Introducing Alias Information into Model-Based
Debugging

Daniel Kob! and Franz Wotawa! 2

Abstract. Model-based diagnosis applied to computer programssuspected to change all objects of the same type, even if it is stati-
has been studied for several years. Although there are still wealeally known which object is affected.

nesses in the used models, especially on dealing with dynamic data In this paper we propose an extension for the value-based model
structures, the approach has been proven useful for automatic d#at explicitly stores the shape of data structures and captures the
bugging. The weaknesses stem from the fact that heap objects asbape transformations performed by the statements of the program.
modeled without considering alias information. Our approach ex-This results in a more precise model according to the language se-
tends the modeling process with a static points-to analysis that renantics, and therefore provides better fault localization ability.

veals the structure and relations between heap objects. This points-to Section 2 provides a detailed description of the problems that arise
information is then used to improve existing value-based models fom the presence of dynamic data structures and how to manage them.
Java programs such that the diagnosis engine is able to differentFhe notations used throughout this paper are described in Section 3.
ate between separate data structures. With this extension the setlafSection 4 a formal foundation for the model extensions is given.
diagnoses can be reduced for certain types of programs. Finally, we discuss related work and some conclusions in Section 5.

1 INTRODUCTION 2 PROBLEM REPRESENTATION

]))]] A frequent issue in model-based diagnosis of software is the reduc-
Automatic debugging of software using model-based diagnosis techjon of the number of reported (possible) fault locations. The only
nigues requires quite sophisticated models in order to achieve reasofiay to improve diagnosis results without the requirement of provid-
able fault localization results. Several models have been proposeglg additional information is to improve the used model. The model
with different advantages and drawbacks [2, 5, 7]. Common to alhroyides dependence information from which the diagnosis engine
these models is their weakness in diagnosing software that maksters responsibilities for misbehavior. Hence, improving a model
heavily use of dynamic data structures. In this paper we propose dfeans extending it with additional dependencies. Finding new de-
extension atop the value-based model [4] for diagnosing Java prosendencies requires a very subtle analysis of the program text and a
grams, which overcomes this weakness in some cases. ﬁrecise knowledge of the programming language semantics.

_Value-based models are made up of components that represent thethe inability of existing value-based models to distinguish be-
different entities of the programming language and connections b&yeen independent data structures may lead to unexpected diagnoses.
tween these components representing variables and objects stored-pRys if one is able to represent independent data structures in the
the heap. The term value-based arlses_from the fact _that values ag§odel and define new dependencies for it, an improvement in diag-
propagated between the components via the connections. The CORysis results can be expected. Suppose the following erroneous code
ponents themselves simulate the data flow of the program entitiegagment that is used to destructively invert the elements of a stack by
they represent. Therefore, it is possible to trace forward and bac"adding them to a new stack. The clagskedStack contains a ref-
wards to locate those parts of the program, that are responsible f@frence to the first element of a linked list that contains integer num-
a discrepancy between the values computed by the program, and th@s. The linked list is built by objects of typéalueHolder that
expected values. In diagnosis such traces correspotahftict sets hold a reference to their predecessor. Methsids andremove
which are the fundamentals for diagnosis computation. An essentiq,lnmemem the expected behavior, mettitein returns the top el-
part of the definition of a diagnosis is, that a diagnosis for a systemament of the stack (i.e. an integer) and metpad lays the given

must be able to explaiall observed discrepancies, otherwise it is not jnteger on top of the stack (i.e. add a new element to the list).
a diagnosis. Exactly at this point the weakness in existing models for

software diagnosis emerges. LlnkedStack |nVertStaCk(L|nkedStaCk s) {
The value-based model represents class instances by a unique - LinkedStack inv = new LinkedStack();
identifier and a mapping from this identifier to the member vari- 2. int items = s.size();
) . 3. while (items > 1) {
ables of the instance. Operations on data structures are then modeled4_ inv.put(s.item());
as modifications of these mappings. Although the shape of the data g s.remove(): '
structures is implicitly stored within the mappings, the value-based g items -
model is not capable to profit from this information. Thus, every ex- 7. }
pression or statement that modifies a single object is immediately 8. return inv;

}
1 Institute for Software Technology, Graz University of Technology, Austria . . o
email: {dkoeb,wotawy@ist.tugraz.at The error introduced into the loop condition in line 3 causes

2 Authors are listed in alphabetical order. the loop to iterate once too little, thus, ending up with one ele-

ment still left on the stacls and one element missing on stack selector. In order to precisely represent data structures, it is necessary

inv . The (single fault) diagnoses retrieved from the loop-freeto define deterministic shape graphs.

value-based model (see [4]) aiej=new LinkedStack() :1],

[items=s.size() :2], [items > 1 :3], [inv.put(...) 4], Definition 2 (Deterministic Shape Graph). A shape graph is deter-

[s.remove() :5], and jtems-- :6]. But neither the diagnosis of ministic if (i) for everyz € PVar, [{n|[z,n] € E,}| < 1, and (ii)

line 1 nor the ones from lines 4 and 5 are able to really explain thdor every shape nodeandsel € sel(s), [{n|(s, sel,n) € Es}| <

discrepancy in both stacks. That is, they may explain why the vall. The class of deterministic shape graphs is denoteB&g.

ues in the two stacks are wrong, but they are not able to explain why]]

there is an element missing in one stack, and why there is an element The set of all shape nodes for a given shape graph (i.e. all ob-

too much in the other, respectively. For example consider the methal§Cts in memory) are denoted Bjiape_nodes which is defined as

calls.remove in line 5. It removes an element from staskthus, ~ shape-nodes(DSG) = {n|[x,n] € Ev} U {n|(n, %) € E} U

it may be responsible for the observationssorBut since the con- {nl(, *,n) € E}. For simplicity we additionally definé, (z) as

nection representing stackis also used to represent stack it afunction returning the node pointed to by variabler 0 if = doesn't

may also be responsible for the values that are put on gtack point to any node. And we definté; (s, sel) as function returning the
From the above findings emanates that existing models are too inflode pointed to by selectae! of shape node or if the selector

precise in simulating data flow. Different characteristics of data argloesn't point to any node. It will always be clear if the sets or the

joined together and represented by the same entities in the modd¥nctions are meant according to whether an argument is provided or

therefore loosing the ability to distinguish between them. Henceot.

model improvements that separate characteristics of data flows are))
expected to improve diagnosis effectiveness. Example 1 (Shape Graph).Figure 1 depicts a shape gragfG that

The approach we propose in this paper is to expand the valu&onsists of a single variableand three shape nodes, where néglis

based model with shape information about data structures. That & tyPeLinkedStack — and nodes v, are of typevalueHolder

we focus on objects created on the heap without referring to the vaIThe selectors of shape nodes are represented as dots where the names

ues stored within these objects, except for references to other offf the selectors are placed on the edges emanating from these dots.
jects. In addition we divide the heap into independent junks of ob-Since all variables and selectors at most consist of one edge, it is a

jects. This means that we are dealing with several object graphs thggeterministic shape graph. Furthermore we can state the following

represent the shapes of independent data structures used throudf-Shape graptsG:
out the program. For our example program this means that we have
two independent shape graphs for variablandinv all through

the program. The shape graph for variablelepends on method
callss.size ,s.item ,ands.remove ,and on the loop condition.
Whereas the shape graph for variaiole depends on the statement to revious
in line 1, the loop condition and the method caiV.put . Thus, © {3 foaf =]
a value-based model extended with shape graph information will be
able to compute the expected diagnoses for this example, namely
[items = s.size() 2], [items > 1 :3], and jtems-- :6].

Ey(s)=1s Es(ls,top)=wn Es(v1, previous) = v2
shape_nodes(SG) = {ls, vi, 12} Es(v2, previous) =

Figure 1. Example of a shape graph

A DSG as defined above represents all objects in memory used by
a program. But for our purposes it is required to split it into multi-
3 TERMINOLOGY AND NOTATION ple independent chunks in order to be able to distinguish those parts
that are reachable by a variable. The concept of partitions allows us
rowed from [6]. Our analysis focuses on the set of pointer vari-{0 separate those variables that may point to parts of the same data

ables for a given program which is denoted Byar. The term structure. Since a variz_zlble can g_nly point to one p_bje_ct a_t a time, it
shape nodes used in shape analysis directly corresponds to objeS&" Only be part of a single partition. Thus, a partitioning is defined
in object-oriented languages like Java. Each shape node has a tys & collection of pairwise disjunct sets of program variables. For ev-
a unique name (e.g. its address in memory), and a set of selectof&y Partition of a given partitioning a uniqueSG can be deﬂrred
The set of selectors of a shape nadg.e. the member variables of that models only a part of the complete storage. The sé%(’s
reference type for an object) are denotedsbi(s). The central el- fOr & given partitioning is called partitioned shape grapti ¢).

ements of shape analysis are shape graphs. The following definiti
provides a formal description of shape graphs.

The major part of the notation used throughout this paper is bor

OBefinition 3 (Partitioned Shape Graph). A PSG for a given par-
titioning P is a set ofDSG’s that are mutually disjoint. Th&SG's
Definition 1 (Shape Graph). A shape graph is a finite directed are subscripted by their partition, thuBSG' = {DSGx|X € P}
graph that consists of variable nodes and shape nodes and two kindéhere for all DSGx, DSGy € PSG with X # Y follows that
of edges — variable edges and selector edges. A shape graph is rephape-nodes(DSG x) N shape_nodes(DSGy) = (must hold. The
resented by a pair of edge set#},, E.), where class of partitioned shape graphs is denoted#G.

e E, is the graph’s set of variable edges, each of which is denoted Due transformations of a given partitioning of the shape graph it
by a pair of the formjz, n], wherex € PVar andn is a shape = may be necessary to join two shape graph partitions together to form
node. a new one. This is achieved by joining the set of variable edges and

e E is the graph’s set of selector edges, each of which is denotethe set of selector edges of the two graphs.
by a triple of the form(s, sel, t), wheres andt are shape nodes,
andsel € sel(s). DSGxyuy def (Bvx UEyy, Esy UFEsy)

Note that the above definition is nondeterministic per se, because Based on the above definitions we extend the value-based model
it allows multiple edges emanating from a single variable or nodewith alias information and prepare it for propagation of shape graphs.

4 Diagnosing with Alias Information [x.sel = null [(Px) = (Px)

0greation of a new object with Java'®w operator is treated as two

The enhancement of the value-based model with shape informati d dent " v th i f biect and th
first requires a careful analysis of how the various entities of the proln ependent operations, namely the creation ora new object and the
Il to the appropriate constructor. The assignment of a hew object

gramming language affect shapes. Based on this information we carf . . - . .
analyse the static data flow in a program. The analysis exposes whiéﬂ a variable causes the variable to definitely point to a different data

parts of the program affect a certain data structure. Due to these e§_tructure than i_t did befor_e_the assignment. Therefore, the variable is
fects on data structures we can derive new dependencies, that a{l%moved from its old partition and put into a new one.

integrated into the value-based model and used for diagnosis. Our [x = new T}(Px) = (Px—{x}, Pa})

analysis is similar to interprocedural pointer alias analysis [1]. The result for assignments of simple variables to simple variables de-
pends upon the partitions both variables are in before the statement.
If both variables are in different partitions, the target variable is re-
moved from its partition and added to the source partition. Otherwise
Compared to interprocedural pointer alias analysis we are not jusf both variables are within the same partition, the partitioning is not
interested if two given access paths are may-aliases, instead we neelthnged. The same holds for the assignment of a member variable to
to know if two access paths may refer to parts of the same data struesimple variable.

ture. With this information we are able to decide if two statements [x = y)(Px,Py)=(Px_{z}> Pyuga})

may access or transform the same data structure or not. [x = ysel [(Px,Py)=(Px_{z}, Pyu{az})

Because of branching statements in the programming languag&he last possible form of assignments handles an assignment to a
it is not possible to compute the extended aliasing information premember variable of an object pointed to by a simple variable. In this
cisely. Instead only an approximation can be determined by a leagfase the partitions of the source and target variables are joined to-
fixed point computation in order to preserve as much information agjether as long as they are in different partitions. Otherwise the parti-
possible. The fixed point computation is based on the domain of pationing is not changed.
titioningsP. This domain is a complete lattice with ordering relation [xsel =y](Px,Py)=(Pxuy)

C defined by

4.1 Extended Alias Analysis for Modeling

Return statements are treated like assignment statements to a re-
PCP def v e P :3yePy:xzCy. served variable nameéturn . To simplify the analysis we assume
that preprocessing assured that the return expression only consists of

The join operatot] for P, and P is defined over the transitive 3)
a simple variable name.

reflexive closure of the union dP; and P>, where the relation Ry
isdefinedagRy=3re R:zerAyer. [return x [(Px) = (Pxu{return})
def . Blocks of statements transform the partitioning statement by state-
PruPy = A{alva,y € a:x(PrUPy)y} ment. Thus, we apply the semantics operator in the order the state-
The iterative approximation process starts with a model, where evments occur, where the operatodenotes functional composition.
ery variable of the program resides in its own shape graph partition [sl..sn [(P) = ([s2..sn]o[s1])(P)

(i.e. the bottom element of the lattice). Due to the statements and L L
expressions in the program text, the partitioning of the shape grapﬁOr method calls 't.'s hecessary to map the partitioning at the callers
' Site to an appropriate partitioning for the method’s body. In order

is changed according to their semantics. For simplicity we prepro; simplify this mapping we assume, that the preprocessing step re-

cess the program text and replace every qualified name, consistin aced the actual parameters with simple variables. The name of the
of more than two levels by a fresh variable. Assignment statementS_". ; . ; _—

. ; - : variable on which the method is called is replaced wfitis and
that contain the same variable on the left and right hand side are aI%Re names of the actual parameters are replaced with the names of
replaced with a fresh variable, as is shown below.

the formals. At the end of the method body the partitioning has to

[Original Code | Preprocessed Code | be mapped back to the names of the caller. This mapping is achieved
x = a.b.sel tmp = a.b; by an auxiliary functionm : P — P that is bijective, thusyn~*
x = tmp.sel; denotes the reverse mapping of variable names. If the method returns
x = x.sel ;m[:) tzm;:sel; a value of reference type the special variable nasern is used.

.method 2) 1(P) = (m~1 o [body jetho P
The partitioning transforming semantics for the various statements s me, od(P 1P _)]]() (m © [body mein dﬂom)g) .
s € ST is defined by the functiofi] : ST x P — P. For simplicity Brz_;mchlng statements _Ilke_ co_ndltlona_ls and Ioops consist of join
we only include those partitions in the semantics definition, that aré)o'bnts_’ yvh(;re thehpart_:_t;]qn|_ngd|nfoanat;]on_ O.f multlpl(imkérfgnc;?s has
affected by the statement, whef generally denotes the partition [© 2€ Joined together. This is done by the join operatatefined for

that includes variable. the domainPSQ._
hBased on the information gathered from this static alias analysis,

Assignment statements of reference type change the shape gra . X i "
partitioning depending on the kind of target and source expressiorﬁ1e yalue-based diagnosis m0(_jel IS extqued. Initially a new connec-
They join two partitions, split a single partition into two new ones, tion is generated for every varlgble partition. These.c.onnectlons are
or leave them as they are. An assignmentaf to a simple vari- used to propagate the respe_ct!ve shape gr"’?ph part_lt_lons _through the
p&odel. For every statement it is known, which partitions it affects,

able always removes the variable’s dependency to the data structu . L -
therefore the component representing the statement is linked with the

it pointed to before. Thus, the variable is removed from the partition . : : -
of the data structure and a new one is created for it. according cqnnectlons. For the resulting partitions .of the statement,
new connections are created and also connected with the component.
[x = null J(Px) = (Px {2} Pfa}) Furthermore a new meta component must be provided for modeling,
Contrary if an assignment afull to a member variable of some that implements the join operation of shape graphs. This auxiliary
object pointed to by a variable is encountered, we are not able to tedomponent, that shall not be suspected for diagnosis, is hecessary for
if all variables in its partition still point to the same data structure. join points of execution paths in the program, where different parti-

Hence, the partition is left as it is. tionings are summarized to a single new one.

Example 2. In Figure 2 the new connections created in the model for inv=new Linkedsitﬁ\fl;gto

our stack example program are depicted. Note that in this example
only a single loop unrolling is shown. Further instantiations of the .
loop body are indicated by the dashed lines. The number of loop

unrollings is determined by a preliminary simulation of the program.

As can easily be seen, the two partitions are affected by different

SP{S} in in P{S} in %}:D{S}
out out out
Prsy

components. Only the loop condition, represented by conditional
affects both partitions.

4.2 Value Propagation, Conflicts, and Diagnoses

if (items > 1)

Pringy Pringy

return inv

then,,
elsen,

Plinvy out
1nv

s.size() s.item() s.remove()

outg
then,
else,

Figure 2. Model extended with shape graph connections

After building the extended value-based model as described in the

previous section, we can apply diagnosis computation. With value- Table 1 outlines the semantics for assignment statements of refer-
based models diagnosis is performed via propagation of runtimence type based on graph manipulation. Note that for the assignments
values. For our extended model, in addition to the runtime valuesin row 4, 5, and 6 it is assumed, that variabtesndy are in separate
shape graphs are propagated. The shape graphs propagated thropghtitions before the statement. If this is not the case (i.e. they are
the model are modified within the components according to the Javin the same partition) the semantics has to be changed slightly such
semantics of the statement or expression represented by the comat the sole shape graph for the two variables is changed accord-
ponents. The operational semantics of the components representimgly. The semantics definition mainly consist of adding and remov-

statements € S7 is described by a functioff : S7 x PSG —
PSG. Again only thoseDSG’s are included in the semantics defini-
tion, that are affected by the components.

[X = Ul J((Buy, Esy)) &

EUX—{Q:}7ESX—{1:))’ (E,,{I},Es{m}))where
vaf{m} =Eyy —{[z,«]}

SX _{z} — Sx
El} -
{=}
Esey =0
[xsel = null J((Eoy, Esy)) < (B, E.))where
E':/X =FEyy
E{ =Esx — {{Bux (z), sel, %)}

def

[x = new TI((Euvx,Esy))
Eox oy Box (o) (Bvgy Esp,y) where
va—{m} =Eyy — {[z,+]}
ESX*{m} =FEsx
Ev{z} ={[=, nnew(T)]}

S{z} —

[x = yﬂ(<va»EsX>7<Em§7ESY>)

def

VX —{x}’ TSX—{z} UYU{-’I)}’ESYU(.T,}>) where
vaf{m} =Evyx —{[z,#]}

SX—{x} — 7S
EUYU{:I:} =Eyy U{[z, Bvy (9)]}

Syu{z} — T8Y

[xsel =y [(Euox,Eax) (Euy, Bsy)) =

Eoxiys Esxuy) Where
Evxiy =Evy U Eyy
_ Esy UBsy — {{Buy (), sel, %) U
Bsxoy = {(Euy (), sel, Euy ()}
def

[[X = y.sel]]((vavEsx>v<Evvasy>) =
(Box (2 Bsx_ (o)) (Boy ey Bsyuay) Where
E“x—{m} =Eyy — {[z,+]}

SX—{x} T USX
E”Yu{z} =Eyy U{[z, Esy (Evy (y), sel)]}
Syu{z} — T8Y
[return s J((Buog, Esg)) <
VSu{return}? ESSu{retwn})) where

= Eyg U {[return, Eyg ()]}

Esg

E VSu{return}

SSu{return} =

Table 1. Operational semantics for assignment statements

ing edges to the shape graphs and keeping track of the partitioning.

The semantics of branching statements and method calls is defined
by their nested statement blocks. The first line in Table 2 shows that
the semantics of a block of statements is defined by applying the
semantics of each statement successively. For conditional statements
and loops it is necessary to deterministically decide which branch has
to be selected for value propagation. Thus, it is necessary to evaluate
the conditional expressions. Fortunately this information is provided
by the present value-based model. Note that in Table 2 the condition
of branching statements has to be considered in the semantics too,
since it may contain side effects.

For method calls again a mapping for variable names is needed.
This time the mapping functiom : PSG — PSG replaces the
variable names within eachSG of the accordingPSG. Obviously
not every variable defined at the callers site is visible in the called
method. Thus, these variables have to be removed fronD81@’s
before the call and are reinserted afterwards.

The semantics definition for shape graphs is given in forward di-
rection only. For most of the statements (e.g. assignments) no de-
terministic backward semantics can be specified. Therefore, we will
omit it in the further discussion.

Example 3. Figure 3 depicts the assignmentmifill to a simple
variable and a member variable. Note that in the first case (Fig-
ure 3a) the partition of variabld is split into two new partitions,
whereas in the second case (Figure 3b) they are not split. In addition
Figures 3c and 3d show shape graph transformations for non-null
assignment statements. The other types of statements not shown fol-
low the same patterns.

s vul ””””””””

Sgrrin N CaaCE L B O o]

® ! @ ! ! ! ‘

e N 0 B
(@b = null (b) b.sel = null

O Ol @Al Oy

® {05 ICT I O O B O
(c)b = new T (db=a

Figure 3. Shape-graph transformations for various assignments

The diagnosis algorithm is based on conflict detection. Therefore,
the input and output values provided by a test case are propagated
into the value-based model. A conflict is raised if two different val-

ues are assigned to the same connection. For example the propagagdidsed. In addition connections that represent member variables of
output value for a variable does not match the value assigned to tharimitive types (i.e. integers, etc.) are also split into multiple con-
connection from the test case. In case of propagation of shape graphsctions. For certain kinds of programs this approach provides better
it is necessary to compare two shape graphs with each other. Thltagnosis accuracy, but it also implies several restrictions. Programs
inconsistencies between two shape graphs may be missing varialtleat result in structural errors in the model can't be debugged cor-
edges, missing selector edges, edges pointing to different nodes, arettly anymore. That is, the real error in the program may not be
different node (sub-) types. In order to detect all these kinds of inamong the set of single fault diagnoses, instead those errors only ap-
consistencies a simultaneous depth-first search on both shape gragiear within multi-fault diagnoses. On one hand this is the case for
is performed. During this search the type of nodes in the two graphassignment statements with a wrong target or source variable. But
are compared in order to find type conflicts. If the types are equal, theuch cases can be handled with our approach, because it only affects
nodes are both labeled with the same fresh sequence number. THegnosis results, if heap structure information is provided within the
search on a path is stopped, if no further nodes can be reached widservations. And in this case erroneous assignments affect the parti-
selectors. Furthermore the search on a path is stopped, if an alreatigning of the heap, and therefore are suspected as faults. On the other
visited node is encountered. If the sequence numbers of the currenthand, structural errors caused by calling methods on the wrong ob-
visited nodes do not match or if only one node wasn't visited yet,jects reveal a weakness of our approach in the sense that single fault
then a conflict is generated. In addition, a conflict is generated if aliagnoses may be missed similarly as in [3]. This weakness arises be-
selector of a node in one graph points to a node, but not in the otharause method calls don’t change the partitioning necessarily. Thus, a
graph. Two shape graphs are equal if all nodes reachable from athethod call on an object in a different partition is not suspected for
variables in both graphs are labeled equally. errors in other partitions. In order to prevent these missing diagnoses,

) further research is necessary that allows us to rule out this weakness.
Example 4. Suppose a test case for our running example that spec-

ifies a stack with two elements for variatsle The expected outputs The work presented in this paper is an extension to existing value-

then are a stack with two elements for variable and an empty base_d_models fc_Jr dlagnos_lng Jaya programs. Its maln_advantage IS
that it is able to improve diagnosis results without additional obser-

stack for variables. Due to the propagation of shape graphs from =", o - . .
the input connections to the outputs we will detect two different Conyatlons needed. The additional analysis step that is needed in order to

flicts, that will be used by the diagnosis engine. Finally we will get theextend the value-based ”?Ode' requires extra time, but this is negl_lgl-
expected diagnosedtéms = s.size() 2], [items > 1 :3] ble compared to overall diagnosis time. Furthermore, due to the sim-

and [tems—- 6] ple analysis used for the first evaluation of our approach, the benefit
o for diagnosis is limited to a special class of programs. The programs

of must operate on at least two separate data structures, and errors in
[sl..sn [(PSG) % ([s2..sn]o[s1])PSG the shape of data structures must be observed.
lif ¢) {sil} else {s2}](PSG) % PSG’ where Although the advantages of its application are limited to a spe-
) [c; sL (PSG) ifcistrue cial class of problems, the improvements are remarkable and worth
pP5G Z{ [c: s2 J(PSG) ifcisfalse the extra effort. In addition we believe that based on this work it is
- def ; possible to further improve diagnosis of programs that make use of
[while () {s}](PSG) = PSG’where dynamic data structures. The shape analysis we used in this work
PSG! :{ ([while ()~ {s}]o[c; s)PSG ifcistrue only focuses on the local behavior of statements. A global analysis
[c](PSG) if cis false of shape graph transformation for statement blocks is believed to fur-
[s.method(p)](PSQ) def po’ where ther improve the results and possibly also widen its applicability.
PSG’' = (m™! o [body ,,ein0a] © m)PSG
ACKNOWLEDGEMENTS

Table 2. Operational semantics for branching statements This work was partially supported by the Austrian Science Fund

)) (FWF) project P15265-INF and the European Coordinating Com-
In order to verify the improvements of our approach we createdyittee for Artificial Intelligence (ECCAI).
a prototypical implementation of the extended value-based model.
We were able to improve diagnosis results for various Java programﬁ}EFERENCES
that operate on dynamic data structures, but we also encountered tha _ . _ _
there are still some deficiencies in our approach. The main problerd] XI" ng\d, 'IVl _BPKSMP+SSEE,SST&)J.él?léCé\&, ‘(Igttlerplrggg)dural Pointer
; : ias Analysis’, , 848-894, (July .
is that the gomputatlon of the heap _structures depends on the valug? C. Mateis, M. Stumptner, and F. Wotawa, ‘A Value-Based Diagnosis
computed in the model (e.g. conditionals, target objects for method™ \iogel for Java Programs’, ifProceedings of the 11 International
calls, etc.). Since the value-based model summarizes all objects of Workshop on Principles of Diagnosislorelia, Mexico, (June 2000).
the same type within a single connection, every component that i8] W. Mayer, ‘Evaluation of Value-Based Models for Java Debugging’,
put in abnormal mode by the diagnosis engine prevents propagation Zg;gg%eg rlz%’gr Jsgggﬁggfz%g"l’)em'w'e”v Institut &r Information-
ofobject. references..Dl.Je these abnormality assunjptlons |t.’s pos&bﬂg] W. Mayer, M. S’tumptner, D. Wieland, and F. Wotawa, ‘Can Al help
that obvious contradictions of heap structures can't be derived. to improve debugging substantially? Debugging experiences with value-
based models’, iECAI, pp. 417-421, Lyon, France, (2002).
[5] W. Mayer, M. Stumptner, D. Wieland, and F. Wotawa, ‘Towards an In-
5 RELATED WORK AND CONCLUSION tegrated Debugging Environment’, ECAI, pp. 422—426, Lyon, France,
(2002).

A similar approach for alias information in value-based models forl6] M. Sagiv, T. Reps, and R. Wilhelm, ‘Solving Shape-Analysis Problems
debugging is presented in [3]. Instead of adding new dependencies l(ringlsn)guages with Destructive UpdatingdCM TOPLAS20(1), 1-50,
(i.e. new connectlo.ns) in Ferms of hegp partitions, the emstmg con£7r] M. Stu.mptner, D. Wieland, and F. Wotawa, ‘Comparing Two Models
nections representing objects are split up. Hence, a connection for for Software Debugging’, iProceedings of the Joint German/Austrian
object identifiers now represents only those objects, that may be Conference on Atrtificial Intelligence (Klyienna, Austria, (2001).

