
On-Line Monitoring and Diagnosis of
Multi-Agent Systems: a Model Based Approach

R. Micalizio and P. Torasso and G. Torta 1

Abstract. The paper presents an approach for the monitoring and
diagnosis of multi-agent systems where mobile robotic agents pro-
vide services and partial observability of the environment is achieved
via a set of fixed sensors. This kind of systems exhibits complex
dynamics where weakly predictable interactions among agents may
arise. A model-based approach to on-line monitoring and diagnosis is
adopted: while the dynamics of the system components and their re-
lations are modeled via communicating automata, the global system
model is factored in a number of subsystems dynamically aggregat-
ing a convenient set of component models.
The On-line Monitoring Module (OMM) estimates the possible evo-
lutions of the system by exploiting partial system observability pro-
vided by sensors and agents messages and enforces global con-
straints. When the monitor detects failures in the actions execution,
the Diagnostic Interpretation Module (DIM) is triggered for explain-
ing the failure in terms of faults in the robotic agents and/or trouble-
some interactions among them. As a specific case-study we refer to
the RoboCare project2.

1 INTRODUCTION

In the recent years there has been a growing interest in integrating
planning, scheduling, monitoring and diagnosis for controlling and
supervising complex autonomous systems. Pioneering projects such
as the Remote Agent Experiment [5] have shown that monitoring
and diagnosis play a central role since planning depends on the as-
sessment of the status of the system, including failures.
Recent advances in the fields of cognitive robotics and multi-agent
systems have paved the way for approaching complex tasks by means
of distribution of subtasks among robotic agents and cooperation
among them. So far diagnosis in multi-agent environments has re-
ceived a very limited attention. In general, the approaches to multi-
agent diagnosis assume that agents are able to perform local diag-
noses (see e.g. [4] and [3]) and to cooperate each other to reach a
global diagnosis.
The approach presented in this paper does not assume that agents are
able to perform self-diagnosis and to guarantee perfect co-operation.
We approach the problem from a different perspective: we monitor
the evolution of the system by collecting information coming from
fixed sensors located in the environment and by interpreting these
pieces of information in order to detect failures and explain them.
Additional information on the status of the system is got via mes-
sages volunteered by the robotic agents.
The diagnosis of multi-agent systems requires novel techniques. Al-

1 Dipartimento di Informatica, Università di Torino, Italy email:{micalizio,
torasso, torta}@di.unito.it

2 This research is partially supported by MIUR under project RoboCare.

though basic entities can be modeled by means of communicating
automata as already done in the diagnosis of distributed systems ([6])
the diagnosis of multi agent systems is inherently different from the
one of distributed systems: the interactions among system entities are
not known in advance since they depend on the specific actions cur-
rently assigned to the robotic agents. For this reason we introduce a
method for dynamically aggregating convenient sets of component
models depending on current actions. Moreover some interactions
among robots cannot be fully predicted even at run-time, since the
robots exhibit some form of autonomy (e.g. for navigation) and there-
fore the robotic agents may interfere with each other when they need
to access the same resources. This phenomenon adds a new dimen-
sion to the diagnosis of multi-agents systems: failures are not only
due to the occurrence of faults in one or more robotic agents but also
to troublesome interactions; such undesired interactions may arise ei-
ther because of competition for resources or because of the presence
of faults in one or more agents involved in the interaction.

These characteristics put extra requirements on the capabilities
of the diagnostic module which has not only the task of detecting
anomalies (i.e. failures) in the behavior of the global system, but also
to single out whether the root cause of an action failure is a fault in a
robotic agent or a troublesome interaction. It is worth noting that this
challenging problem persists even if we assume that a robotic agent
is able to self diagnose its faults.

The main ideas in the paper will be exemplified in the context
of RoboCare [2], an Italian project involving a number of partners,
which aims at studying issues and challenges involved in the design
of systems for the care of the elderly that adopt both fixed (mainly
sensors) and mobile heterogeneous agents (robots).
The paper is organized as follows. In section 2 we introduce the
RoboCare domain and its overall architecture. In section 3 we de-
scribe how we model the entities involved in the studied systems,
while in sections 4 and 5 we describe in detail the OMM and DIM
modules respectively. Finally, in section 6 we discuss some related
work and conclude.

2 THE ROBOCARE CASE STUDY

In RoboCare, services are provided by mobile robotic agents that
are autonomous as concerns navigation and negotiations with other
agents, while the overall system is under the control of a Supervisor,
responsible both for synthesizing a plan which achieves the goals
entered by the user and for controlling the plan execution. A net of
sensors located at fixed positions guarantees a partial observability
of what is going on in the environment. In [2] the general architec-
ture of the Supervisor is introduced and three main components are
identified: the Planner, the Scheduler and the Diagnostic Agent.



Figure 1. The architecture of the Diagnostic Agent

Figure 1 shows the architecture of the Diagnostic Agent as described
in this paper and its relationships with the other two modules in the
Supervisor. We assume that the Planner synthesizes a partial-order
plan (POP) where each action is assigned to an agent. The Sched-
uler schedules the execution of an actionactwhen all the actions that
precedeact in the POP have been completed successfully, and the
preconditions of the action are satisfied.
The On-line Monitoring Module (OMM) of the Diagnostic Agent is
responsible for checking the progress in the execution of the sched-
uled actions by estimating the set of system states consistent with the
observations coming from the net of fixed sensors (and with pieces
of information on the health of robotic agents possibly volunteered
by robotic agents themselves). Moreover, the OMM detects failures
and/or delays in actions execution and in such cases it triggers the
DIM which has the task of providing the Planner and Scheduler with
an explanation (i.e. diagnosis) of the detected failures in terms of
faults in robotic agents and/or occurrence of troublesome interac-
tions.

3 MODELING THE DOMAIN

In the following a formal method based on the communicating au-
tomata formalism is proposed for modeling the relevant entities of
the multi-agent system: robotic agents, fixed sensors and resources.
Environment. We assume that the environment consists in a set of
roomsR where relevant objects (such as beds in the Robocare do-
main) can be located; two adjacent roomsRi andRj may be con-
nected by one or more doorsDk.
Since accessing objects and doors is essential for the successful
execution of agents actions, we consider objects and doors asre-
sources.The positions of resources and agents are modeled in an ab-
stract qualitative way by means of areas within which resources can
be placed and agents can move. In particular two special areas are as-
sociated with each resourceres: critical area res.CAdenotes the area
from whichrescan be accessed;request area res.RAdenotes the area
immediately surroundingres.CA. The critical and request areas are
ideal locations for placing fixed sensors (see below) in order to detect
events, in particular agents entering/leaving the area. All the space of
a room that is not part of a critical/request area is modeled as a single
transit area TAused by agents to move from one resource to another.

Since no sensor is associated with the transit areas, the Diagnostic
Agent cannot observe events occurring within them.
We can express constraints on the concurrent access to a resource di-
rectly onresor on res.RAandres.CA; for example, we can limit the
number of agents that can occupy an area at the same time.
In the RoboCare scenario, doors and beds are the relevant resources.
All the resource constraints are specified on areas; in particular only
one agent at a time can access the critical area, while there are no
constraints on the request areas nor on the transit area of each room.

Agents.From the Supervisor point of view, the status of a robotic
agent is represented not only by a set of variables concerning its po-
sition, carried objects, etc. but also by variables concerning health
status of its functionalities. In particular, a set ofbehavioral modesis
associated to each functionality of the robot; one of them represents
the healthy status (OK mode) whereas the other behavioral modes
refer to faulty states representing degraded or unavailable function-
ality; for example the robot mobility can be in theOK, SLOWDOWN
or BROKENbehavioral modes (see figure 2.a).
A set of availablecapabilitiescharacterizes each behavioral mode
of a functionality (e.g. theOK mode of mobility offers themove
capability). We model an agent’s functionality by a communicating
automaton where:

- each state represents a behavioral mode
- arcs between states represent spontaneous evolutions between be-

havioral modes due to the occurrence of faults
- if a capabilitycap is available in behavioral modebm then the

state representingbm has a self-loop which consumes an event la-
beledcap.
In the RoboCare domain, the status of a robotic agent is given by its
positionpos, the object it is possibly carryingholdsand the health
status of functionalitiesmobilityandhandling. Figure 2.a shows that
the capabilitymoveis available in behavioral modesOK andSLOW-
DOWNbut not inBROKEN.

Actions. Actionsact used by the Planner to synthesize plans are
characterized, as usual, by a set of preconditionspre(act) and a set
of postconditionspost(act). Unlike in classical planning problems,
pre(act) andpost(act) may put restrictions on the health status of
agents functionalities (e.g. agotoaction requires themobility of the
agent not to beBROKEN). While at the planning and scheduling
level such actions may be considered atomic, for monitoring and
diagnostic purposes a more precise description of each action is
needed. Since the execution of actions can not be considered as



instantaneous, between the initial state(s) wherepre(act) hold
and the final state(s) wherepost(act) hold, there are one or more
possible paths touching states where intermediate conditions must
hold. Moreover the restrictions on the agents functionalities may
be required to hold forthe whole durationof the action or in some
specific intervals, not just in the initial states. In our approach actions
are modeled as a communicating automaton such that:

- each state is defined by a list of constant assignments; e.g. in
figure 2.b state labels such asBedx.CA represent the value assigned
to state variableAGk.pos

- each transition is labeled with an exogenous input event, this
event could be considered as a necessary condition for a transition
from statesi to statesj . The exogenous events are not directly
observable

- each transition is also labeled with one or more internal events
that are emitted when the transition is taken. These events may
concern agent’s capabilities required by an agent to make the
transition fromsi to sj or may describe a state change that is not
directly observable (but eventually consumed by the automaton of
the fixed sensors - see below). For example, in figure 2.b all the
transitions correspond to position changes of the agent and emit
a move event intended to be consumed by the automaton of the
mobility functionality (if move is an available capability in its
current behavioral mode).
Figure 2.b shows the automaton for the action
GoToRoom(AGk, Ri, Rj , Dh) in the RoboCare scenario. In
particular the action requires agentAGk to move from its current
position in roomRi to room Rj through the doorDh. Note that
the automaton is atemplate, parametric in the arguments of the
GoToRoom() action and in the initial position of the agentAGk;
different initial states correspond to different initial positions of
AGk. The intermediate states of the automaton represent, in the
sample case, intermediate places whereAGk has to transit in order
to reach its final destinationDh.RA in theRj room.
Fixed Sensors.As we have said, changes in the world status due to
the execution of actions are not directly observable by the Supervi-
sor; however, some of them can be detected by fixed sensors which
in turn make them available to the Supervisor through messages.
A fixed sensor can have its internal status, and may fail in the same
way the functionalities of agents can fail; even if our framework
could straightforwardly accommodate the modeling of sensors fail-
ures, we take the simplifying assumption that sensors are completely
reliable. A fixed sensor can thus be modeled as a communicating
automaton where each state represents an internal state of the sensor
and arcs between two statessi andsj receive an event emitted by
an action automaton and emit an observable event representing the
message sent to the Supervisor.
Figure 2.c shows the automaton for the door sensor in the RoboCare
domain, this is a special case where all detected events are made
observable to the Supervisor; in general some events may just cause
a transition in the sensor internal status.
Fixed sensors must be able to independently detect events triggered
by different concurrent agent actions. In order to avoid to define
a sensor automaton that considers all possible cases in which two
or more events are triggered at the same time, we define each
sensor automaton as though no concurrent actions were allowed. We
associate a copy of this sensor automaton with each agent, in such
way the events triggered by an agent can affect only the internal
states of the copy associated to the agent.

4 ON-LINE MONITORING

The On-line Monitoring module (OMM) needs to estimate the global
status of the system at each time instant (because of the partial ob-
servability, the monitor will actually estimate abelief statei.e. a set of
possible current states). In order to determine the current belief state
Bt OMM requires a representation of the previous one (i.e.Bt−1)
and a global transition function∆
A global system statuscan be described as:

S = (Sagents, Ssensors)
3

In turn,Sagents andSsensors can be further partitioned as follows:
Sagents = (SAG1, . . . , SAGk)
Ssensors = (SAG1,sens1, . . . , SAG1,sensl, . . . ,

SAGk,sens1, . . . , SAGk,sensl)
since as already noted we introduce a copy of each sensor per agent.
It is quite natural to define∆ starting from the current action of each
agent, since the dynamics of the system is determined by the actions
currently being performed and by the health status of the agents per-
forming them. For this reason we assume that at any given instant∆
is composed as follows:

∆ = (∆act(AG1), . . . , ∆act(AGn))
In order to compute∆act(AG1) we compose the action automaton
Aact

4 with the automata of the functionalities ofAGi and with the
AGi copies of the sensors automata involved inact. More specifi-
cally, the instantiated action automatonAact identifies (through the
labels of exchanged messages on its arcs) the set of agents func-
tionalities and sensors automata that need to be synchronized with
it. Relation∆act(AGi) is the transition relation of such composed
automaton where all the incoming messages are exogenous and all
the emitted messages are observable; thus the automaton does not
need any further synchronization with other automata. An important
consequence of this choice is that∆ is partitioned by definition on
∆act(AGi), with huge computational benefits regardless of the actual
mechanism used for estimating the next system status.

As an example, suppose thatAG1 has been assigned a
GoToRoom(AG1, R1, R2, D12) action when AG1 is located
in Bed1.CA area; ∆act(AG1) results from the composition of
the instantiation of theGoToRoom() automaton (figure 2.b), the
automaton of themobility functionality of AG1 (figure 2.a) and
the automata of sensorssensAG1,Bed1 and sensAG1,D12. In our
architecture the module responsible for such computation is the
Model Composition Moduledepicted in figure 1.
Since the synthesis of∆act(AGi) has to be performed on-line,
computational efficiency becomes an issue. We have adopted the
Ordered Binary Decision Diagrams formalism ([1]) in order to
encode the transition functions of the functionalities automata, the
sensors automata and the action automata; the composition among
these automata is efficiently performed by means of standard OBDD
operators. The OBDD formalism is also used for symbolically
(and thus compactly) encoding the belief stateB (which potentially
contains a very large number of alternative estimated states), so that
the application of∆ to B can again be performed by using standard
OBDD operators (see [7]).
At any given instant,∆ specifies the possible evolutions of the status
variablesVactive involved in the current set of actions. However,
it may happen that some agents are idle (no action is currently
assigned to them) or some of the functionalities of an agent are not

3 Also resources should be part of the status, however we assume that their
status can be inferred from agents status variables.

4 It is worth noticing that in order to obtainAact an instantiation phase is
needed since, as we have shown, the action automata are templates (see
section 3). Due to space reasons we do not describe this phase.



directly involved in the execution of an action (e.g. aGoToRoom()
action does not involve thehandling functionality); in such cases
there are some inactive status variablesVinactive not handled by∆
for which we need some extra knowledge in order to predict the
dynamic evolution. By assuming the persistence of the previous
value of Vinactive variables, we provide a simple but effective
solution to the problem.
The proposed partitioning of∆, while essential for computational
efficiency, does not take into account the dependencies among the
dynamics of the current actions imposed by the constraints on the
use of resources. For example, the constraint associated with the
critical area of doorDh may state that only one agent at a time can
be in that area:

(AGi.pos = Dh.CA) ⇒ (AGj.pos 6= Dh.CA, j 6= i)
Such constraints must be imposed a posteriori on the belief state
computed with∆.
The following high level algorithm illustrates the OMM process.

loop
timeouts = timeouts∪ timeoutMsgs(t)
Πt = ∆(Bt−1) = {(s′, exo, obs, s)}
Bt = {s | (s′, exo, obs, s) ∈ Πt ∧
match(obs, sensorsMsgs(t)) ∧ conschk(s, agentMsgs(t))}
Bt = Prune(Bt, resource constraints)
doneActs = DetectCompletion(Bt)
(ontimeActs, delayedActs) = CheckDelayed(doneActs, timeouts)
failedActs = CheckFailed(activeActs\ doneActs, timeouts)
if (ontimeActs6= ∅ ∨ delayedActs6= ∅ ∨ failedActs 6= ∅)

callDIM (ontimeActs, delayedActs, failedActs)
for eachact ∈ (doneActs∪ failedActs)

update∆ removing∆act(AGi)

updateactiveActs removingact
for eachnew actionact assigned toAGi

update∆ adding∆act(AGi)

updateactiveActs addingact
settimersτdelayed(act) andτfailed(act)

At each time instantt, the OMM receives messages form sen-
sors and agents. It also receives (from the Time Manager, see figure
1) timeout messages regarding the expiration of timersτdelayed(act)
andτfailed(act) that are started when a new actionact is assigned
to an agent. Expiration of timersτdelayed(act) and τfailed(act)
means that the execution ofact has been delayed and has failed
respectively; the actual values of the timeouts are provided by the
Scheduler on the basis of a priori knowledge.
A prediction Π is computed from the previous belief state by
applying ∆. Π consists in a set of tuples(s′, exo, obs, s) where
s is a predicted global status,s′ is a global status belonging to
Bt−1 and exo and obs are the incoming exogenous events and
emitted observable events associated with the transition froms′

to s. Actual messages coming from sensors (sensorsMsgs(t))
and agents (agentsMsgs(t)) are used to confirm or disconfirm
the predictions. In particular, predicted states occurring inΠ tuples
where theobs part does not match withsensorsMsgs(t) are
not included inBt; in the same way if predicted statuss is not in
accordance withagentsMsgs(t) it is discarded. For example, if
agentAGi volunteers information about its location (AGi.pos=x)
and behavioral mode of its mobility (AGi.mob=bm), only predicted
states that assign toAGi.pos andAGi.mob valuesx and bm are
kept.
A further filtering onBt is performed by applying the resource

constraints (all these operations are performed through simple
logical operations on the OBDDs encoding the sets of states).
The next step is to detect failure and success of actions execution.
First, detection of the actionsact that have reached their goal
is performed by checking ifpost(act) holds in Bt (function
DetectCompletion()). Then, these actions are partitioned in
ontimeActs anddelayedActs depending on whether a timeout on
τdelayed(act) has previously occurred. Finally, the setfailedActs
is determined by taking into account the occurrence in the current
time instant of timeouts associated withτfailed(act). If the detection
phase reports that at least one action was completed on-time or with
delay or failed, the DIM is activated (see next section).
The last phase of the algorithm concerns the update of the transition
function ∆. In particular, when an actionact is completed the
corresponding∆act(AGi) is removed from∆; similarly, when a new
actionact is assigned to agentAGi, ∆act(AGi) is added to∆.

5 Diagnostic Interpretation Module

As discussed above, the OMM is able to determine whether an ac-
tion has been completed on-time, with delay or it has failed. This
level of interpretation is not sufficient for the Planner/Scheduler to
take a decision on what to do next, since the result of the OMM does
not specify the reason why something has gone wrong. The task of
providing an explanation of the failure is up to the DIM which has to
single out which agent’s fault is responsible for the failure or, alterna-
tively, to identify the occurrence of a troublesome interaction among
agents.
For performing this task the DIM has at disposal a knowledge base
which specifies for each action typeacttype the set of entities which
influence the outcome of an actionact of type acttype. In gen-
eral, the outcome ofact is influenced by the health status of the
functionalities of the agent performingact as well as by the sta-
tus of the resources involved inact execution. For example, for a
GoToRoom(AGk ,Ri ,Rj ,Dh) action the influencing entities are
AGk.mob, Dh.trafficandDh.occlwhereAGk.mobrepresents the mo-
bility functionality of AGk, while Dh.traffic represents the presence
of multiple agents trying to cross doorDh during the execution of
GoToRoom()andDh.occl represents the presence of another agent
occludingDh.
The knowledge base is partitioned in as many modules as the action
types. Each module consists in a set of rules (represented as logi-
cal implications) whose consequence is a disjunction of action out-
comes; for example the module forGoToRoom()contains (among
others) the following rules:

AGk .mob(ok) ∧Dh.traffic(moderate) ∧Dh.occl(no) ⇒
outcome(on − time) ∨ outcome(delayed)

AGk .mob(slowdown) ∧Dh.traffic(no) ∧Dh.occl(no) ⇒
outcome(delayed)

AGk .mob(slowdown) ∧Dh.occl(no)∧
(Dh.traffic(moderate) ∨Dh.traffic(heavy)) ⇒
outcome(delayed) ∨ outcome(failed)

These rules have a weak predictive power (expressed as a disjunction
of predictions) since they contain predicates asDh.traffic that are in-
tended to capture interactions among robotic agents whose effects
are not precisely known.
Outcome rules are used abductively taking advantage of the fact that
the OMM has provided the DIM with lists of actions subdivided by
outcome (see the on-line monitoring algorithm); for example, in case
the DIM is invoked at timet and aGoToRoom()actionact occurs
in thedelayedActsparameter, precisely the rules reported above are



activated by the DIM to handleact.
The set of abductive explanations that can be found just by know-
ing that theGoToRoom() action is delayed (according to above
rules) are not very strong even if it is possible to rule out that
AGk.mob(BROKEN). Stronger conclusions can be reached by eval-
uating some predicates occurring in the rules; but to do so the DIM
needs more information. In particular, the DIM maintains an history
H of fixed sizer where the lastr belief states are collected. More-
over, predicates such asDh.trafficare considered as concepts defined
on status variables occurring in the belief states and therefore their
evaluation is possible by inspecting the historyH. For example the
definition ofDh.traffic(no)currently adopted is:

Dh.traffic(no)AGk,t ≡ ∀t ′ ∈ [t − δ, t ],∀AGi 6= AGk
(AGi .pos(t ′) 6= Dh.RA) ∧ (AGi .pos(t ′) 6= Dh.CA)

and it specifies that no agent different fromAGk should be in the
critical or the request area ofDh and this condition must hold in
all time instants of a time interval which ends in the current instant
t. It is worth noting that the evaluation of such a predicate is com-
putationally feasible when the presence of agents inDh critical and
request areas is observable for each consideredt′ ∈ [t− δ, t].
Since the DIM can evaluate the predicatesDh.traffic and Dh.occl,
the set of possible explanations is reduced. Let us suppose that in
the previous example the evaluations of predicatesDh.traffic(no)and
Dh.occl(no)returntrue: in such a case the only remaining explana-
tion for a delay in theGoToRoom()action isAGk.mob(slowdown)
and this conclusion is forwarded to the Planner/Scheduler (via the
Presentation Layer depicted in figure 1). Moreover this conclusion
is also used for filtering the current belief stateBt by disregard-
ing all the global states which involve an assignment to the variable
AGk.mob different fromslowdown.
The possibility of evaluating predicates such asDh.trafficappearing
in the premises of rules does not necessarily guarantee that a single
explanation is reached. Let us assume that in the example reported
aboveDh.traffic(moderate)andDh.occl(no)evaluate totrue; in such
case we are left with two possible values forAGk.mob, namelyok
andslowdown. In situations like this, the notion ofpreferred expla-
nationcan play an important role in ordering the alternative explana-
tions for presentation to the Planner; in particular we prefer to explain
the delay on the GoToRoom() action just in terms of the occurrence
of Dh.traffic(moderate)(with AGk.mob(ok)) without further assum-
ing AGk.mob(slowdown).
Finally, it is worth noting that our formalism is able to single-out
the root cause of an action failure. For example, let’s assume that the
execution ofGoToRoom(AGk ,Ri ,Rj ,Dh) has failed. Considering
all possible failure explanations the DIM singles out as the preferred
oneDh.occl(yes), a predicate defined as follows:

Dh.occl(yes)AGk,t ≡ ∃AGi 6= AGk ,∃t ′ < t
AGi .mob(t ′) = broken ∧AGi .pos(t ′) = Dh.CA

By exploiting this definition, the DIM can extract the root
cause: AGm.mob(t ′) = broken ∧AGm.pos(t ′) = Dh.CA (i.e.
agentAGm mobility broke inDh.CA at some previous timet′);
so the DIM explains theAGk failure by means of the failure of an-
other agent. The root cause is hence presented to the Planner because
it gives more information. Note that this same root cause may be
returned as explanation of other actions failures.

6 DISCUSSION AND CONCLUSIONS

In this paper we have presented a model-based approach to the mon-
itoring and diagnosis of multi-agent systems. The first attempts to
attack the problem assume that the agents are able to perform self-

diagnosis. In the context ofsocial diagnosis, [4] advocates a central-
ized approach assuming a complete observability of the agents be-
havior and the possibility of querying other agents to get full knowl-
edge of their beliefs. In [3] the system is spatially distributed and nat-
urally divided in subsystems; each agent has a complete knowledge
of a subsystem and infers a set of diagnoses only for such subsystem.
In order to achieve global consistency, the agents exchange local di-
agnoses with each other.
Our prospective is quite different. First of all it addresses the problem
of interactions arising from concurrent access to critical resources (a
problem not faced in previous approaches); moreover, we do not as-
sume that each agent is able to perform self-diagnosis. Therefore,
partial observability of the system status is obtained through a net of
fixed sensor.
For modeling the system, we adopt the communicating automata for-
malism, previously proposed for modeling distributed systems where
the global transition function is partitioned but does not change over
time ([6]). A contribution of the present paper concerns the ability of
the OMM to dynamically revise the transition relation∆ to reflect
interdependencies among status variables determined by the actions
currently assigned to agents; computation of∆ is entirely based on
composition of communicating automata each one representing the
model of a system entity. We are currently experimenting the adop-
tion of OBDDs for symbolically representing both the belief state
and transition function; the benefits and issues in applying this for-
malism to diagnosis have been described in [7].
In the proposed architecture the DIM is responsible for explaining
failures to the Planner/Scheduler, including those caused by trou-
blesome interactions. This is particularly challenging because some
interactions among agents are only weakly predictable; in order to
manage the problem from a computational point of view, we require
a certain level of observability of specific status variables, such as
those representing the presence of agents in critical areas.
As a test bed of the methodology, we have referred to the RoboCare
domain, where robotic agents provide services for the elderly in an
environment partially controlled by fixed sensors. Implementations
of the planner/scheduler and monitoring/diagnosis modules of the
RoboCare architecture have been proposed ([2], [8]). While in [8] the
knowledge is represented via rules specific for the RoboCare domain,
the present paper discusses more general, compositional models and
reasoning techniques based on communicating automata.

REFERENCES
[1] R. Bryant, ‘Symbolic boolean manipulation with ordered binary-

decision diagrams’,ACM Computing Surveys, 24, pp. 293–318, (1992).
[2] A. Cesta and F. Pecora, ‘Planning and scheduling ingredients for a multi-

agent system’, inProc. PlanSIG02, Delft, (2002).
[3] N. Roos, A. ten Teije, C. Witteveen, ‘A protocol for Multi-Agent Diag-

nosis with spatially distributed knowledge’ inAAMAS’03, pp. 655–661,
Australia, July 2003.

[4] M. Kalech and G.A. Kaminka, ‘On the design of social dignosis algo-
rithms for multi-agent teams’, inProc. IJCAI03, pp. 370–375, (2003).

[5] N. Muscettola, P. Nayak, B. Pell, and B. Williams, ‘Remote agent: to
boldly go where no ai system has gone before’,Artificial Intelligence,
103, 5–47, (1998).

[6] Y. Pencoĺe, M.O. Cordier, and L. Rozé, ‘Incremental decentralized diag-
nosis approach for the supervision of a telecommunication network’, in
Proc. DX01, (2001).

[7] P. Torasso and G. Torta, ‘Computing minimum-cardinality diagnoses us-
ing obdds’,LNCS, 2821, 224–238, (2003).

[8] P. Torasso, G. Torta, and R. Micalizio, ‘Monitoring and diagnosing
multi-agent systems:the robocare proposal’, inProc. IASTED Conf on
AI and Applications, pp. 535–541, (2004).


