On-Line Monitoring and Diagnosis of
Multi-Agent Systems: a Model Based Approach

R. Micalizio and P. Torasso and G. Torta !

Abstract. The paper presents an approach for the monitoring andhough basic entities can be modeled by means of communicating
diagnosis of multi-agent systems where mobile robotic agents proautomata as already done in the diagnosis of distributed systems ([6])
vide services and partial observability of the environment is achievedhe diagnosis of multi agent systems is inherently different from the
via a set of fixed sensors. This kind of systems exhibits compleone of distributed systems: the interactions among system entities are
dynamics where weakly predictable interactions among agents mayot known in advance since they depend on the specific actions cur-
arise. Amodel-based approach to on-line monitoring and diagnosis iently assigned to the robotic agents. For this reason we introduce a
adopted: while the dynamics of the system components and their renethod for dynamically aggregating convenient sets of component
lations are modeled via communicating automata, the global systemmodels depending on current actions. Moreover some interactions
model is factored in a number of subsystems dynamically aggregaamong robots cannot be fully predicted even at run-time, since the
ing a convenient set of component models. robots exhibit some form of autonomy (e.g. for navigation) and there-
The On-line Monitoring Module (OMM) estimates the possible evo- fore the robotic agents may interfere with each other when they need
lutions of the system by exploiting partial system observability pro-to access the same resources. This phenomenon adds a new dimen-
vided by sensors and agents messages and enforces global caimn to the diagnosis of multi-agents systems: failures are not only
straints. When the monitor detects failures in the actions executiorjue to the occurrence of faults in one or more robotic agents but also
the Diagnostic Interpretation Module (DIM) is triggered for explain- to troublesome interactionsuch undesired interactions may arise ei-
ing the failure in terms of faults in the robotic agents and/or trouble-ther because of competition for resources or because of the presence
some interactions among them. As a specific case-study we refer @f faults in one or more agents involved in the interaction.

the RoboCare projeét These characteristics put extra requirements on the capabilities
of the diagnostic module which has not only the task of detecting
anomalies (i.e. failures) in the behavior of the global system, but also
1 INTRODUCTION to single out whether the root cause of an action failure is a faultin a

In the recent years there has been a growing interest in integraﬁn@)botic agent or a troublesome interaction. It is worth noting that this
planning, scheduling, monitoring and diagnosis for controlling andchallenging problem persists even if we assume that a robotic agent
supervising complex autonomous systems. Pioneering projects suéhable to self diagnose its faults.

as the Remote Agent Experiment [5] have shown that monitoring The main ideas in the paper will be exemplified in the context
and diagnosis play a central role since planning depends on the a8f RoboCare [2], an Italian project involving a number of partners,
sessment of the status of the system, including failures. which aims at studying issues and challenges involved in the design
Recent advances in the fields of cognitive robotics and multi-ager®f systems for the care of the elderly that adopt both fixed (mainly
systems have paved the way for approaching complex tasks by meafgnsors) and mobile heterogeneous agents (robots).

of distribution of subtasks among robotic agents and cooperatiorf "€ paper is organized as follows. In section 2 we introduce the
among them. So far diagnosis in multi-agent environments has redRoboCare domain and its overall architecture. In section 3 we de-
ceived a very limited attention. In general, the approaches to multiSCribe how we model the entities involved in the studied systems,
agent diagnosis assume that agents are able to perform local diaghile in sections 4 and 5 we describe in detail the OMM and DIM
noses (see e.g. [4] and [3]) and to cooperate each other to reachmpdules respectively. Finally, in section 6 we discuss some related
global diagnosis. work and conclude.

The approach presented in this paper does not assume that agents are

able to perform self-diagnosis and to guarantee perfect co-operatio
We approach the problem from a different perspective: we monito% THE ROBOCARE CASE STUDY

the evolution of the system by collecting information coming from In RoboCare, services are provided by mobile robotic agents that

fixed sensors located in the environment and by interpreting thesg, o 515nomous as concerns navigation and negotiations with other

pieces of 'Uforma“?” in order to detect failures a”‘?' explal_n them'agents, while the overall system is under the control of a Supervisor,
Additional information on the status of the system is got via mes-

i responsible both for synthesizing a plan which achieves the goals
sages volunteered by the robotic agents.

he di i< of multi i L techni entered by the user and for controlling the plan execution. A net of
The diagnosis of multi-agent systems requires novel techniques. Aengors [ocated at fixed positions guarantees a partial observability

I Dipartimento di Informatica, Universitdi Torino, Italy email:{micalizio, ~ Of What is going on in the environment. In [2] the general architec-
torasso, torta@di.unito.it ture of the Supervisor is introduced and three main components are

2 This research is partially supported by MIUR under project RoboCare.  identified: the Planner, the Scheduler and the Diagnostic Agent.
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Since no sensor is associated with the transit areas, the Diagnostic

Figure 1 shows the architecture of the Diagnostic Agent as describegd€nt cannot observe events occurring within them. _
in this paper and its relationships with the other two modules in the*Ve ¢an express constraints on the concurrent access to a resource di-
tly onresor onres.RAandres.CA for example, we can limit the

Supervisor. We assume that the Planner synthesizes a partial-ord@n )
plan (POP) where each action is assigned to an agent. The SchelddMPer of agents that can occupy an area at the same time.
uler schedules the execution of an actmwhen all the actions that " the RoboCare scenario, doors and beds are the relevant resources.

precedeact in the POP have been completed successfully, and th@” the resource constraints are specified on areas; in particular only
preconditions of the action are satisfied ' one agent at a time can access the critical area, while there are no

The On-line Monitoring Module (OMM) of the Diagnostic Agent is constraints on the request areas nor on the transit area of each room.

responsible for checking the progress in the execution of the sched- Age_nts.From the Supervisor point of VIEW, the status of a rOt_’Ot'C
uled actions by estimating the set of system states consistent with tfR8€Nt is represented not only by a set of variables concerning its po-
observations coming from the net of fixed sensors (and with pieceS!tion: carried objects, etc. but also by variables concerning health
of information on the health of robotic agents possibly volunteerec®tatus ofits functionalities. In particular, a sebehavioral modeis

by robotic agents themselves). Moreover, the OMM detects fa”uregssociated to each functionality of the robot; one of thgm represents
and/or delays in actions execution and in such cases it triggers tH8€ nealthy statusdK mode) whereas the other behavioral modes

DIM which has the task of providing the Planner and Schedulerwithrefer to faulty states representing degraded or unavailable function-

an explanation (i.e. diagnosis) of the detected failures in terms of!ity: for example the robot mobility can be in taK, SLOWDOWN
or BROKENbehavioral modes (see figure 2.a).

faults in robotic agents and/or occurrence of troublesome interac® ! e ) )
tions. A set of availablecapabilitiescharacterizes each behavioral mode

of a functionality (e.g. theD K mode of mobility offers themove

capability). We model an agent’s functionality by a communicating
3 MODELING THE DOMAIN automaton where:

- each state represents a behavioral mode

In the following a formal method based on the communicating au- - arcs between states represent spontaneous evolutions between be-
tomata formalism is proposed for modeling the relevant entities ohavioral modes due to the occurrence of faults
the multi-agent system: robotic agents, fixed sensors and resources. - if a capability cap is available in behavioral moden then the
Environment. We assume that the environment consists in a set oktate representiniyn has a self-loop which consumes an event la-
rooms R where relevant objects (such as beds in the Robocare ddseledcap.
main) can be located; two adjacent roofsand ; may be con-  |n the RoboCare domain, the status of a robotic agent is given by its
nected by one or more doof3. positionpos the object it is possibly carryingoldsand the health
Since accessing objects and doors is essential for the successgthtus of functionalitiemobility andhandling Figure 2.a shows that
execution of agents actions, we consider objects and doore-as the capabilitymoveis available in behavioral mod&K and SLOW-
sourcesThe positions of resources and agents are modeled in an alpOWNDbut not inBROKEN
stract qualitative way by means of areas within which resources can Actions. Actions act used by the Planner to synthesize plans are
be placed and agents can move. In particular two special areas are a$raracterized, as usual, by a set of preconditiprigact) and a set
sociated with each resourees critical area res.CAdenotes the area  of postconditiongost(act). Unlike in classical planning problems,
from whichrescan be accessemiquest area res.Réenotes the area  pre(act) andpost(act) may put restrictions on the health status of
immediately surroundinges.CA The critical and request areas are agents functionalities (e.g.goto action requires thenobility of the
ideal locations for placing fixed sensors (see below) in order to detecigent not to beBROKEN. While at the planning and scheduling
events, in particular agents entering/leaving the area. All the space ®dvel such actions may be considered atomic, for monitoring and
aroom that is not part of a critical/request area is modeled as a Sing@agnostic purposes a more precise description of each action is
transit area TAused by agents to move from one resource to anothefmeeded. Since the execution of actions can not be considered as



instantaneous, between the initial state(s) where(act) hold 4 ON-LINE MONITORING
and the final state(s) whegst(act) hold, there are one or more

possible paths touching states where intermediate conditions mu S )
hold. Moreover the restrictions on the agents functionalities ma tatus of the system at each time instant (because of the partial ob-

be required to hold fothe whole duratiorof the action or in some servability, the monitor will actually estimatebalief state.e. a set of
: gossible current states). In order to determine the current belief state

B: OMM requires a representation of the previous one fe.1)
%nd a global transition functioA

A global system statusan be described as:

S = (Sa,gentsa Ssenso'rs) 3

turn, Sagents aNdSsensors €aN be further partitioned as follows:

y\e On-line Monitoring module (OMM) needs to estimate the global

are modeled as a communicating automaton such that:

- each state is defined by a list of constant assignments; e.g. i
figure 2.b state labels such Bed...C' A represent the value assigned
to state variabledGk.pos

- each transition is labeled with an exogenous input event, thié;n

event could be considered as a necessary condition for a transitionsﬂgc”“ :7(%“‘31’ o SAG’“)S
from states; to states;. The exogenous events are not directly —“semsors — (Sac1sensts -5 SAG1 sensl, -+
SAGk,sensl: RN SAGk,sensl)

observable
- each transition is also labeled with one or more internal event
that are emitted when the transition is taken. These events ma

t’ biliti ired b tt ke th
concern agents capaniities Tequired by an agent to maxe currently being performed and by the health status of the agents per-

transition froms; to s; or may describe a state change that is not ina th For thi that at . inAtant
directly observable (but eventually consumed by the automaton Ofprmlng em. For this reason we assume that at any given instan

the fixed sensors - see below). For example, in figure 2.b all thésonpZSed as fOHOWS:A
transitions correspond to position changes of the agent and emit = (Bact(ac); - - - Dact(aGn)

a move event intended to be consumed by the automaton of théj orqler{ﬁ fhompliteﬁa;t(*‘?;r)] er cotrnpols_,te_z th;fgc?tlor;aq:EThaton
mobility functionality (if move is an available capability in its act Wl € automata ot the functionaliies randwi €

current behavioral mode). AGi copigs of the sensors automata invo!vedz@. More specifi-
Figure 2.b shows the automaton for the action cally, the instantiated action automa@mct identifies (through the
GoToRoom(AGh, Ri, R;, Dy) in the RoboCare scenario. In Iabel§ _of exchanged messages on its arcs) the set of age_nts fu_nc-
particular the action requires ageAt?, to move from its current tionalities and sensors automata that need to be synchronized with

position in roomR; to room R, through the doom,. Note that it. Relation Agci(agiy is the transition relation of such composed
the automaton is demplate parametric in the arguments of the automaton where all the incoming messages are exogenous and all
GoToRoom() action and in the initial position of the agedtGy.; the emitted messages are observable; thus the automaton does not

different initial states correspond to different initial positions of need any further synchronization with other automata. An important

AG}. The intermediate states of the automaton represent, in th onsequence of this choice is_trratis parti_tioned by definition on
sample case, intermediate places whéte, has to transit in order act(AG#), With huge computational benefits regardless of the actual
to reach its fi;]al destinatiof,. RA in the R, room, mechanism used for estimating the next system status.

Fixed SensorsAs we have said, changes in the world status due to As an example, suppose th%cl has been _aSS|gned a
the execution of actions are not directly observable by the Supervi& 0L 0foom(AG1, R1, R2, D12) action when AG1 is located

sor; however, some of them can be detected by fixed sensors whid Bedl‘C.A _area; Aact(acn) results from the c_omposmon of

in turn make them available to the Supervisor through messages. the instantiation of th_d_;OTORO.Om(). automaton (ﬂgure 2.b), the

A fixed sensor can have its internal status, and may fail in the sam utomaton of themobility functionality of AG'1 (figure 2.a) and

way the functionalities of agents can fail; even if our framework \'¢ dutomata Of Sensokgnsac1,pear AN sensaci,pi2. In our
could straightforwardly accommodate the modeling of sensors fa”_archltecture th(_e_module resp_on5|b_le _for such computation is the
ures, we take the simplifying assumption that sensors are complete .odel Composmon. Moduldepicted in figure 1. .
reliable. A fixed sensor can thus be modeled as a communicating®"°¢ e Synthesis oR.ciaci) has to be performed on-line,
automaton where each state represents an internal state of the sen 8p1putat|o_nal eﬁ'c'e'_”c_y begomes an Issue. we have_ adopted the
and arcs between two statesands; receive an event emitted by rdered Binary Decision Diagrams formalism ([1]) in order to

an action automaton and emit an observable event representing tﬁQCOde the transition function§ of the functionalities autqr_nata, the
message sent to the SUPErVisor. sensors automa_ta ar_wd_ the action automata; the composition among
Figure 2.c shows the automaton for the door sensor in the RoboCa}QeSe automatais efficiently perfornjed by means of standard .OBDD
domain, this is a special case where all detected events are ma(ggerators. The OBDD forn_wahsm IS ‘.""50 used_for symb_ollcally
observable to the Supervisor; in general some events may just cau %nd t'hus compactly) encoding the be“e.f StBte.Nh'Ch potentially

a transition in the sensor internal status. contains a very large number of alternative estimated states), so that

Fixed sensors must be able to independently detect events trigger%?lgggpl'cat'otn ofA to B7can again be performed by using standard
by different concurrent agent actions. In order to avoid to define operators (see ])'. i . .

a sensor automaton that considers all possible cases in which tw%t any given '”St"?‘”‘A Spe(.:'f'es the possible evolutlc_)ns of the status
or more events are triggered at the same time, we define eac\f?nablesvacme involved in the current set of actions. However,
sensor automaton as though no concurrent actions were allowed. V{}em_ay happen that some agents are'ldle_(_no action is currently
associate a copy of this sensor automaton with each agent, in Su&§3|gned to them) or some of the functionalities of an agent are not
way the events triggered by an agent can affect only the internal Also resources should be part of the status, however we assume that their

states of the copy associated to the agent. status can be inferred from agents status variables.
4 1t is worth noticing that in order to obtaim,.; an instantiation phase is
needed since, as we have shown, the action automata are templates (see
section 3). Due to space reasons we do not describe this phase.

ince as already noted we introduce a copy of each sensor per agent.
is quite natural to definé\ starting from the current action of each
gent, since the dynamics of the system is determined by the actions




directly involved in the execution of an action (e.gGaToRoom() constraints (all these operations are performed through simple
action does not involve theandling functionality); in such cases logical operations on the OBDDs encoding the sets of states).

there are some inactive status variablgs,.+». not handled byA The next step is to detect failure and success of actions execution.
for which we need some extra knowledge in order to predict theFirst, detection of the actionact that have reached their goal
dynamic evolution. By assuming the persistence of the previouss performed by checking ifpost(act) holds in B, (function
value of Vinactive Variables, we provide a simple but effective DetectCompletion()). Then, these actions are partitioned in
solution to the problem. ontimeActs anddelayedActs depending on whether a timeout on
The proposed partitioning o\, while essential for computational 74ciayea(act) has previously occurred. Finally, the sgtiled Acts
efficiency, does not take into account the dependencies among the determined by taking into account the occurrence in the current
dynamics of the current actions imposed by the constraints on théme instant of timeouts associated with,iicq(act). If the detection

use of resources. For example, the constraint associated with thghase reports that at least one action was completed on-time or with
critical area of dootDh may state that only one agent at a time can delay or failed, the DIM is activated (see next section).

be in that area: The last phase of the algorithm concerns the update of the transition

(AGi.pos = Dh.CA) = (AGj.pos # Dh.CA,j # 1) function A. In particular, when an actiomct is completed the
Such constraints must be imposed a posteriori on the belief stateorresponding\,.:(ac) is removed fromA; similarly, when a new
computed withA. actionact is assigned to agemGi, A, (acq) IS added taA.

The following high level algorithm illustrates the OMM process.
loop 5 Diagnostic Interpretation Module

timeouts = timeouts) timeoutMsgs(t) As discussed above, the OMM is able to determine whether an ac-

Iy = A(Btfl) = {(s', exo, obs, 5)} tion has been completed on-time, with delay or it has failed. This
By ={s| (s, exo, 0bs, s) € II; A level of interpretation is not sufficient for the Planner/Scheduler to
match(obs, sensorsMsgs(t)) A conschk(s, agentMsgs(t))}  take a decision on what to do next, since the result of the OMM does
Bt = PrunefB:, resource constraints) not specify the reason why something has gone wrong. The task of
doneActs = DetectCompletioli{) _ providing an explanation of the failure is up to the DIM which has to
(ontimeActs, delayedActs) = CheckDelayed(doneActs, timeouts) single out which agent's fault is responsible for the failure or, alterna-
failedActs = CheckFailed(activeActsdoneActs, timeouts) tively, to identify the occurrence of a troublesome interaction among
if (ontimeActs# 0 v delayedActs# 0 Vv failedActs+# () agents.
callDIM (ontimeActs, delayedActs, failedActs) For performing this task the DIM has at disposal a knowledge base
for eachact € (doneActsU failedActs) which specifies for each action typettype the set of entities which
update A r_emovmgAact(f,Gi) influence the outcome of an actiort of type acttype. In gen-
update activeActs removing.ct eral, the outcome ofict is influenced by the health status of the
for eachnew actionuct assigned toAGi functionalities of the agent performing:t as well as by the sta-
update A addingAce(aci) tus of the resources involved et execution. For example, for a
update activeActs adding.ct GoToRoom(AGk, Ri, Rj, Dh) action the influencing entities are
settimersticiayed(act) andTyaiea(act) AGk.mob Dh.trafficandDh.occlwhereAGk.molrepresents the mo-
) ) ] bility functionality of AGk while Dh.traffic represents the presence
At each time instant, the OMM receives messages form sen- ot myjtiple agents trying to cross do@h during the execution of

sors and agents. It also receives (from the Time Manager, see figuggoToRoom(Jand Dh.occl represents the presence of another agent
1) timeout messages regarding the expiration of timgrs ycq (act) occludingDh.

andryaitea(act) that are started when a new actiort is assigned  the knowledge base is partitioned in as many modules as the action

to an agent. Expiration of timersiciayea(act) and 7raica(act)  ynes. Each module consists in a set of rules (represented as logi-
means that the execution oft has been delayed and has failed ¢4 jmplications) whose consequence is a disjunction of action out-

respectively; the actual values of the timeouts are provided by th%omes; for example the module f@oToRoom(lcontains (among
Scheduler on the basis of a priori knowledge. others) the following rules:

A prediction II is computed from the previous belief state by AGk.mob(ok) A Dh.traffic(moderate) A Dh.occl(no) =
applying A. TI consists in a set of tuple&’, exo, obs, s) where outcome(on — time) V outcome(delayed)

s is a predicted global status] is a global status belonging to AGk.mob(slowdown) A Dh.traffic(no) A Dh.occl(no) =
B:—1 and exo and obs are the incoming exogenous events and outcome(delayed)

emitted observable events associated with the transition ffom AGk.mob(slowdown) A Dh.occl(no)A

to s. Actual messages coming from sensosgn(sorsMsgs(t)) (Dh.traffic(moderate) V' Dh.traffic(heavy)) =
and agentsdgentsMsgs(t)) are used to confirm or disconfirm
the predictions. In particular, predicted states occurrinf ituples
where theobs part does not match witlsensorsMsgs(t) are

outcome(delayed) V outcome(failed)
These rules have a weak predictive power (expressed as a disjunction
i i X X - : . of predictions) since they contain predicate®dstrafficthat are in-
not included inB;; in the same way if predicted statusis not in  ended to capture interactions among robotic agents whose effects
accordance wittugentsMsgs(t) it is discarded. For example, if 5.0 not precisely known.
agentAGi volunteers information about its location (AGi.pos=X) outcome rules are used abductively taking advantage of the fact that
and behavioral mode of its mobility (AGi.mob=bm), only predicted ;e oMM has provided the DIM with lists of actions subdivided by
states that assign tdGi.pos and AGi.mob valuesz andbm are  gytcome (see the on-line monitoring algorithmy; for example, in case
kept. . ) i the DIM is invoked at time and aGoToRoom(jactionact occurs
A further filtering on B, is performed by applying the resource j, the delayedActparameter, precisely the rules reported above are



activated by the DIM to handlact diagnosis. In the context @bcial diagnosis[4] advocates a central-
The set of abductive explanations that can be found just by knowized approach assuming a complete observability of the agents be-
ing that theGoToRoom/() action is delayed (according to above havior and the possibility of querying other agents to get full knowl-
rules) are not very strong even if it is possible to rule out thatedge of their beliefs. In [3] the system is spatially distributed and nat-
AGk.mob(BROKEN)Stronger conclusions can be reached by eval-urally divided in subsystems; each agent has a complete knowledge
uating some predicates occurring in the rules; but to do so the DIMf a subsystem and infers a set of diagnoses only for such subsystem.
needs more information. In particular, the DIM maintains an historyln order to achieve global consistency, the agents exchange local di-
H of fixed sizer where the last belief states are collected. More- agnoses with each other.

over, predicates such Bh.trafficare considered as concepts defined Our prospective is quite different. First of all it addresses the problem
on status variables occurring in the belief states and therefore theaf interactions arising from concurrent access to critical resources (a
evaluation is possible by inspecting the histéfy For example the  problem not faced in previous approaches); moreover, we do not as-

definition of Dh.traffic(no)currently adopted is: sume that each agent is able to perform self-diagnosis. Therefore,
Dh.traffic(no) ack,s =Vt' € [t — 6,t],VAG: # AGk partial observability of the system status is obtained through a net of
(AGi.pos(t') # Dh.RA) A (AGi.pos(t') # Dh.CA) fixed sensor.

and it specifies that no agent different frofGGk should be in the  For modeling the system, we adopt the communicating automata for-
critical or the request area dPh and this condition must hold in  malism, previously proposed for modeling distributed systems where
all time instants of a time interval which ends in the current instantthe global transition function is partitioned but does not change over
t. It is worth noting that the evaluation of such a predicate is com-time ([6]). A contribution of the present paper concerns the ability of
putationally feasible when the presence of agen®incritical and  the OMM to dynamically revise the transition relatidnto reflect
request areas is observable for each considéredt — 4, ¢]. interdependencies among status variables determined by the actions
Since the DIM can evaluate the predicai®s.traffic and Dh.occl currently assigned to agents; computatiomofs entirely based on

the set of possible explanations is reduced. Let us suppose that @omposition of communicating automata each one representing the
the previous example the evaluations of predicBesraffic(no)and model of a system entity. We are currently experimenting the adop-
Dh.occl(no)returntrue: in such a case the only remaining explana- tion of OBDDs for symbolically representing both the belief state
tion for a delay in theGoToRoom(jaction isAGk.mob(slowdown) and transition function; the benefits and issues in applying this for-
and this conclusion is forwarded to the Planner/Scheduler (via thenalism to diagnosis have been described in [7].

Presentation Layer depicted in figure 1). Moreover this conclusiorin the proposed architecture the DIM is responsible for explaining
is also used for filtering the current belief stdfe by disregard- failures to the Planner/Scheduler, including those caused by trou-
ing all the global states which involve an assignment to the variabldlesome interactions. This is particularly challenging because some
AGk.mob different fromslowdown interactions among agents are only weakly predictable; in order to
The possibility of evaluating predicates suchdstrafficappearing  manage the problem from a computational point of view, we require
in the premises of rules does not necessarily guarantee that a singdecertain level of observability of specific status variables, such as
explanation is reached. Let us assume that in the example reporteldose representing the presence of agents in critical areas.
aboveDh.traffic(moderateandDh.occl(no)evaluate tdrue; insuch ~ As a test bed of the methodology, we have referred to the RoboCare
case we are left with two possible values o6 k.mob, namelyok domain, where robotic agents provide services for the elderly in an
andslowdown In situations like this, the notion gfreferred expla-  environment partially controlled by fixed sensors. Implementations
nationcan play an important role in ordering the alternative explana-of the planner/scheduler and monitoring/diagnosis modules of the
tions for presentation to the Planner; in particular we prefer to explairRoboCare architecture have been proposed ([2], [8]). While in [8] the
the delay on the GoToRoom() action just in terms of the occurrencé&nowledge is represented via rules specific for the RoboCare domain,
of Dh.traffic(moderate]with AGk.mob(oK)without further assum-  the present paper discusses more general, compositional models and
ing AGk.mob(slowdown) reasoning techniques based on communicating automata.

Finally, it is worth noting that our formalism is able to single-out

the root cause of an action failure. For example, let's assume that thﬁEFERENCES
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