
Debugging Program Loops using Approximate Modeling
Wolfgang Mayer and Markus Stumptner1

Abstract. Developing model-based automatic debugging strategies
has been an active research area for several years. We analyze short-
comings of previous modeling approaches when dealing with object-
oriented languages and present a revised modeling approach. We
employ Abstract Interpretation, a technique borrowed from program
analysis, to improve the debugging of programs including loops, re-
cursive procedures, and heap data structures. Together with heuris-
tic model refinement, our approach delivers superior results than the
previous models. The principle of our approach is demonstrated on a
running example.

1 INTRODUCTION

Developing tools to support the software engineer in locating bugs in
programs has been an active research area during the last decades, as
increasingly complex programs require more and more effort to un-
derstand and maintain them. Several different approaches have been
developed, using syntactic and semantic properties of programs and
languages. A common drawback of these tools is the high user in-
teraction required to locate faults. For that reason, model-based de-
bugging (MBD) was introduced in [4], where the authors show that
model-based techniques are capable of providing results using less
interaction than previous approaches, and approach that was later ex-
tended to imperative and finally to object-oriented languages.

This paper extends past research on MBD of mainstream object
oriented languages, with Java as concrete example [9]. We show how
abstract program analysis techniques can be used to improve accu-
racy of results to a level well beyond the capabilities of past model-
ing approaches. In particular, we discuss adaptive model refinement
and automatic selection of the ‘most promising’ fault candidates. Our
model refinement process targets loops in particular, as those were
identified as the main culprits for imprecise diagnostic results. We
exploit the information obtained from abstract program analysis to
generate a refined model, which allows for more detailed reasoning
and conflict detection. Finally, heuristics comparing diagnoses and
their corresponding model traces are developed to effectively select
promising diagnoses. Subsequently, those can be used to selectively
generate a refined model to narrow down possible fault locations or
detect different kinds of faults, for example missing statements.

While the proposed approach overcomes many problems of previ-
ous approaches, using a fixed abstraction may be unsuitable to prove
inconsistency for some programs. Custom abstractions as in model
checking (although computationally expensive) are future topic. As
our analysis is bidirectional, a trace of the program execution must
be kept which may be infeasible for large programs. Programs inter-
facing with external systems, such as file systems, cannot be handled
without providing suitable abstract models for these interfaces. Fi-
nally, while we can debug programs with structural faults (e.g., using
wrong variables) at method level, locating such faults at statement
level requires further information that must be provided by the user
through additional observations and complementary models [13].

1 University of South Australia, Advanced Computing Research
Centre, Mawson Lakes, SA 5095, Adelaide, Australia. E-mail:
{mayer,mst }@cs.unisa.edu.au .

Section 2 introduces to the basics of MBD. Section 3 summarizes
abstract interpretation and introduces our conflict detection mecha-
nism. Section 5, introduces a model refinement. Finally, we discuss
relevant related work and the current status of our prototype.

2 Model-based Debugging
To locate faults using model-based diagnosis techniques, the source
code of the programP to be analyzed must be available. Also, a set of
test casesT C is required, which (partially) specify the expected be-
havior ofP . The test case descriptions are not limited to concrete val-
ues. Our approach also allows to utilize more abstract observations;
for example, assertions, reachability constraints for some paths, valid
call sequences, acyclicity of data structures, aliasing properties, etc.

The connection fromP ’s source to the model is realized through a
setCOMPS and a setM of models.COMPS contains the set of
components of which fault candidates are composed, each represent-
ing a particular part ofP . As an example, to locate individual faulty
statements, each statementsi ∈ P is associated with a component
ci ∈ COMPS.

Each modelm ∈ M describes the program behavior (possibly
at an abstract level) and is automatically generated from the source.
For each element of the programming language, there exists a model
fragment that describes the element’s behavior, as is specified in the
language specification. This description is multi-directional, which
allows us to reason backward throughP to detect conflicts. Also,
each component has an “abnormal” mode, denotedab(·), which de-
notes possible faults (as opposed to the “correct” behavior, denoted
¬ab(·)). The model ofP is obtained by composing instances of
model fragments according to the program structure.

To find possible faulty components we employ the consistency-
based approach [12]. As each component corresponds to a particular
part of the program, every diagnosis can be mapped back intoP to
indicate possible faults to the programmer.

Example 1 To illustrate the approach, the following Java fragment
is modeled using the value-based approach presented in [9]:
1 int x = 2 * a;
2 int y = x * 3;
3 int z = 5 * x;

The model represents the program as a constraint network. For each
statement, there is a component modeling the effect of that statement.
The components are composed of simpler constraints, each of which
represents a sub-statement, which cannot be part of a diagnosis on
its own. The components and constraints are connected according to
the data flow. A graphical representation of the model of the above
program is presented in Figure 1. Together with a test case that spec-
ifiesa ← 1, x ← 2, y ← 3, z ← 10, ab(y=x*3

2
)2 is identified as

the only single fault. Mapped back to the program, this corresponds
to a fault in line 2.

While dependency- and value-based program models have been
successful in locating faults in imperative programs, these models
are created without the aid of test case information and thus have to

2 Components are denoted by the source code fragment that they represent,
together with the line number.

* y=
3

x

y=x*3

* z=
x

5

z=5*x

* x=
2

a

x=2*a

x

y

z

a

Figure 1. Example Model

account for all possible cases. In object-oriented languages, this can
lead to large models:
Example 21 Object o = list.iterator().next();

2 String s = o.toString();
If list is an instance of some class implementing the JavaList in-

terface, all possible implementors of methoditerator() have to be
modeled. The same holds for methodnext(), as the return type ofit-
erator() is also an interface. What’s more, the call totoString() has
to account for all possible implementations of the method, asObject
is a superclass of all Java classes. Also, in Java, each dereference of
a null reference at runtime causes an exception, which accumulates
to a very dense and awkward to handle control flow graph.

Similar experiences with static analysis of heap data structures [11]
have shown that even if only a few objects are actually used dur-
ing a program run, the statically determined information can be very
large and imprecise. To overcome these problems, we propose to in-
tertwine model construction and conflict detection to obtain concise
and test-case specific models, which allow for more efficient reason-
ing and conflict detection.

Another problem of the test case independent models is the han-
dling of loops in case the number of loop iterations cannot be deter-
mined.3 Should this case arise, earlier models [9] could not propa-
gate any information across the loop, resulting in a large number of
diagnoses. To overcome that deficiency, we combine static program
analysis techniques, program execution, and heuristic abstraction to
infer approximations of values before and after the loop.

The idea is to use Abstract Interpretation [6] to generate a trace
of the program when executed with inputs from a test case. While
the trace is constructed, only the paths that are found feasible using
an abstracted version of the concrete program state are constructed;
other paths are ignored, leading to concise model representations. As
the trace is constructed dynamically, it is easy to insert and check
any values, invariants, assertions, or other constraints provided by
the test case. A model is found inconsistent if there is no feasible
program path between the program’s initial state and the point where
it completes normally. A conflict is extracted from the inconsistent
trace by collecting all components that are required to obtain the in-
consistency. Finally, a standard model-based diagnosis algorithm is
applied to find possible diagnoses given the conflict(s).

3 ABSTRACT INTERPRETATION
The basic idea of Abstract Interpretation [6, 2] is to replace the con-
crete semanticsS[[P]] of a programP , which expresses the exact
effects ofP (which are not computable in general) with an abstrac-
tion S#[[P]] to obtain a finite representation which can be computed
automatically.S[[P]] andS#[[P]] each operate on a domain represen-
tation,D andD#, respectively.D andD# are usually represented as
lattices(P(S), ∅, S,⊆, ∪,∩) (S denotes the set of program states)
and(P#(S),⊥,>,v,t,u), respectively, where the latter is a com-
putable abstraction of the former.⊥ denotes infeasibility and> rep-
resents all possible states.v represents the abstract state ordering,

3 Note that although a test case may specify all the information necessary to
execute the program, the diagnostic engine may introduce fault assumptions
which invalidate some values and give rise to several possible program runs.

andt andu denote the least upper bound and greatest lower bound
operator, respectively. The key component in this framework is a pair
of functions(α, γ) (“Galois connection”), whereαmaps sets of con-
crete program states to their representation in the abstract domain
D# andγ maps each abstract state to its meaning inD.
S#[[P]] can then be expressed as fixpoint over a setX of equa-

tions derived fromP ’s source code. The equations are composed of
abstract operationsΦ# ≡ γ ◦ Φ ◦ α, which model the effects of
every operationΦ in P . An approximation of the forward semantics
S#

+ [[P]] is given by the solution oflfpλX · (E u X (X)) (starting
at⊥), whereE denotes the approximation of the entry states (in our
case provided by the test case).

In contrast to conventional static analysis, where the equation sys-
temX models all possible paths inP , we construct the system for
a specific test case (and mode assumptions). This allows us to elimi-
nate all paths that are infeasible for the specific test case. The reduced
number of paths does not only contribute to more concise models, it
also helps to reduce the number of expensive join operations that are
necessary whenever a program point is reachable via multiple paths.

In case the abstract lattice is of infinite height, narrowing (∆) and
widening (∇) operators have to be applied to ensure termination of
the computation [6]. Widening operators selectively discard infor-
mation from the abstract states to guarantee that the computation of
mutually dependent equations eventually converges in a finite num-
ber of iterations. Narrowing operators are used to eliminate∞ in
certain cases after a post-fixpoint has been found. Backward seman-
tics are analyzed in a similar manner in [2], by insertion ofinvariant
assertions(“always”), which ensure that every time the assertion is
reached, the condition is satisfied, andintermittent assertions(“even-
tually”) which guarantee the condition is true at least once. We ex-
ploit these assertions to eliminate unwanted paths from our traces.
For example, the intermittent assertioneventually true at the pro-
gram exit ensures that only terminating traces are considered. Sim-
ilarly, invariant assertions can be used to eliminate all uncaught ex-
ceptions by providing an exception handler that must not be reached.

A sequence of forward and backward reasoning steps can be de-
fined to approximate the entry and exit states which guarantee the
validity of the assertions [2], leaving only those traces that satisfy all
assertions. Thus if⊥ is derived for the program entry state, it is cer-
tain that no feasible execution exists from the program entry point,
and a conflict between the assertions and the program is derived.

In this work, we use a non-relational variant of the interval ab-
straction to approximate a set of numbers. Formally, the Galois con-
nection is defined as follows:
α({x1, . . . , xn}) = [min({x1, . . . , xn}),max({x1, . . . , xn})]
γ([a, b]) = {x | a ≤ x ≤ b}

[a1, b1]∇[a2, b2] =

[
if a2 < a1 then −∞ elsea1,

if b2 > b1 then +∞ elseb1

]
Sets of object references beyond user-specified size threshold are

abstracted by selectively merging references according to the pro-
gram structure (e.g., merge values of objects that are created by the
same statement or the same procedure). In loops where the number
of iterations cannot be determined, a common summary object is al-
ways used for all objects created by a particular statement.

Example 3 Consider the program in Figure 2. Assume that the di-
agnosis engine believes{ab(i=0 9)}.4 Then, the number of iterations
for the loop in line 9 cannot be determined exactly. Without special
treatment of loops (see Section 5), the environments before the loop
is entered/exited include (among others) the following values after
the fixpoint has been reached:

4 For brevity, we omit components that behave normally.

1 class Item {
2 int value;
3 Item(int v) {
4 value = v;
5 } }
6 class Bag {
7 Item[] items = new Item[5];
8 void add(Item item) {
9 for (int i = 0; i < items.length; i++)

10 if (items[i] == null) {
11 items[i] = item;
12 return ;
13 }
14 assert false ; }
15 void removeCheaperThan(int value) {
16 int i = 0;
17 while (i < items.length) {
18 if (/* items[i] != null &&*/ items[i].value < value)
19 items[i] = null ;
20 ++i;
21 } }
22 static void demo() {
23 Bag b = new Bag();
24 b.add(new Item(10));
25 b.add(new Item(20));
26 b.add(new Item(25));
27 b.removeCheaperThan(20);
28 assert b.items[0] == null
29 && b.items[1].value == 20
30 && b.items[2].value == 25
31 && b.items[3] == null
32 && b.items[4] == null ;
33 } }

Figure 2. Example Program and Test Driver

line 9 line 12
i > [0, 4]
this {o23} {o23}
o23.items {o7} {o7}
o7.length [5, 5] [5, 5]
o7.0· · · o7.4 {null} {o24,o25,o26,null}

Theok denote arbitrary, unique object IDs generated during trace
construction,k is the line number where the object was allocated.

4 MODEL CONSTRUCTION
Our Abstract Interpretation based debugging framework seeks to
avoid building a complex model representing the whole program.
Rather, the abstract interpreter is used as a consistency checker, given
a programP and a test caseT .
1. T is compiled into a test driver programPT and all assertions

specified inT are (temporarily) inserted intoP . Note that no com-
ponents are created for assertions, as these are assumed to be cor-
rect. To guarantee finite traces, we consider nonterminating loops
as errors and enforce a user-specified maximum iteration limit.

2. Construct initial trace using the forward semanticsS#
+ (PT) start-

ing with an empty environment (the input values are specified in
T and are compiled into the test driver in form of assertions and
assignments).

3. Analyze trace backward to enforce the invariant assertions, elim-
inating all values that would lead to paths that do not satisfy the
assertion conditions.

4. Analyze backward to remove all values implying paths that do not
satisfy the intermittent invariants

5. Analyze forward to eliminate paths that are no longer feasible.
6. Repeat from step 3 until a fixpoint has been reached.
In any step, if the infeasible environment⊥ is derived for either the
program entry point or the program exit point, no feasible path exists.
The algorithm stops and a contradiction betweenP andT has been
detected. Otherwise,P andT are not found inconsistent.5

5 Note that this does not imply thatP andT are actually consistent, as the
used abstraction may be too weak to prove that.

Example 4 Consider the program in Figure 2 and the test driver
methoddemo(). When run, the program crashes with an exception
due to an omittednull check in line 18. Assume our debugger has
created a component for each statement of the program, with the
exception of the test driver, which is assumed to be correct.

For brevity, we skip the first trace construction, as all statements
are assumed normal and the trace is simply a sequence of envi-
ronments. At line 18, the thrownNullPointerException causes
a contradiction and the resulting conflict is{¬ab(i=0 16),
¬ab(i<items.length

17
), ¬ab(items[i].value<value

18
),

¬ab(items[i]=null
19

), ¬ab(++i 20)}∪{ “all statements in method
add()” }. (See below for details on conflict derivation.)

Assume the diagnosis engine tries to remove the conflict by as-
suming{ab(i=0 16)} first. Again, the trace construction proceeds
trivially up to the point before line 16. Here, theab mode for the
assignment forces the value ofi to>, resulting in the environment:

this {o23} i > o7.2 {o26}
o23.items {ob7} o7.0 {o24} o7.3 {null}
o7.length [5, 5] o7.1 {o25} o7.4 {null}

As the loop condition cannot be evaluated uniquely without the ex-
act value ofi, the analyzer constructs a cyclic trace containing the
loop condition and the loop body and iterates the computation un-
til a fixpoint is reached. The final trace for the loop is depicted in
Figure 3. For space reasons, only the variablesi and the arrayo7

(accessed through the variableitems) are depicted. The first array
element is possiblynull in the loop, as the abstraction cannot deter-
mine the proper index for the assignment in line 19. (Thenull values
for indexes2 and3 are excluded through backward reasoning from
the assertions in the test driver.) Note that the condition in line 18
does not evaluate uniquely for the same reason. Therefore, it can-
not be proved that an exception is always thrown and both paths
remain in the trace, circumventing conflict detection. Consequently,
{ab(i=0 16)} is a single fault diagnosis.

An environment represents the abstract state of the program at a
certain point of execution, expressed by mappings from variables to
(abstract)values, for local and global variables and heap data struc-
tures. The latter is critical as the number of objects allocated in a loop
cannot be determined if the number of iterations is not known pre-
cisely. In this case, a summary object is created, conservatively ap-
proximating all objects allocated by the same statement in the loop.

Definition 1 A program traceis a tuple〈E,R〉, whereE denotes a
set of environments andR ⊆ γ(E)× γ(E) the transfer relation that
is derived from programP and specifies the possible transitions be-
tween (concrete) environments, i.e., paths in the trace and the effects
of the executed statements on the environments.

Given a trace〈E,R〉, each element ofR is annotated with a com-
ponent identifier used to extract conflict sets from the trace. Conflicts
are found by tracking the smallest set of components that are used
to infer each value in an environment. The components are trivially
obtained from the relation used to compute the value. Should there
be more than one set of possible explanations for a value, we keep
the first of the smallest sets. While this does not guarantee minimal-
ity of the conflicts, preliminary experiments showed that this strategy
almost always leads to minimal conflicts.

The component annotations also form the connection between the
trace construction and the diagnosis engine. Depending on the com-
ponent mode, different relations are instantiated, which forces the
trace to realize different component behaviors. The implementation
of the transfer relations inR is abstraction specific and has to be pro-
vided by the implementation of the abstract interpreter or the user.

If the program includes components where different modes may
modify different variables (e.g., assignments to fields may modify
different objects when abnormal), an extended algorithm is applied:

e1 : 〈o7.0 : {o24}, o7.1 : {o25}, o7.2 : {o26}, o7.3..4 : {null}〉
e2 : 〈i : >, o7.0 : {o24}, o7.1 : {o25}, o7.2 : {o26}, o7.3..4 : {null}〉
e3 : 〈i : [0, 4], o7.0 : {null, o24}, o7.1 : {o25}, o7.2 : {o26}, o7.3..4 : {null}〉
e4 : 〈i : [0, 4], o7.0 : {null, o24}, o7.1 : {o25}, o7.2 : {o26}, o7.3..4 : {null}〉
e5 : 〈i : [0, 4], o7.0 : {null}, o7.1 : {o25}, o7.2 : {o26}, o7.3..4 : {null}〉
e6 : 〈i : [1, 5], o7.0 : {null}, o7.1 : {o25}, o7.2 : {o26}, o7.3..4 : {null}〉
e7 : 〈i : [5,+∞], o7.0 : {null}, o7.1 : {o25}, o7.2 : {o26}, o7.3..4 : {null}〉

e1
ab(i=0 16)
−−−−−−−→ e2, e2

i<items.length
17−−−−−−−−−−−−−→ e3, e2

i≥items.length
17−−−−−−−−−−−−−→ e7, e3

items[i].value<value
18−−−−−−−−−−−−−−−−−→ e4,

e3
items[i].value≥value

18−−−−−−−−−−−−−−−−−→ e5, e4
items[i]=null

19−−−−−−−−−−−→ e5, e5
++i 20−−−−−→ e6

Figure 3. Trace values and reachability relation between environments forremoveCheaperThan() whenab(i=0 16) is assumed

1. For each infeasible environmentε, remember the position in the
trace whereε was first derived.

2. Find all the relations involved in derivingε, and associate the cor-
responding components withε.

3. Recursively add all components one of the previously selected
components is control dependent upon. Also add all components
that —when in a different mode— could possibly influence the
value of one of the inputs of the components found in the previous
step to the set. Note that this set heavily depends on the available
component modes, as in the most general modes, almost every
value in an environment could be affected, which results in large
conflicts and many diagnoses. Therefore, the modes available for
each component need to be restricted, relaxing modes only if no
suitable diagnoses can be found or complementary models indi-
cate a fault not covered by the stronger modes.
We omit the detailed discussion of cyclic traces for brevity. There,

caching prevents multiple analysis of trace parts and ensures linear
complexity in the size of the trace

Example 5 In Example 4, the initial conflict is derived in line 18 in
the fourth iteration of the loop. As this is the only branch, the chain of
computation is followed backward to the beginning of the trace. The
resulting component set is{ i=0 9, i++ 9, items[i]=item 11, i=0 16,

items[i].value<value 18, ++i 20}. For example,i=0 9 is included
because the test in line 18 in the fourth iteration depends on the in-
crement statement in line 20, which transitively depends on the ini-
tial value ofi. Furthermore, control dependencies lead to adding the
componentsi<items.length 9, items[i]==null 10, return 12, and

i<items.length 17. Finally, items[i]=null 19 is included in the con-
flict set because if the component is abnormal, the value and the in-
dex expression could be different, thus avoiding the exception in a
subsequent iteration. In this example, the components in the conflict
are essentially the components in a dynamic slice [14], as only for-
ward computation is used. In more complex situations where back-
ward analysis is used, this is not necessarily the case.

5 MODEL REFINEMENT

This section investigates an approach to refine a program’s model
based on results of a preceding abstract interpretation analysis. The
basic idea is to eliminate the widening operators from abstract inter-
pretation. To do this, we must prove that the loop always terminates,
which can be done for many commonly used classes of loops using
different means depending on their structure:
• Syntax-based methods for identifying induction variables can be

very useful for loops containing indexed array access elements
and handle large classes of practically occurring loops.

• For loops over object structures, we introduce auxiliary variables
tracking the number of objects reachable from the loop variable(s).
If this number is monotonous and the underlying data structure is
acyclic (considering only fields involved in the computation of the
loop variables), it is easy to show that the loop is bounded.

• Meta observations, such as“Every element of the array/data
structure must be traversed exactly/at least once”, also constrain
the number of iterations (if the the data structure’s size is known).

Example 6 Assume the current mode assignment for the program in
Figure 2 is{ab(i=0 16)}. The environment after line 16 is the same
as in Example 4. Because the component representingi++ is normal,
and i is not updated otherwise, we derive thati is a monotonically
increasing loop variable. As the array access expressions implicitly
constraini to [0..4], we derive that the loop is terminating. Backward
analysis derives thati must be in[0..4] in case the loop is entered.
The number of iterations is therefore bounded by five.

Once termination has been shown, the loop is expanded into a se-
quence of traces, where each trace is specialized to handle a subset
of the input environment of the original loop. The end of each trace
is connected to the beginning of the trace modeling the following
iterations. The exit point of the final trace is connected to the pro-
gram point after the loop. In case the initial values of the variables
involved in the loop condition are not known, a connection between
the loop entry and the individual traces is added. The widening op-
erator has been replaced by a join operator at the entry of each trace,
eliminating the main source of inaccuracy in the model.

The unrolled model of the loop can subsequently be used to elim-
inate certain transitions from the case statements and thus derive in-
consistencies which could not be derived using the original model.

If the number of iterations is small,6 this model is analyzed im-
mediately. Otherwise, the data flow through the loop is exploited to
reduce computational complexity. We distinguish two cases:
• The values of a following iteration possibly depend on values (ex-

cept loop variables) computed in a previous iteration. In this case,
we modelk iterations (up to a user-specified threshold) exactly,
followed by a model simulating the remaining iterations. This en-
sures that the information loss in the first few iterations is as small
as possible, to provide accurate inputs to subsequent iterations.

• The computations in any two iterations are independent. Here, all
iterations are divided intok partitions, which are then analyzed
separately and concatenated as before. The partitioning strategy is
crucial for the success of this approach. The iterations with most
similar input environments should be analyzed together.
If there is only one loop variable, summary information about the
values accessed through the loop variable is collected in a prelim-
inary step during parsing of the source code. This results in a set
of regular expressions, describing the data access paths parame-
terized with the loop variables. The summary is used to extract
the numerical data that is accessed in each iteration. All accessed
values are merged together to create a single abstract value that
is used in the algorithm in Figure 4 to group the iterations (Dind
denotes the domain of the loop variable).
The algorithm starts with each iteration in a separate partition,
and merges the two most similar partitions into one. Similarity
between partitions is defined through the ratio between the cov-
ered abstract domain values in the merged partition and the sum
of the covered values in the individual partitions.
If there are multiple loop variables, we simply subdivide the do-

main of each of then variables into
⌊
n
√
k
⌋

equal-sized regions.

6 Currently, decided by a user-specified threshold, but this could be deter-
mined by the size of the model of the loop body, the time estimated to
construct the model, the time available for diagnosis, etc.

P ← Dind
while ‖P‖ ≥ 2 ∧ ‖P‖ > k do

pick 〈p1, p2〉 ← {〈a, b〉 | ∀p,q∈P : δ(a, b) ≤ δ(p, q)}
P ← P \ {p ∈ P | p < p1 t p2}
P ← P ∪ (p1 t p2)

end while
return P

δ(a, b) := covered domain(a)+covered domain(b)
covered domain(atb)

Figure 4. Iteration Partitioning Algorithm

Example 7 Continuing Example 6, we first perform a preliminary
data flow analysis and find that the updates of the array in differ-
ent iterations are independent (ignoring the dependence throughi).
Therefore, the summary access paths are used to extract an approx-
imation of the values accessed in each iteration. Here, the only ac-
cess paths used areitems[i] and items[i].value. This leads to the
accessed values[10, 10], [20, 20], [25, 25], ⊥, and⊥, respectively,
for iterations 0 to 4. Assume the number of maximum loop iterations
has been set to three. Using the algorithm above, this leads to the fol-
lowing partitioning for i: [0, 0],[1, 2],[3, 4], which access the values
[10, 10],[20, 25], and⊥, respectively.

Therefore, three concatenated traces are created and paths from
the start of the loop to each of them are inserted.

Analyzing this model using the approach presented in Section 4
leads to the infeasible environment at the loop exit point, because the
last partition causes an uncaughtNullPointerException in line 18.
The exception is certain as all values accessed in the last two it-
erations arenull. Further analysis propagates the contradiction to
the program exit, at which point a conflict is detected. Therefore,
ab(i=0 16) cannot be a single fault diagnosis.

Continuing the analysis until all single fault candidates
have been found leads to the final set of diagnoses:{
{ab(i=0 9)}, {ab(i++ 9)}, {ab(items[i].value<value

18
)},

{ab(items[i]=null
19

)}, {ab(++i 20)}}.

6 RELATED WORK

Automated debugging has been an active area of research for several
decades, resulting in a large number of approaches and algorithms.

In Program Slicing [15, 14], statements that cannot influence the
value of a variable at a given program point are eliminated by consid-
ering the dependencies between the statements. Backward reasoning
from output values, as in our approach, is not possible.

[3] introduces an algorithm that compares a faulty program to a
close correct variant to determine changes that cause the misbehav-
ior. Although the algorithm seems to be highly effective for test case
minimization, it is not clear whether the approach is effectively ap-
plicable at a fine grained level, such as basic blocks or statements.

Earlier dependency-based models for Java programs [8] produce
relatively coarse results. Value-based models improved on this [9,
10] but still are less expressive than the abstract interpretation based
approach when the behavior of components is only partially known.

Abstract interpretation to analyze programs was first introduced
by [6], and later extended by [2] to include assertions for abstract de-
bugging. Our framework is strongly inspired by this work, but pro-
vides more insight on how to choose approximation operators for
debugging, in particular in the case where test information is known.

Recently, model checking approaches have been extended to at-
tempt fault localization in counterexample traces. [1] extended a
model checking algorithm that is able to pinpoint transitions in traces
responsible for a faulty behavior. [7] presents another approach,
which explores the neighborhood of counterexamples to determine
causes of faulty behavior. These techniques mostly consider devia-
tions in control flow and ignore data dependencies.

7 CURRENT STATUS & CONCLUSION
We have presented an automatic debugging approach utilizing
model-based diagnosis together with an abstract interpretation based
conflict detection framework. This framework is able to detect pro-
gramming errors given a set of test cases, possibly enhanced with
partial specifications of the program behavior, e.g., assertions. The
abstract interpretation framework allows for more accurate conflict
detection than previous models when dealing with loops and absent
information. Also, custom abstractions tailored to specific applica-
tion domains can be integrated easily ([5] describes a model checking
based abstraction framework). We showed how results of a previous
abstract interpretation based analysis can lead to refined model, re-
sulting in fewer spurious diagnoses.

At the time of writing, the debugging tool is under development
and not all steps are carried out automatically. Future work includes
the completion of the tool and the evaluation of our debugging
strategies and models using a set of larger programs. So far, several
small programs (up to approx. 50 lines, excluding comments and test
drivers) that were identified as “hard cases” resulting in poor diag-
noses when diagnosed using the previous models [8, 9] have been
used to develop and evaluate the new model. More detailed eval-
uation is postponed until our prototype is completed and ready to
handle interesting problems automatically.

Current and future research issues include the tight integration of
different types of complementary models, such as specifications of
valid method call sequences, into the current reasoning framework,
as well as further refinement of focus selection and hierarchical mod-
eling approaches. The handling of abnormal loop variable update
expressions is also an open topic where the current models do not
perform satisfactorily and need to be extended.

REFERENCES
[1] Thomas Ball, Mayur Naik, and Sriram K. Rajamani, ‘From symptom

to cause: Localizing errors in counterexample traces’, inPOPL, (2003).
[2] François Bourdoncle, ‘Abstract debugging of higher-order imperative

languages’, inProc. SIGPLAN Conf. PLDI, pp. 46–55, (1993).
[3] Holger Cleve and Andreas Zeller, ‘Finding failure causes through auto-

mated testing’, inProc. AADEBUG ’00 Workshop, Munich, (2000).
[4] Luca Console, Gerhard Friedrich, and Daniele Theseider Dupré,

‘Model-based diagnosis meets error diagnosis in logic programs’, in
Proc.13th IJCAI, pp. 1494–1499, Chambery, (August 1993).

[5] James Corbett, Matthew Dwyer, John Hatcliff, Corina Pasareanu,
Robby, Shawn Laubach, and Hongjun Zheng, ‘Bandera: Extracting
finite-state models from Java source code’, inProc.ICSE-00, (2000).

[6] Patrick Cousot and Radhia Cousot, ‘Abstract interpretation: A unified
lattice model for static analysis of programs by construction of approx-
imation of fixpoints’, inPOPL’77, pp. 238–252, Los Angeles, (1977).

[7] Alex Groce and Willem Visser, ‘What went wrong: Explaining coun-
terexamples’, inSPIN Workshop on Model Checking of Software,
(2003).

[8] Cristinel Mateis, Markus Stumptner, and Franz Wotawa, ‘Modeling
Java Programs for Diagnosis’, inProc. ECAI, Berlin, (August 2000).

[9] Cristinel Mateis, Markus Stumptner, and Franz Wotawa, ‘A Value-
Based Diagnosis Model for Java Programs’, inProc. DX’00 Workshop,
Morelia, Mexico, (June 2000).

[10] Wolfgang Mayer and Markus Stumptner, ‘Debugging program excep-
tions’, in Proc. DX’03 Workshop, pp. 119–124, Washington, D.C.,
(June 2003).

[11] Markus Mock, Manuvir Das, Craig Chambers, and Susan J. Eggers,
‘Dynamic points-to sets: a comparison with static analyses and poten-
tial applications in program understanding and optimization’, inProc.
ACM SIGPLAN-SIGSOFT Workshop PASTE’01, pp. 66–72, (1991).

[12] Raymond Reiter, ‘A theory of diagnosis from first principles’,Artificial
Intelligence, 32(1), 57–95, (1987).

[13] Markus Stumptner, ‘Using design information to identify structural
software faults’, inProc. 14th Australian Joint Conf. on AI, Springer
LNAI 2256, pp. 473–486, Adelaide, (December 2001).

[14] Frank Tip, ‘A Survey of Program Slicing Techniques’,Journal of Pro-
gramming Languages, 3(3), 121–189, (September 1995).

[15] Mark Weiser, ‘Program slicing’,IEEE TSE, 10(4), 352–357, (July
1984).

