|= φ then there is no well-founded explanation(C, V ′)
for (C,V,D) , ∫ , φ with variablesV ′ ⊆ V .

2. if C{V } 6|= φ then there is no well-founded explanation(C′, V )
for (C,V,D) , ∫ , φ with constraintsC′ ⊆ C.

3. LetC ⊆ C andV ⊆ V s.t.C{V } 6|= ∫{V }.
If there existsV ′ ⊆ V and V ′ 6= ∅ s.t. C{V ′} |= ∫{V ′} then
there is a unique maximalVm ⊂ V s.t. for all V ′′ whereVm ⊂
V ′′ ⊆ V : C{V ′′} 6|= ∫{V ′′}.

4. Let(C, V ) be minimal forV for a C ⊆ C s.t.C{V } |= φ but for
all V ′ ⊂ V : C{V ′} 6|= φ.
For all C′ ⊆ C whereC′{V } |= φ, it follows that for allV ′ ⊂
V : C′{V ′} 6|= φ.

5. Let(C, V ) be minimal forV for a C ⊆ C s.t.C{V } |= ∫{V } but
for all V ′ ⊂ V : C{V ′} 6|= ∫{V ′}.
For all C′ ⊆ C whereC′{V } |= ∫{V }, it follows that for all
V ′ ⊂ V : C′{V ′} 6|= ∫{V ′}.

The proposed algorithm for computing MWF explanations com-
prises four functions. FunctionMWF-explain(depicted in Figure 1)
is called for a CSP(C,V,D) with C, V, φ, and∫ as input parameters.
MWF-explain first minimizes the set of variables and then the set of
constraints. For the minimization of constraints the functionreduce-
constraintsis employed using a standard explanation algorithm [8].
The minimization of variables is realized by the Functionreduce-
variablesdepicted in Figure 2. This function starts with a check if
C |= φ. Then it investigates the variables ofV. The function holds
two sets of variables.V corresponds to a working set,X corresponds
to the variables necessary for a MWF explanation. If a selected vari-
ablex of V is necessary s.t.(V − x) ∪X does not contain the vari-
ables of at least one well-founded explanation thenx is included in
X. Otherwise,x is deleted fromV . In the investigation of the neces-
sity of variablex the FunctionmaxV(depicted in Figure 3) is called.
This function returns a maximal set of variablesV ′ of V − x s.t.
C{V ′ ∪ X} |= ∫{V ′ ∪ X} if such aV ′ exists. Otherwise, it re-
turns ’no’. In addition it returns the propagation state via an in/out
parameter.

function MWF-explain(C, V, φ, ∫)
% C set of constraints,V set of variables,φ a constraint
% ∫ the solution of(C,V,D) for the solution relevant variables
V := reduce-variables(C, V, φ, ∫);
C := reduce-constraints(C, V, φ, ∫);
return (C,V) endfunction

Figure 1. Computation of a MWF explanation

function reduce-variables(inoutC, V, φ, ∫)
% C input and output: a set of constraints and propagation state
% X output: a minimal set of variables needed for a MWF explanation
C := Π(C{V });
If φ 6∈ C then throw exception ’no explanation’;
X := ∅;
while V 6= ∅ do

x := an-element-of(V );
C′ := C;
V ′ := maxV(C′, V, x, X, ∫);
if V ′ 6= ’no’ then

if φ ∈ C′ thenV := V ′; C := C′

elseX := X ∪ {x}; V := V − {x} endif
elseX := X ∪ {x}; V := V − {x} endif endwhile;

returnX endfunction
Figure 2. Reduction of variables

Theorem 1 Let (C,V,D) be a CSP,φ a constraint to be explained
w.r.t. the solution∫ for the solution relevant variablesS.

The function MWF-explain(C,V, φ, ∫) always terminates. IfC 6|=
φ then MWF-explain terminates with an exception. Otherwise, it re-
turns a minimal well-founded explanation (C,V) ofφ with respect to
the solution∫ for the solution relevant variablesS.



function maxV(inoutC, V, x, X, ∫)
% outputs aV ′ ⊆ (V − {x}) s.t.V ′ is a maximal set of
% variables whereC{V ′ ∪X} |= ∫{V ′ ∪X}
% if such a set exists, otherwise return ’no’
% additional output isC, the current propagation state
diff := {x};
V ′ := V − diff;
loopC := Π(C{X ∪ (V − diff)});

forall (y = v) ∈ ∫{X ∪ (V − diff)} do
if (y = v) 6∈ C then

if y ∈ V ′ thenV ′ := V ′ − y
else return ’no’ endif endif endforall;

if V ′ = V − diff then returnV ′

else diff := V − V ′ endif endloop endfunction
Figure 3. Maximize variables s.t. solution is entailed.

The computational costs can be estimated as follows. Letnc be
the number of constraints andnv the number of variables in a CSP
(C,V,D) . The complexity of Functionreduce-variablesis O(nc)
add-constraint operations andO(n2

v) delete-variable operations. The
functionreduce-constraintscan be implemented by a standard expla-
nation algorithm [8] which has a complexity ofO(n2

c) add-constraint
operations in the worst case5. Consequently the total complexity of
finding a MWF explanation isO(n2

c) add-constraint operations plus
O(n2

v) delete-variable operations. Of course the overall computa-
tional costs are dominated by the costs of the propagation operatorΠ
for a specific knowledge base.

We have deployed various sales advisory systems (for digital cam-
eras, financial products, skis, cigars etc.) where the large knowledge
bases are typically represented by 40 variables and 60 constraints.
Products are characterized in the average by 15 variables. User in-
puts are covered by 15 to 20 variables. The domains of the variables
have a typical size of 5 to 10 possible values. Because of this rather
small number of variables the additional overhead should be accept-
able for similar real world applications as it is in our domain.

7 Related work

The presented concepts are based on the ideas of Quickxplain [8]
which showed excellent results in practical settings. Our concepts
avoid spurious explanations and output minimal well-founded expla-
nation w.r.t. a solution.

The work in [5, 12] follows the idea to exploit inferences to com-
pute explanation trees. As their basic definition of explanation is
based on the usual abduction principle their method allows spurious
explanations. However, one of their goals is to compute concise infer-
ences which are comprehensible. We plan to integrate this approach
to facilitate the communication process after identifying a MWF.

Rochart et al. [11] presents methods for implementing explana-
tions within global constraints. Similar to the other approaches their
algorithm can lead to spurious explanations. In addition, our inten-
tion was to provide a non-intrusive explanation facility in order to
re-use easily existing constraint solver and database systems.

The generation of explanations is a very active research area in
the field of causal theories [9, 2, 6]. Their concepts are based on
causal models described by exogenous and endogenous variables
which are connected by functions. In contrast to this approach we

5 Note, that in [8] the complexity of computing an explanation is expressed
under the assumption that the deletions of constraints is done in the reverse
order of additions. Every deletion corresponds to restoring the last saved
propagation state and by adding constraints as needed.

do not presume a functional property of constraints. Therefore, we
allow a more general form of knowledge. It is interesting to note that
our method solves the standard rock-throwing example [9] correctly
although our intention was not to provide causal explanations. The
investigation of relationships between causal explanations and our
proposal will be the subject of future work.

8 Conclusions

In this paper we have shown that current approaches for the genera-
tion of explanations fall short. These approaches may compute spu-
rious explanations which are incompatible to a solution proposed.
Based on an analysis of these problems we developed the new con-
cept of well-founded explanations for CSPs. We showed some impor-
tant properties of this concept which were exploited to develop a non-
intrusive algorithm for the computation of minimal well-founded ex-
planations with acceptable additional computation costs.
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