
Introducing Alias Information into Model-Based
Debugging

Daniel Köb1 and Franz Wotawa1 2

Abstract. Model-based diagnosis applied to computer programs
has been studied for several years. Although there are still weak-
nesses in the used models, especially on dealing with dynamic data
structures, the approach has been proven useful for automatic de-
bugging. The weaknesses stem from the fact that heap objects are
modeled without considering alias information. Our approach ex-
tends the modeling process with a static points-to analysis that re-
veals the structure and relations between heap objects. This points-to
information is then used to improve existing value-based models for
Java programs such that the diagnosis engine is able to differenti-
ate between separate data structures. With this extension the set of
diagnoses can be reduced for certain types of programs.

1 INTRODUCTION

Automatic debugging of software using model-based diagnosis tech-
niques requires quite sophisticated models in order to achieve reason-
able fault localization results. Several models have been proposed
with different advantages and drawbacks [2, 5, 7]. Common to all
these models is their weakness in diagnosing software that makes
heavily use of dynamic data structures. In this paper we propose an
extension atop the value-based model [4] for diagnosing Java pro-
grams, which overcomes this weakness in some cases.

Value-based models are made up of components that represent the
different entities of the programming language and connections be-
tween these components representing variables and objects stored on
the heap. The term value-based arises from the fact that values are
propagated between the components via the connections. The com-
ponents themselves simulate the data flow of the program entities
they represent. Therefore, it is possible to trace forward and back-
wards to locate those parts of the program, that are responsible for
a discrepancy between the values computed by the program, and the
expected values. In diagnosis such traces correspond toconflict sets,
which are the fundamentals for diagnosis computation. An essential
part of the definition of a diagnosis is, that a diagnosis for a system
must be able to explainall observed discrepancies, otherwise it is not
a diagnosis. Exactly at this point the weakness in existing models for
software diagnosis emerges.

The value-based model represents class instances by a unique
identifier and a mapping from this identifier to the member vari-
ables of the instance. Operations on data structures are then modeled
as modifications of these mappings. Although the shape of the data
structures is implicitly stored within the mappings, the value-based
model is not capable to profit from this information. Thus, every ex-
pression or statement that modifies a single object is immediately

1 Institute for Software Technology, Graz University of Technology, Austria
email:{dkoeb,wotawa}@ist.tugraz.at

2 Authors are listed in alphabetical order.

suspected to change all objects of the same type, even if it is stati-
cally known which object is affected.

In this paper we propose an extension for the value-based model
that explicitly stores the shape of data structures and captures the
shape transformations performed by the statements of the program.
This results in a more precise model according to the language se-
mantics, and therefore provides better fault localization ability.

Section 2 provides a detailed description of the problems that arise
in the presence of dynamic data structures and how to manage them.
The notations used throughout this paper are described in Section 3.
In Section 4 a formal foundation for the model extensions is given.
Finally, we discuss related work and some conclusions in Section 5.

2 PROBLEM REPRESENTATION

A frequent issue in model-based diagnosis of software is the reduc-
tion of the number of reported (possible) fault locations. The only
way to improve diagnosis results without the requirement of provid-
ing additional information is to improve the used model. The model
provides dependence information from which the diagnosis engine
infers responsibilities for misbehavior. Hence, improving a model
means extending it with additional dependencies. Finding new de-
pendencies requires a very subtle analysis of the program text and a
precise knowledge of the programming language semantics.

The inability of existing value-based models to distinguish be-
tween independent data structures may lead to unexpected diagnoses.
Thus, if one is able to represent independent data structures in the
model and define new dependencies for it, an improvement in diag-
nosis results can be expected. Suppose the following erroneous code
fragment that is used to destructively invert the elements of a stack by
adding them to a new stack. The classLinkedStack contains a ref-
erence to the first element of a linked list that contains integer num-
bers. The linked list is built by objects of typeValueHolder that
hold a reference to their predecessor. Methodssize and remove
implement the expected behavior, methoditem returns the top el-
ement of the stack (i.e. an integer) and methodput lays the given
integer on top of the stack (i.e. add a new element to the list).

LinkedStack invertStack(LinkedStack s) {
1. LinkedStack inv = new LinkedStack();
2. int items = s.size();
3. while (items > 1) {
4. inv.put(s.item());
5. s.remove();
6. items --;
7. }
8. return inv;

}

The error introduced into the loop condition in line 3 causes
the loop to iterate once too little, thus, ending up with one ele-

ment still left on the stacks and one element missing on stack
inv . The (single fault) diagnoses retrieved from the loop-free
value-based model (see [4]) are [inv=new LinkedStack() :1],
[items=s.size() :2], [items > 1 :3], [inv.put(...) :4],
[s.remove() :5], and [items-- :6]. But neither the diagnosis of
line 1 nor the ones from lines 4 and 5 are able to really explain the
discrepancy in both stacks. That is, they may explain why the val-
ues in the two stacks are wrong, but they are not able to explain why
there is an element missing in one stack, and why there is an element
too much in the other, respectively. For example consider the method
call s.remove in line 5. It removes an element from stacks , thus,
it may be responsible for the observations ons . But since the con-
nection representing stacks is also used to represent stackinv it
may also be responsible for the values that are put on stackinv .

From the above findings emanates that existing models are too im-
precise in simulating data flow. Different characteristics of data are
joined together and represented by the same entities in the model,
therefore loosing the ability to distinguish between them. Hence,
model improvements that separate characteristics of data flows are
expected to improve diagnosis effectiveness.

The approach we propose in this paper is to expand the value-
based model with shape information about data structures. That is
we focus on objects created on the heap without referring to the val-
ues stored within these objects, except for references to other ob-
jects. In addition we divide the heap into independent junks of ob-
jects. This means that we are dealing with several object graphs that
represent the shapes of independent data structures used through-
out the program. For our example program this means that we have
two independent shape graphs for variables and inv all through
the program. The shape graph for variables depends on method
callss.size , s.item , ands.remove , and on the loop condition.
Whereas the shape graph for variableinv depends on the statement
in line 1, the loop condition and the method callinv.put . Thus,
a value-based model extended with shape graph information will be
able to compute the expected diagnoses for this example, namely
[items = s.size() :2], [items > 1 :3], and [items-- :6].

3 TERMINOLOGY AND NOTATION

The major part of the notation used throughout this paper is bor-
rowed from [6]. Our analysis focuses on the set of pointer vari-
ables for a given program which is denoted byPVar . The term
shape nodes used in shape analysis directly corresponds to objects
in object-oriented languages like Java. Each shape node has a type,
a unique name (e.g. its address in memory), and a set of selectors.
The set of selectors of a shape nodes (i.e. the member variables of
reference type for an object) are denoted bysel(s). The central el-
ements of shape analysis are shape graphs. The following definition
provides a formal description of shape graphs.

Definition 1 (Shape Graph). A shape graph is a finite directed
graph that consists of variable nodes and shape nodes and two kinds
of edges — variable edges and selector edges. A shape graph is rep-
resented by a pair of edge sets,〈Ev, Es〉, where

• Ev is the graph’s set of variable edges, each of which is denoted
by a pair of the form[x, n], wherex ∈ PVar andn is a shape
node.

• Es is the graph’s set of selector edges, each of which is denoted
by a triple of the form〈s, sel , t〉, wheres and t are shape nodes,
andsel ∈ sel(s).

Note that the above definition is nondeterministic per se, because
it allows multiple edges emanating from a single variable or node

selector. In order to precisely represent data structures, it is necessary
to define deterministic shape graphs.

Definition 2 (Deterministic Shape Graph). A shape graph is deter-
ministic if (i) for everyx ∈ PVar , |{n|[x, n] ∈ Ev}| ≤ 1, and (ii)
for every shape nodes andsel ∈ sel(s), |{n|〈s, sel , n〉 ∈ Es}| ≤
1. The class of deterministic shape graphs is denoted byDSG.

The set of all shape nodes for a given shape graph (i.e. all ob-
jects in memory) are denoted byshape nodes which is defined as
shape nodes(DSG) = {n|[∗, n] ∈ Ev} ∪ {n|〈n, ∗, ∗〉 ∈ Es} ∪
{n|〈∗, ∗, n〉 ∈ Es}. For simplicity we additionally defineEv(x) as
a function returning the node pointed to by variablex or∅ if x doesn’t
point to any node. And we defineEs(s, sel) as function returning the
node pointed to by selectorsel of shape nodes or ∅ if the selector
doesn’t point to any node. It will always be clear if the sets or the
functions are meant according to whether an argument is provided or
not.

Example 1 (Shape Graph).Figure 1 depicts a shape graphSG that
consists of a single variables and three shape nodes, where nodels is
of typeLinkedStack and nodesv1,v2 are of typeValueHolder .
The selectors of shape nodes are represented as dots where the names
of the selectors are placed on the edges emanating from these dots.
Since all variables and selectors at most consist of one edge, it is a
deterministic shape graph. Furthermore we can state the following
for shape graphSG :

Ev(s)= ls Es(ls, top)= v1 Es(v1, previous)= v2

shape nodes(SG) = {ls, v1, v2} Es(v2, previous)= ∅

ls v2v1s
previoustop

Figure 1. Example of a shape graph

A DSG as defined above represents all objects in memory used by
a program. But for our purposes it is required to split it into multi-
ple independent chunks in order to be able to distinguish those parts
that are reachable by a variable. The concept of partitions allows us
to separate those variables that may point to parts of the same data
structure. Since a variable can only point to one object at a time, it
can only be part of a single partition. Thus, a partitioning is defined
as a collection of pairwise disjunct sets of program variables. For ev-
ery partition of a given partitioning a uniqueDSG can be defined
that models only a part of the complete storage. The set ofDSG ’s
for a given partitioning is called partitioned shape graph (PSG).

Definition 3 (Partitioned Shape Graph). A PSG for a given par-
titioning P is a set ofDSG ’s that are mutually disjoint. TheDSG ’s
are subscripted by their partition, thusPSG = {DSGX |X ∈ P}
where for allDSGX ,DSGY ∈ PSG with X 6= Y follows that
shape nodes(DSGX)∩ shape nodes(DSGY) = ∅ must hold. The
class of partitioned shape graphs is denoted byPSG.

Due transformations of a given partitioning of the shape graph it
may be necessary to join two shape graph partitions together to form
a new one. This is achieved by joining the set of variable edges and
the set of selector edges of the two graphs.

DSGX∪Y
def
= 〈EvX ∪ EvY , EsX ∪ EsY 〉

Based on the above definitions we extend the value-based model
with alias information and prepare it for propagation of shape graphs.

4 Diagnosing with Alias Information

The enhancement of the value-based model with shape information
first requires a careful analysis of how the various entities of the pro-
gramming language affect shapes. Based on this information we can
analyse the static data flow in a program. The analysis exposes which
parts of the program affect a certain data structure. Due to these ef-
fects on data structures we can derive new dependencies, that are
integrated into the value-based model and used for diagnosis. Our
analysis is similar to interprocedural pointer alias analysis [1].

4.1 Extended Alias Analysis for Modeling

Compared to interprocedural pointer alias analysis we are not just
interested if two given access paths are may-aliases, instead we need
to know if two access paths may refer to parts of the same data struc-
ture. With this information we are able to decide if two statements
may access or transform the same data structure or not.

Because of branching statements in the programming language,
it is not possible to compute the extended aliasing information pre-
cisely. Instead only an approximation can be determined by a least
fixed point computation in order to preserve as much information as
possible. The fixed point computation is based on the domain of par-
titioningsP. This domain is a complete lattice with ordering relation
v defined by

P1 v P2
def
= ∀x ∈ P1 : ∃y ∈ P2 : x ⊆ y.

The join operatort for P1 andP2 is defined over the transitive
reflexive closure of the union ofP1 andP2, where the relationxRy
is defined asxRy = ∃r ∈ R : x ∈ r ∧ y ∈ r.

P1 t P2
def
= {a|∀x, y ∈ a : x(P1 ∪ P2)∗y}

The iterative approximation process starts with a model, where ev-
ery variable of the program resides in its own shape graph partition
(i.e. the bottom element⊥ of the lattice). Due to the statements and
expressions in the program text, the partitioning of the shape graph
is changed according to their semantics. For simplicity we prepro-
cess the program text and replace every qualified name, consisting
of more than two levels by a fresh variable. Assignment statements
that contain the same variable on the left and right hand side are also
replaced with a fresh variable, as is shown below.

Original Code Preprocessed Code
x = a.b.sel tmp = a.b;

x = tmp.sel;
x = x.sel tmp = x.sel;

x = tmp;

The partitioning transforming semantics for the various statements
s ∈ ST is defined by the functionJK : ST ×P → P. For simplicity
we only include those partitions in the semantics definition, that are
affected by the statement, wherePX generally denotes the partition
that includes variablex.

Assignment statements of reference type change the shape graph
partitioning depending on the kind of target and source expression.
They join two partitions, split a single partition into two new ones,
or leave them as they are. An assignment ofnull to a simple vari-
able always removes the variable’s dependency to the data structure
it pointed to before. Thus, the variable is removed from the partition
of the data structure and a new one is created for it.

Jx = null K(PX) = (PX−{x}, P{x})

Contrary if an assignment ofnull to a member variable of some
object pointed to by a variable is encountered, we are not able to tell
if all variables in its partition still point to the same data structure.
Hence, the partition is left as it is.

Jx.sel = null K(PX) = (PX)

Creation of a new object with Java’snew operator is treated as two
independent operations, namely the creation of a new object and the
call to the appropriate constructor. The assignment of a new object
to a variable causes the variable to definitely point to a different data
structure than it did before the assignment. Therefore, the variable is
removed from its old partition and put into a new one.

Jx = new TK(PX) = (PX−{x}, P{x})

The result for assignments of simple variables to simple variables de-
pends upon the partitions both variables are in before the statement.
If both variables are in different partitions, the target variable is re-
moved from its partition and added to the source partition. Otherwise
if both variables are within the same partition, the partitioning is not
changed. The same holds for the assignment of a member variable to
a simple variable.

Jx = y K(PX , PY)= (PX−{x}, PY ∪{x})
Jx = y.sel K(PX , PY)= (PX−{x}, PY ∪{x})

The last possible form of assignments handles an assignment to a
member variable of an object pointed to by a simple variable. In this
case the partitions of the source and target variables are joined to-
gether as long as they are in different partitions. Otherwise the parti-
tioning is not changed.

Jx.sel = y K(PX , PY) = (PX∪Y)

Return statements are treated like assignment statements to a re-
served variable namedreturn . To simplify the analysis we assume
that preprocessing assured that the return expression only consists of
a simple variable name.

Jreturn x K(PX) = (PX∪{return})

Blocks of statements transform the partitioning statement by state-
ment. Thus, we apply the semantics operator in the order the state-
ments occur, where the operator◦ denotes functional composition.

Js1...sn K(P) = (Js2...sn K ◦ Js1 K)(P)

For method calls it is necessary to map the partitioning at the callers
site to an appropriate partitioning for the method’s body. In order
to simplify this mapping we assume, that the preprocessing step re-
placed the actual parameters with simple variables. The name of the
variable on which the method is called is replaced withthis and
the names of the actual parameters are replaced with the names of
the formals. At the end of the method body the partitioning has to
be mapped back to the names of the caller. This mapping is achieved
by an auxiliary functionm : P 7→ P that is bijective, thus,m−1

denotes the reverse mapping of variable names. If the method returns
a value of reference type the special variable namereturn is used.

Js.method(p 1,...,p n) K(P) = (m−1 ◦ Jbody method K ◦ m)(P)

Branching statements like conditionals and loops consist of join
points, where the partitioning information of multiple branches has
to be joined together. This is done by the join operatort defined for
the domainPSG.

Based on the information gathered from this static alias analysis,
the value-based diagnosis model is extended. Initially a new connec-
tion is generated for every variable partition. These connections are
used to propagate the respective shape graph partitions through the
model. For every statement it is known, which partitions it affects,
therefore the component representing the statement is linked with the
according connections. For the resulting partitions of the statement,
new connections are created and also connected with the component.
Furthermore a new meta component must be provided for modeling,
that implements the join operation of shape graphs. This auxiliary
component, that shall not be suspected for diagnosis, is necessary for
join points of execution paths in the program, where different parti-
tionings are summarized to a single new one.

Example 2. In Figure 2 the new connections created in the model for
our stack example program are depicted. Note that in this example
only a single loop unrolling is shown. Further instantiations of the
loop body are indicated by the dashed lines. The number of loop
unrollings is determined by a preliminary simulation of the program.
As can easily be seen, the two partitions are affected by different
components. Only the loop condition, represented by conditionals,
affects both partitions.

4.2 Value Propagation, Conflicts, and Diagnoses

After building the extended value-based model as described in the
previous section, we can apply diagnosis computation. With value-
based models diagnosis is performed via propagation of runtime
values. For our extended model, in addition to the runtime values,
shape graphs are propagated. The shape graphs propagated through
the model are modified within the components according to the Java
semantics of the statement or expression represented by the com-
ponents. The operational semantics of the components representing
statementss ∈ ST is described by a functionJK : ST × PSG →
PSG. Again only thoseDSG ’s are included in the semantics defini-
tion, that are affected by the components.

Jx = null K(〈EvX , EsX 〉) def
=

(〈EvX−{x} , EsX−{x} 〉, 〈Ev{x} , Es{x} 〉) where

EvX−{x} = EvX − {[x, ∗]}
EsX−{x} = EsX

Ev{x} = ∅
Es{x} = ∅

Jx.sel = null K(〈EvX , EsX 〉) def
= (〈E′

vX
, E′

sX
〉) where

E′
vX

= EvX

E′
sX

= EsX − {〈EvX (x), sel , ∗〉}

Jx = new TK(〈EvX , EsX 〉) def
=

(〈EvX−{x} , EsX−{x} 〉, 〈Ev{x} , Es{x} 〉) where

EvX−{x} = EvX − {[x, ∗]}
EsX−{x} = EsX

Ev{x} = {[x, nnew〈T 〉]}
Es{x} = ∅

Jx = y K(〈EvX , EsX 〉, 〈EvY , EsY 〉) def
=

(〈EvX−{x} , EsX−{x} 〉, 〈EvY∪{x} , EsY∪{x} 〉) where

EvX−{x} = EvX − {[x, ∗]}
EsX−{x} = EsX

EvY∪{x} = EvY ∪ {[x, EvY (y)]}
EsY∪{x} = EsY

Jx.sel = y K(〈EvX , EsX 〉, 〈EvY , EsY 〉) def
=

(〈EvX∪Y , EsX∪Y 〉) where

EvX∪Y = EvX ∪ EvY

EsX∪Y =
EsX ∪ EsY − {〈EvX (x), sel , ∗〉}∪
{〈EvX (x), sel , EvY (y)〉}

Jx = y.sel K(〈EvX , EsX 〉, 〈EvY , EsY 〉) def
=

(〈EvX−{x} , EsX−{x} 〉, 〈EvY∪{x} , EsY∪{x} 〉) where

EvX−{x} = EvX − {[x, ∗]}
EsX−{x} = EsX

EvY∪{x} = EvY ∪ {[x, EsY (EvY (y), sel)]}
EsY∪{x} = EsY

Jreturn s K(〈EvS , EsS 〉)
def
=

(〈EvS∪{return} , EsS∪{return} 〉) where

EvS∪{return} = EvS ∪ {[return, EvS (s)]}
EsS∪{return} = EsS

Table 1. Operational semantics for assignment statements

in

out

in

out

in

out

in

out

P{s} in

out

in

out
outinv

outs
P{s}

P{inv}

P{inv}

P{s}

P{inv}

inv=new LinkedStack()
inv.put()

s.size() s.item() s.remove()

thens
elses

theninv

elseinv

return inv

if (items > 1)

P{inv}

P{s}

P{s}

P{inv}

Figure 2. Model extended with shape graph connections

Table 1 outlines the semantics for assignment statements of refer-
ence type based on graph manipulation. Note that for the assignments
in row 4, 5, and 6 it is assumed, that variablesx andy are in separate
partitions before the statement. If this is not the case (i.e. they are
in the same partition) the semantics has to be changed slightly such
that the sole shape graph for the two variables is changed accord-
ingly. The semantics definition mainly consist of adding and remov-
ing edges to the shape graphs and keeping track of the partitioning.

The semantics of branching statements and method calls is defined
by their nested statement blocks. The first line in Table 2 shows that
the semantics of a block of statements is defined by applying the
semantics of each statement successively. For conditional statements
and loops it is necessary to deterministically decide which branch has
to be selected for value propagation. Thus, it is necessary to evaluate
the conditional expressions. Fortunately this information is provided
by the present value-based model. Note that in Table 2 the condition
of branching statements has to be considered in the semantics too,
since it may contain side effects.

For method calls again a mapping for variable names is needed.
This time the mapping functionm : PSG 7→ PSG replaces the
variable names within eachDSG of the accordingPSG . Obviously
not every variable defined at the callers site is visible in the called
method. Thus, these variables have to be removed from theDSG ’s
before the call and are reinserted afterwards.

The semantics definition for shape graphs is given in forward di-
rection only. For most of the statements (e.g. assignments) no de-
terministic backward semantics can be specified. Therefore, we will
omit it in the further discussion.

Example 3. Figure 3 depicts the assignment ofnull to a simple
variable and a member variable. Note that in the first case (Fig-
ure 3a) the partition of variableb is split into two new partitions,
whereas in the second case (Figure 3b) they are not split. In addition
Figures 3c and 3d show shape graph transformations for non-null
assignment statements. The other types of statements not shown fol-
low the same patterns.

a

b

c
ca

b

(a) b = null

a
c1 a

c1

b
c2

b sel

(b) b.sel = null

a

b

c
c

tb

a

(c) b = new T

b

a
c1

b

ac1

c2

(d) b = a

Figure 3. Shape-graph transformations for various assignments

The diagnosis algorithm is based on conflict detection. Therefore,
the input and output values provided by a test case are propagated
into the value-based model. A conflict is raised if two different val-

ues are assigned to the same connection. For example the propagated
output value for a variable does not match the value assigned to the
connection from the test case. In case of propagation of shape graphs
it is necessary to compare two shape graphs with each other. The
inconsistencies between two shape graphs may be missing variable
edges, missing selector edges, edges pointing to different nodes, and
different node (sub-) types. In order to detect all these kinds of in-
consistencies a simultaneous depth-first search on both shape graphs
is performed. During this search the type of nodes in the two graphs
are compared in order to find type conflicts. If the types are equal, the
nodes are both labeled with the same fresh sequence number. The
search on a path is stopped, if no further nodes can be reached via
selectors. Furthermore the search on a path is stopped, if an already
visited node is encountered. If the sequence numbers of the currently
visited nodes do not match or if only one node wasn’t visited yet,
then a conflict is generated. In addition, a conflict is generated if a
selector of a node in one graph points to a node, but not in the other
graph. Two shape graphs are equal if all nodes reachable from all
variables in both graphs are labeled equally.

Example 4. Suppose a test case for our running example that spec-
ifies a stack with two elements for variables . The expected outputs
then are a stack with two elements for variableinv and an empty
stack for variables . Due to the propagation of shape graphs from
the input connections to the outputs we will detect two different con-
flicts, that will be used by the diagnosis engine. Finally we will get the
expected diagnoses [items = s.size() :2], [items > 1 :3],
and [items-- :6].

Js1...sn K(PSG)
def
= (Js2...sn K ◦ Js1 K)PSG

Jif (c) {s1} else {s2}K(PSG)
def
= PSG′ where

PSG′ =

{
Jc; s1 K(PSG) if c is true
Jc; s2 K(PSG) if c is false

Jwhile (c) {s}K(PSG)
def
= PSG′ where

PSG′ =

{
(Jwhile (c) {s}K ◦ Jc; s K)PSG if c is true
JcK(PSG) if c is false

Js.method(p) K(PSG)
def
= PSG′ where

PSG′ = (m−1 ◦ Jbody method K ◦ m)PSG

Table 2. Operational semantics for branching statements

In order to verify the improvements of our approach we created
a prototypical implementation of the extended value-based model.
We were able to improve diagnosis results for various Java programs
that operate on dynamic data structures, but we also encountered that
there are still some deficiencies in our approach. The main problem
is that the computation of the heap structures depends on the values
computed in the model (e.g. conditionals, target objects for method
calls, etc.). Since the value-based model summarizes all objects of
the same type within a single connection, every component that is
put in abnormal mode by the diagnosis engine prevents propagation
of object references. Due these abnormality assumptions it’s possible
that obvious contradictions of heap structures can’t be derived.

5 RELATED WORK AND CONCLUSION

A similar approach for alias information in value-based models for
debugging is presented in [3]. Instead of adding new dependencies
(i.e. new connections) in terms of heap partitions, the existing con-
nections representing objects are split up. Hence, a connection for
object identifiers now represents only those objects, that may be

aliased. In addition connections that represent member variables of
primitive types (i.e. integers, etc.) are also split into multiple con-
nections. For certain kinds of programs this approach provides better
diagnosis accuracy, but it also implies several restrictions. Programs
that result in structural errors in the model can’t be debugged cor-
rectly anymore. That is, the real error in the program may not be
among the set of single fault diagnoses, instead those errors only ap-
pear within multi-fault diagnoses. On one hand this is the case for
assignment statements with a wrong target or source variable. But
such cases can be handled with our approach, because it only affects
diagnosis results, if heap structure information is provided within the
observations. And in this case erroneous assignments affect the parti-
tioning of the heap, and therefore are suspected as faults. On the other
hand, structural errors caused by calling methods on the wrong ob-
jects reveal a weakness of our approach in the sense that single fault
diagnoses may be missed similarly as in [3]. This weakness arises be-
cause method calls don’t change the partitioning necessarily. Thus, a
method call on an object in a different partition is not suspected for
errors in other partitions. In order to prevent these missing diagnoses,
further research is necessary that allows us to rule out this weakness.

The work presented in this paper is an extension to existing value-
based models for diagnosing Java programs. Its main advantage is
that it is able to improve diagnosis results without additional obser-
vations needed. The additional analysis step that is needed in order to
extend the value-based model requires extra time, but this is negligi-
ble compared to overall diagnosis time. Furthermore, due to the sim-
ple analysis used for the first evaluation of our approach, the benefit
for diagnosis is limited to a special class of programs. The programs
must operate on at least two separate data structures, and errors in
the shape of data structures must be observed.

Although the advantages of its application are limited to a spe-
cial class of problems, the improvements are remarkable and worth
the extra effort. In addition we believe that based on this work it is
possible to further improve diagnosis of programs that make use of
dynamic data structures. The shape analysis we used in this work
only focuses on the local behavior of statements. A global analysis
of shape graph transformation for statement blocks is believed to fur-
ther improve the results and possibly also widen its applicability.

ACKNOWLEDGEMENTS

This work was partially supported by the Austrian Science Fund
(FWF) project P15265-INF and the European Coordinating Com-
mittee for Artificial Intelligence (ECCAI).

REFERENCES
[1] M. Hind, M. Burke, P. Carini, and J.-D. Choi, ‘Interprocedural Pointer

Alias Analysis’,ACM TOPLAS, 21(4), 848–894, (July 1999).
[2] C. Mateis, M. Stumptner, and F. Wotawa, ‘A Value-Based Diagnosis

Model for Java Programs’, inProceedings of the 11th International
Workshop on Principles of Diagnosis, Morelia, Mexico, (June 2000).

[3] W. Mayer, ‘Evaluation of Value-Based Models for Java Debugging’,
Technical report, Technische Universität Wien, Institut f̈ur Information-
ssysteme 184/2, (December 2001).

[4] W. Mayer, M. Stumptner, D. Wieland, and F. Wotawa, ‘Can AI help
to improve debugging substantially? Debugging experiences with value-
based models’, inECAI, pp. 417–421, Lyon, France, (2002).

[5] W. Mayer, M. Stumptner, D. Wieland, and F. Wotawa, ‘Towards an In-
tegrated Debugging Environment’, inECAI, pp. 422–426, Lyon, France,
(2002).

[6] M. Sagiv, T. Reps, and R. Wilhelm, ‘Solving Shape-Analysis Problems
in Languages with Destructive Updating’,ACM TOPLAS, 20(1), 1–50,
(1998).

[7] M. Stumptner, D. Wieland, and F. Wotawa, ‘Comparing Two Models
for Software Debugging’, inProceedings of the Joint German/Austrian
Conference on Artificial Intelligence (KI), Vienna, Austria, (2001).

