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Abstract. Model-based diagnosis of discrete-event systems (DESs)
requires the reconstruction of the behavior of the system to be di-
agnosed, which is computationally expensive and, therefore, time-
consuming. Accordingly, most approaches propose a trade-off be-
tween off-line and on-line computation: suitable knowledge, derived
off-line from the model of the system, can be exploited on-line based
on the actual observation. This way, a large amount of model-based
reasoning is anticipated off-line, thereby making the on-line task con-
siderably lighter. The essential novelty of this paper, which aims to
support the diagnosis of asynchronous DESs, lies in the ability to
exploit not only the general-purpose diagnostic knowledge compiled
off-line but also the special-purpose knowledge generated on-line for
the solution of previous problems, thereby pursuing processingreuse.
To this end, compatibility checking is required: the solution of a new
diagnostic problem can exploit the solution of another problem pro-
vided the latter subsumes the former.

1 INTRODUCTION
Discrete-event systems (DESs) [4] are dynamic systems with dis-
crete inputs and outputs, whose behavior can be described in terms
of discrete state changes. Since reasoning about discrete models
is easier than about continuous ones, from the middle ’90s the
task of diagnosis of DESs has been receiving an increasing interest
[9, 20, 13, 16, 5]. Diagnosing a system means computing itscandi-
date diagnoses,each of which is a set of faults that explains the obser-
vation collected during the system operation. According to the cur-
rent shared prospect about diagnosis of DESs, in the general case, the
specific faults cannot be inferred without first finding out what has
happened to the system over the time interval inherent to the observa-
tion [14]. This way, the system evolutions complying with the obser-
vation are in fact an output of the diagnostic process, from which can-
didate diagnoses can be distilled. In this respect, in spite of different
terminologies, such as histories [1], situation histories or narratives
[3], paths [5], and trajectories [6], all the distinct approaches describe
the evolution of a DES as a sequenceof state transitions, since the fa-
vorite behavioral models of DESs are automata. However, determin-
ing the system evolutions is a computationally expensive and, con-
sequently, time-consuming process (see, for instance, [17] about the
computational difficulties of the diagnoser approach [18, 19], or the
worst case computational complexity analysis in [1], or the discus-
sion in [8]). This is the reason why most of the approaches exploit a
trade-off betweenoff-lineandon-linecomputation, where the former
is performed when no diagnostic problem is considered and, there-
fore, processing is not under the pressure of time constraints, while
the latter is performed for solving each specific diagnostic problem
given its observation. The rationale is that some kind of knowledge,
implicit in the models of the structure and behavior of the system, is
compiled off-line in order to speed up on-line processing. This pa-
per appliesknowledge compilationandsubsumption-based reusabil-
ity techniques to the active system approach [1, 2], which deals with
diagnosis of a class of DESs, calledactive systems[12], modeled
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as networks of nondeterministic automata communicating through
asynchronous links. The considered task isa-posteriori diagnosis:
the observation taken as input by the task encompasses the whole
reactionof an active system, this being a system evolution that is
triggered by an external event. Previous approaches to diagnosis of
DESs in the literature suggest which (compiled) knowledge to gen-
erate off-line by processing the system models and how to exploit
it on-line [18, 19, 10, 15, 7]. According to such approaches, com-
piled knowledge is produced once and for all before any diagnos-
tic problem is considered, in order to set up the diagnostic engine,
then such a knowledge is exploited several times on-line, and it never
changes. This paper goes beyond the above perspective, by suggest-
ing how to extend the compiled knowledge generated beforehand by
progressively adding the knowledge produced on-line for solving di-
agnostic problems. The proposed shift of perspective triggers further
responsibility for the reasoning process, namely (i) reusing available
knowledge, and (ii) generating new knowledge.Diagnostic problems
refer to the general notion of anuncertain observation[11], which
inevitably translates to the expansion of the search space, thereby
making reusability an essential requirement for on-line processing.

2 SYSTEM MODELING
The compositional model of asystemis a network ofcomponents
that are connected to one another throughlinks. Each component is
completely modeled by acommunicating automatonC that reacts to
events either coming from the external world or from neighboring
components through links. Formally, the automaton is a 6-tuple,C =
(S,Ein, I,Eout,O,T), whereS is the set ofstates,Ein the set ofin-
put events, I the set ofinput terminals, Eout the set ofoutput events,
O the set ofoutput terminals, andT the nondeterministictransition
function,T : S×Ein×I×2Eout×O 7→ 2S. A transitionT ∈ T, from
stateS to stateS′, which is triggered by evente at input terminal
I, and generates eventse1, . . . , ek at output terminalsO1, . . . , Ok,

respectively, is denoted byT = S
(e,I)−−−−−−−−−−−−→

(e1,O1),...,(ek,Ok)
S′. Links,

which are the means to store the events exchanged between com-
ponents, are modeled by a tripleL = (I,O,M), whereI is the
input terminal,O theoutput terminal, andM theevent management.
The latter establishes the internal structure of the link and the effect
of each insertion/deletion operation performed on the events tempo-
rally saved within it. A specific allocation of events withinL is called
a configurationof L. Formally, a systemΣ is a pairΣ = (C,L),
whereC is the set of components andL the set of links.

Example 1. Displayed on top of Fig. 1 are the modelsBreakerand
Protection. Each model is depicted by the automaton (right) and the
set of terminals (left), where input and output terminals are repre-
sented as triangles and bullets, respectively. The automaton relevant
to the breaker incorporates two states, marked by 0 (closed) and 1
(open), and two transitions,T1 andT2, represented as arrows. When
the breaker is closed, either transitionT1 or T2 is nondeterministi-
cally triggered by eventz on input terminalI. T1 moves the breaker
to state 1 without generating any output event.T2, instead, keeps
the state of the breaker unchanged, whilst generating eventf at out-
put terminalO. The model of the protection embodies four input



Figure 1. Models of breaker and protection (top), and systemξ (bottom).

terminals,I1 · · · I4, and four output terminals,O1 · · ·O4. Terminals
O1 andI1 are meant for connection with a breaker on the left, while
terminalsO2 andI2 are for a communication with a breaker on the
right. InsteadI3 andO3 allow the protection to exchange events with
a neighboring protection on the left. The same applies forI4 andO4,
which are a means to communicate with a protection on the right. De-
picted on the bottom of Fig. 1 is the topology of a systemξ, which
integrates protectionp and breakersb1 andb2. The protection is con-
nected with the breakers by means of linksL1 · · ·L4.

3 BEHAVIOR SPACE

The behavior of a systemΨ may evolve only within a confined space.
A system stateis a pairσ = (S,L), whereS is a record of the states
of the components inΨ , while L is a record of the configurations
of the links inΨ . Initially, a systemΨ is in a quiescentstateΨ0,
wherein all links are empty. Upon the arrival of an event from the
external world,Ψ becomesreacting, thereby making a series of sys-
tem transitions, namely ahistory of Ψ . Due to asynchronism, each
system transition is the transition of one component inΨ . The whole
set of possible evolutions ofΨ from the initial stateΨ0 are speci-
fied by a graphBhv(Ψ,Ψ0), calledbehavior space, whoseextension,
‖Bhv(Ψ,Ψ0)‖, is the whole set of paths from the initial state to a fi-
nal state, that is, the set of histories ofΨ rooted inΨ0.

Example 2. Shown in Fig. 2 is the behavior space relevant to sys-
temξ (Fig. 1), where the initial state of all components is 0. In each
node, the recordS of the component states forb1, p, andb2 is on the
top, while the recordL of configurations of linksL1 · · ·L4 is on the
bottom (incidentally, such configurations involve at most one event
per link). Quiescent nodes (double circled) are characterized by the
emptiness of the links.

4 DIAGNOSTIC PROBLEM

A diagnostic problem℘ for a systemΨ is a 5-tuple,℘(Ψ) =
(Ψ0,V,O,R,K), whereΨ0 is theinitial stateof Ψ , that is, the state
of Ψ when the reaction started,V is theviewer(observer) ofΨ , with
specific visibility properties,O is theobservationof the system gen-
erated during the reaction,R is theruler, which establishes the state
transitions that are to be considered faulty, andK is theknowledge
about the system, including at least the compositional model ofΨ
and, possibly, additionalcompiled knowledge. Depending onK, we
distinguish two classes of diagnostic problems:

• Crude problems, whenK is restricted to the compositional model
of Ψ , that is, when no compiled knowledge is available;

Figure 2. Behavior spaceBhv(ξ, ξ0).

• Compiled problems, when, besides the model ofΨ ,K incorporates
compiled knowledge aboutΨ .

Solving℘(Ψ) amounts to determining the set of candidate diagnoses,
where each diagnosis is the set of faults associated byR with the
transitions in a historyh pertinent to℘(Ψ). The solution of a com-
piled problem is virtually more efficient than that of a crude prob-
lem, since part of the model-based reasoning necessary for solving
the problem is somewhat codified inK.

A viewer establishes what component transitions are visible, as
well as the specific label generated by each of them. LetT be the
set of transitions relevant to components inΨ , andV a set of labels
including thenull labelε. A viewerV is a mapping fromT to V. If
(T, ε) ∈ V, thenT is asilent transition, otherwiseT is visible.

Example 3. Considering systemξ, a possible viewerVξ for a di-
agnostic problem℘(ξ), relevant to the set of labels{o1, o2, l, r},
can be implicitly defined by the set of visible transitions, namely
Vξ = {(T1(b1), o1), (T1(b2), o2), (T2(p), l), (T3(p), r)}.

An observationO relevant to a reaction ofΨ is a set of observable
events and of their reciprocal temporal order, as perceived by the
viewer, typically under uncertainty conditions. As detailed in [11],
anyO that belongs to a diagnostic problem is represented by a DAG,
theobservation graph. Each node of the graph corresponds to an ob-
served label, which, however, islogically uncertain, that is, it ranges
over a set of candidate observable labels (possibly including the null
label ε), since the viewer cannot discriminate among them which
was the one actually emitted by the system. Edges of the graph spec-
ify partial temporal ordering between nodes (temporal uncertainty)
since, in general, the viewer cannot ascertain the total emission order
of the observed labels from their reception order. As such, an ob-
servation graph is the formal representation of what has been seen,
rather than the result of an elaboration. In order to check the con-
sistency of the system behavior againstO, the diagnostic process
draws from the given observation graph an additional DAG, namely
the index spaceof O, denotedI(O), where each path, from the root
to a final node, is aplain observation, this representing a mode in
which labels can be picked up from the nodes of the observation
graph based on the partial temporal ordering defined by the edges.
Therefore, each plain observation may be the actual sequence of ob-
servable labels emitted by the system. The index space includes all
and only the plain observations implicitly embedded within an ob-
servation graph. A historyh of Ψ is said tocomplywith ℘(Ψ) iff,



Figure 3. ObservationOξ for ξ (left) and relevant index space (right).

according toV, the list of observable labels relevant to the transi-
tions inh is a plain observation inO.

Example 4. The graph of an observationOξ for ξ, as perceived
by viewerVξ (Example 3), is depicted on the left of Fig. 3. Next
to it is the relevant index space, involving 24 plain observations,
for instance,〈o1, o2〉, which can be derived from the observation
graph by picking up labelsε , o1, ε, and o2 from nodesω1,
ω2, ω3, and ω4, respectively2. According to Fig. 2, the history
〈T1(p), T2(b1), T1(b2), T4(p)〉 complies with any problem℘(ξ) =
(ξ0,Vξ,Oξ ,R,K), whereξ0 involves all components in state 0.

A ruler establishes what transitions are faulty. LetT be the set of
transitions inΨ , andR a set of labels including thenull label ε. A
rulerR is a mapping fromT to R. If (T, ε) ∈ R, thenT is normal,
otherwiseT is faulty. A historyh of Ψ is said toimplya diagnosisδ,
whereδ is the set of faults associated with the faulty transitions ofh
defined inR.

Example 5. Rξ = {(T1(p), s), (T2(b1), f1), (T2(b2), f2)} is
a ruler for ξ. Accordingly, considering Fig. 2, the history
〈T1(p), T2(b1), T1(b2), T4(p)〉 implies the diagnosis{s, f1}.

Three classes of compiled-knowledge are envisaged, which are in-
stantiated by relevantknowledge graphs, namely:

• Behavior, a graph whose extension3 is a subset of the extension of
the behavior space;

• Abduction, a graph whose extension is a subset of the extension
of the behavior space and where each final node is decorated with
the diagnosis implied by each relevant history, in accordance with
a rulerR;

• Map, a graph where each path is the list of observable events rele-
vant to one or several histories ofΨ , in accordance with a viewer
V, and each final node is marked by a set of diagnoses, according
to a rulerR.

From a formal viewpoint, the solution of a diagnostic problem℘(Ψ)
depends onΨ0, V, O, andR only, as the role ofK is to speed up the
diagnostic process, without any influence on the result. According to
our terminology, the solution of℘(Ψ), denoted∆(℘(Ψ)), is the set
of diagnoses that are implied by the histories that comply with℘(Ψ).

5 SOLVING CRUDE PROBLEMS

The solution of a crude problem℘(Ψ) is performed on-line by first
generating the abductionAbd(℘(Ψ)) and, then, by collecting the di-
agnoses marking the final nodes.

Example 6. Consider a problem℘(ξ) = (ξ0,Vξ,Oξ ,Rξ,K),
whereVξ, Oξ , andRξ are defined in Examples 3, 4, and 5, respec-
tively. The abductionAbd(℘(ξ)) is displayed in Fig. 4, where each
final node is marked by the corresponding diagnosis (set of faults
based onRξ). Thus,∆(℘(ξ)) = {∅, {s}, {s, f1}, {s, f2}}.

2 A technique for generating the index space is described in [11].
3 The notion of extension introduced in Section 3 can be applied to DAGs.

Figure 4. AbductionAbd (℘(ξ)).

6 PREPROCESSING

The sort of compiled knowledgeK relevant to℘(Ψ) is twofold:

• General-purpose knowledgecompiled off-line independently of
any specific observation;

• Special-purpose knowledgegenerated for solving specific diag-
nostic problems.

Preprocessing concerns the generation of the former. Each general-
purpose graph can be either abehavior space, an abduction
space, or a map space, namely, Bhv(ψ,ψ0), Abd(ψ,ψ0,R),
Map(ψ, ψ0,V,R), respectively, whereψ is a subsystem ofΨ (Ψ is
recursively broken down into subsystems and knowledge is possibly
compiled for them).

Example 7. Shown in Fig. 5 is the map spaceMap(ξ, ξ0,Vξ,Rξ).
Incidentally, all nodes are final. Thus, based onVξ, each path rooted
in µ0 is a possible sequence of observable labels generated by (pos-
sibly several) histories inBhv(ξ, ξ0) (see Fig. 2).

7 SOLVING COMPILED PROBLEMS

Solving a compiled diagnostic problem amounts to a pattern-
matching between the index space of the observation and a suit-
able knowledge graph, whether general-purpose or special-purpose.
Depending on whether the available graph is a map, an abduction,
or a behavior, the problem is either classified as aµ-problem, an
α-problem, or a β-problem, respectively. Generally speaking,µ-
problems can be solved more efficiently thanα-problems, which in
turn can be solved more efficiently thanβ-problems. The essential
point is to check the compatibility between the problem̂℘(ψ) =

(ψ0, V̂, Ô, R̂, K̂) to be solved and a knowledge graph. A knowledge
graph can be generically denoted as a functionγ(ψ, ψ0,V,O,R),
where each ofV, O, andR is possibly null. Specifically, if the graph
is general-purpose, the observationO will be null, meaning thatγ
is not constrained by any observation. Ifγ is special-purpose, it will
refer to a previously-solved problem℘(ψ), and, therefore, to a spe-
cific observation. Ifγ is an abduction space,V will be null. If it is a
behavior space,R will be null too.

Compatibility checking is based onsubsumption relationshipsbe-
tween viewers, observations, and rulers. Intuitively, if such relation-
ships are met,γ will contain all the patterns necessary to solve℘̂(ψ).
For instance, ifγ is a map,‖γ‖ (the set of paths inγ) will be a super-
set of the sequencesof observable labels generated by the histories of
the behavior relevant tô℘(ψ). As such,γ can be exploited for yield-
ing a sound and complete solution of̂℘(ψ), without any (on-line)
reconstruction of the system behavior.

LetO andO′ be two observations forψ. We say thatO subsumes
O′, denotedO c O′, iff ‖I(O)‖ ⊇ ‖I(O′)‖.



Figure 5. Map spaceMap(ξ, ξ0,Vξ,Rξ).

Example 8. Shown in Fig. 6 is the graph of an observationO′
ξ for

systemξ, along with its index space. Clearly,Oξ c O′
ξ, since

‖I(Oξ)‖ ⊃
(
‖I(O′

ξ)‖ = {〈l, o2〉, 〈l, o2, o1〉}
)
.

Subsumption for viewers is defined as follows. LetV andV ′ be two
viewers forψ, andT andT′ the relevant sets of visible transitions,
respectively. Then,V c V ′ iff (i) T ⊇ T′, and(ii) for each label
` relevant to a transition inT that is also inT′, there exists a label
`′ relevant toV ′ such that the set of transitions associated with`
in V is contained in the set of transitions associated with`′ in V ′.
Subsumption between rulers is defined in the same way.

Example 9. ConsiderVξ (Example 3) andV ′
ξ = {(T1(b1), open),

(T1(b2), open), (T2(p), left)}. Accordingly,Vξ c V ′
ξ.

Subsumption between viewers (rulers) allows the reuse of graphs by
means of a simple renaming operation, which is essentially a projec-
tion of the labels of one graph into the labels of the other.

When the knowledge graphγ is special-purpose, the compatibility
check translates to checking the subsumption between the problem to
be solved and the problem relevant toγ. Bothweak subsumptionand
strong subsumptionare introduced.

Let ℘ = (K, ψ0,V,O,R) and℘′ = (K′, ψ0,V ′,O′,R′) be two
problems forψ. We say that℘ weakly subsumes℘′, denoted℘ w ℘′,
iff V b V ′ andO c O′

[V], whereO′
[V] is the projection ofO′ on the

labels ofV. We say that℘ strongly subsumes℘′, denoted℘ c ℘′, iff
℘ w ℘′ andR c R′.

Such subsumptions are characterized by theco-varianceof both
observation and ruler, and thecontra-varianceof the viewer. The def-
inition of problem subsumption may sound odd, especially because
of the contra-variance property of the viewer. Intuitively, it prevents
observationO to be more constrained thanO′. Consequently, the be-
havior relevant to℘ will incorporate all the histories of the behavior
relevant to℘′. As such, the behavior of℘ may be reused to solve
℘′. Furthermore, if strong subsumption holds, knowledge reusabil-
ity may be extended to the graphs involving diagnostic information,
namely abductions and maps.

Example 10. Consider the problem℘(ξ) defined in Example 6. As-
sume the new problem℘′(ξ) = (ξ0,Vξ,O′

ξ ,Rξ,K′), whereO′
ξ is

defined in Example 8 (Fig. 6). Accordingly,℘(ξ) c ℘′(ξ).

Diagnosis reuse applies as well when the available knowledge is rel-
evant to a different system that isisomorphic to the current one.
Two subsystemsψ and ψ′ are isomorphic when their topologies
match and corresponding component/link models are the same, re-
spectively. This is not unusual in real, complex systems, which are
made up by the composition of similar (isomorphic) subsystems. The
regularity of the system is bound to support diagnosis reuse.

Once a compatible knowledge-graphγ has been selected based on
the given subsumption relationships, the actual computation of the
candidate diagnoses relevant to the new problem℘̂ can be performed
by a matchingoperation betweenγ and the observation̂O. Such a
matching has three variants, depending on whetherγ is a map, an
abduction, or a behavior. Specifically, ifγ is a map, the solution of
℘̂ will translate to the operation∆(℘̂) = Cand(γ � Ô), where�

Figure 6. ObservationO′
ξ for ξ, I(O′

ξ), andMap(℘(ξ)).

is the matching operator andCand collects the candidate diagnoses
associated with the final states of the map resulting from the match-
ing. The matching yields a graph where each node is a pair(µ,=),
whereµ is a node of the map and= a node ofI(O). The matching
is driven by the equality of the labels within the two graphs.

Example 11. Consider the map space in Fig. 5,Map(ξ, ξ0,Vξ,Rξ),
whereVξ andRξ are defined in Examples 3 and 5, respectively. As-
sume the problem℘(ξ) = (ξ0,Vξ,Oξ,Rξ,K) solved in Example 6.
Since the map space complies withξ0,Vξ, andRξ, the same problem
can be solved by the matchingMap(ξ, ξ0,Vξ,Rξ) � Oξ , which in-
volves final statesµ2, µ3,µ5, andµ6 (see Fig. 5), thereby giving rise
to the same set of candidate diagnoses as in Example 6, namely

∆(℘(ξ)) = {∅, {s}, {s, f1}, {s,f2}}.

Example 12. The solution of℘(ξ) in Example 11 is based on the
exploitation of the general-purpose knowledge provided by the map
space shown in Fig. 5. Now we consider the diagnostic problem
℘′(ξ) defined in Example 10, assuming that the available knowl-
edge only incorporates the (special-purpose) graphs inherent to the
solution of the crude problem℘(ξ) (behavior, abduction, and map).
(Note that, when solving a crude problem, the generation of the rele-
vant map can be deferred off-line based on the available abduction.)
Specifically,Map(℘(ξ)) is outlined on the right of Fig. 6. In contrast
with Map(ξ, ξ0,Vξ,Rξ) in Fig. 5, not all the states are final. Since
℘(ξ) c ℘′(ξ), the solution of℘′(ξ) can be determined by a simple
matching betweenMap(℘(ξ)) andO′

ξ (seeI(O′
ξ) in Fig. 6), which

leads to stateµ4 (marked by the empty diagnosis), and distilling the
candidate diagnoses marking such a state, namely:

∆(℘′(ξ)) = Cand
(
Map(℘(ξ)) � O′

ξ

)
= {∅}.

8 CONCLUSION

This paper proposes both the modeling primitives and the reason-
ing mechanisms for performing a-posteriori diagnosis of a class of
DESs by exploiting knowledge compilation and knowledge reuse. A
modeling novelty consists in decoupling the (behavioral) models of
system components from the descriptions of their observability and
abnormality properties. In the literature, only a more limited separa-
tion between component models and observability properties can be
found: in [5] each specific problem assigns the same observability to
all the instances of the same component type, whereas each instance
can be given distinct properties in the current approach. As to the
separation between component models and abnormality properties,
this is exclusive to the approach described in the present paper.

Separation of concerns, besides opening the way to a systematic
study of the diagnosability properties of a given artifact, makes the
behavioral models of componentscompletely reusable across several
diagnostic problems and contexts, characterized by distinct abilities
to detect output events and/or by distinct diagnostic intents. More-
over, although not emphasized in this paper, both off-line and on-line
generation of knowledge can be performed in a modular way, as in
[2, 11], by decomposing a problem into subproblems, where each
subproblem can possibly be solved by reusing available knowledge.



In this scenario, separation of concerns allows for a flexible formula-
tion of subproblems, so as to optimize knowledge reuse.

Reusability applies to both general (observation-independent) and
specific (observation-dependent) knowledge. Solving a diagnostic
problem inherent to a system typically amounts to processing on-
line existing knowledge relevant to the given system or an isomor-
phic one, provided such a knowledgecontains, either directly or indi-
rectly, all the evolutions complying with the given observation. This
can be checked by means of defined subsumption conditions.

For the sake of shortness, the paper provides a simplified view of
the method. Indeed, the complete method, in order to solve a diagnos-
tic problem inherent to a system, can reuse also available knowledge
inherent to one of its supersystems (or to a system which is isomor-
phic to a supersystem). Besides, the complete approach both extends
the concept of isomorphism to diagnostic problems and provides a
formal method to detect isomorphic problems, i.e. to recognize in
advance, given the specifications of two problems, whether the solu-
tion of the former can be mapped to that of the latter via renaming.
This ability translates to an increase in efficiency of knowledge com-
pilation and exploitation.

The proposed diagnostic method includes as a particular case the
previous approach to diagnosis of active systems with uncertain ob-
servations [11], which relies on the availability of component models
only. However, the new method surpasses the previous one in several
aspects: while performing either on-line or off-line reasoning, it can
generate intermediate chunks of knowledge for reuse and produce
the abduction inherent to the considered system, which includes can-
didate diagnoses, without any need for their successive heavy distil-
lation, as instead required in [1, 2, 11]. Besides, in case an abduction
has been generated on-line (and the candidate diagnoses have been
provided as output based on it), the corresponding map can be drawn
off-line, thus generating knowledge that allows for more efficient fu-
ture reasoning sessions.

No previous contributions in the literature face the topic of on-
line generation of compiled knowledge for diagnosis nor that of on-
line knowledge reuse based on subsumption rules. In fact, knowledge
compilation [18, 19, 10, 15, 7] has so far been confined to an off-line
activity only, whose result can be used for solving any diagnostic
problem relevant to the considered system. Moreover, the concept of
an observation adopted in the current paper is the most expressive in
the literature on diagnosis of DESs.

In order to make a more detailed comparison with the diagnoser
approach [18, 19], which was the first to address the trade-off be-
tween off-line and on-line computation, it is worth recalling that it
deals with synchronous DESs while our approach takes into account
asynchronous DESs. A further major difference, besides those high-
lighted above as holding in general, is that the current work avoids
generating any global system model as well as any global diagnoser,
which instead are both created by the diagnoser approach. Indeed,
the map space of the current approach may resemble the diagnoser
of the diagnoser approach, however some meaningful points can be
singled out to substantiate the former allegation:

• A map space can be generated by following a recursive incre-
mental strategy that reduces the size of the search space and
is amenable to a parallel execution while the diagnoser ap-
proach does not benefit of any problem-decomposition/solution-
composition strategy;

• A map space inherent to a system can be used for solving diagnos-
tic problems inherent to any isomorphic system (as well as to any
of its subsystems) while the diagnoser is dedicated to one system;

• A map space, unlike the diagnoser, does not include any ambigu-
ous candidate diagnosis.

In [15] the use of local diagnosers, after the (global) diagnoser ap-
proach [18, 19], is combined with the ability to adopt a problem-
decomposition/solution-composition paradigm, as in the active sys-
tem approach [1]. The method amounts to exploiting the knowledge
compiled off-line (only), i.e. the diagnosers, to perform the on-line
modular reconstruction of the behavior of the considered system.

This resembles the on-line exploitation of general purpose knowl-
edgeof the current approach. However, while the compiled knowl-
edge of [15] necessarily refers to a single component, the general
purpose knowledge of the current approach may be inherent to a
whole (sub)system and is threefold in nature. Moreover, (i) our ap-
proach can exploit on-line not only general knowledge but also spe-
cific knowledge, and (ii) it can produce off-line not only general
knowledge but also specific knowledge.

A challenge for future research on diagnosis of active systems ac-
cording to the method described in this paper is to find out specific
techniques for efficiently checking observation subsumption as well
as to provide an automatic support for continuous indexing and main-
tenance of (graph-based) knowledge.
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