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Abstract.
In the Intensive Care Unit (ICU) domain, temporal evolution of

diseases and patients’ contextual information are critical pieces of
knowledge that must be considered in the design of a diagnosis task.
The uncertainty inherent in the description of temporal information
associated to diseases requires a temporal representation and reason-
ing framework. This temporal framework has to be flexible enough
to facilitate its integration in a behavioral model. This paper pro-
poses a Temporal Behavioral Model (TBM) that makes this integ-
ration possible and permits the specification of contextual inform-
ation (that may modify the TBM). A diagnosis process is also pro-
posed. This process uses temporal model based techniques and Fuzzy
Temporal Constraints Networks (FTCN) as the underlying temporal
framework. Some heuristics, which affect not only the temporal reas-
oning dimension but also the causal, have been designed in order to
compute solutions efficiently.

1 INTRODUCTION

Physicians at intensive care units (ICUs) have to deal with an over-
whelming amount of data provided not only by on-line monitoring
but also collected from patients’ records (e.g., laboratory results),
which are, in most cases, collected manually at different time in-
stants. In order to provide efficient decision support systems and
medical research tools in the ICU domain, it is necessary to integrate
and analyse the information provided from these different sources.
These tools are focused on the analysis of patient’s evolution over
time. This kind of analysis may provide valuable information for
making decisions about patient treatments and for improving clin-
ical guidelines.

A good analysis of patient evolutions lies in an efficient dia-
gnosis process. The use of deep causal models together with model-
based diagnosis techniques has proved its efficiency in the develop-
ment of intelligent diagnosis systems [17]. Moreover, the ICUs do-
main reveals the importance of the temporal component modelling
in capturing the temporal information associated to patient evolution
[13]. However, the inclusion of temporal representation techniques
in MBD has increased the complexity of the diagnosis process. Dif-
ferent formalisms have been proposed to represent time in MBD,
ranging from totally qualitative approaches [11], based on Allen’s
interval logic [1], to totally quantitative approaches [9, 15, 16]. A
serious attempt to provide a general framework for temporal MDB
can be found in [3, 8], which presents a general characterization of
temporal MDB at knowledge level.

Our goal, therefore, is to present a general framework for Tem-
poral MDB, along the lines of [3] but using an algebraic approach
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based on Fuzzy Temporal Constraints Network framework (FCTN )
for temporal dimension representation.

The structure of the paper is as follows: the underlying temporal
framework is described in a concise manner in section 2. Section 3
presents the temporal behavioral model. The elements that constitute
the inputs and outputs of the algorithm are introduced in section 4.
The diagnosis process is analysed in section 5. Section 6 shows some
experimental results provided by a performance analysis. Finally, we
provide conclusions and future works.

2 TEMPORAL FRAMEWORK

In some proposals for Temporal MBD, the temporal dimension is
modelled by means of the so-calledFuzzy Temporal Constraint Net-
work (FTCN ) formalism [14]. AFTCN is a pairN =< T ,L >
consisting of a finite set of temporal variables,T = {T0, T1, ..., Tn},
and a finite set of binary temporal constraints,L = {Lij , 0 ≤ i, j ≤
n} defined on the variables ofT . A FTCN can be represented by
means of a directed constraint graph, where nodes represent temporal
variables and arcs represent binary temporal constraints.

Each binary constraintLij on two temporal variablesTi andTj is
defined by means of a convex possibility distributionπLij (π(v′) ≥
min{π(v), π(v′)}; v ≤ v′ ≤ v′′), whose discourse universe isZ,
and which restricts the possible values of the time elapsed between
both temporal variables. In the absence of other constraints, the as-
signmentsTi = ti andTj = tj are possible ifπLij (tj − ti) > 0 is
satisfied.

An n-tupleS = (t1, ..., tn) ∈ τn is a σ-possible solutionof a
FTCN networkN if πSN = σ, whereπSN = min{πLij (tj −
ti), 0 ≤ i, j ≤ n}. The possibility distributionπSN defines the
fuzzy setSN of theσ-possible solutions of the network, withσ ≥ 0.
A FTCN networkN is consistentif and only if SN is greater than
a previously established thresholdα, whereα ∈ [0, 1], with α = 1
being equivalent to the crisp case. The value ofα is conditioned by
the context and is set up arbitrarily by the user.

This model has been implemented and extended in FuzzyTIME
[4], a general purpose temporal reasoner that provides high level
language and reasonings capabilities on fuzzy temporal constraints
between temporal variables which can represent intervals or time in-
stants.

3 TEMPORAL BEHAVIORAL MODEL

In this proposal, we opt for a Temporal Behavioral Model,TBM ,
an abnormal behavioral model in which only the causal and tem-
poral relations between hypotheses (diseases) and abnormal obser-
vations caused by them are represented. These relations are defined



by Diagnostic Fuzzy Temporal Patterns(DFTPs). Apart from the
abnormal behavioral model, aDFTP includes knowledge about
how the context affects the temporal behavioral model, referred to as
Contextual Meta-knowledge(CTX). Hence,TBM = {DFTPk}.
Each DFTP can be formally defined by the tupleDFTP =
〈H, IM, IH, Rdftp, CTX〉 where:

• H is the diagnostic hypothesis described byDFTP .
• IM = {imk|k = 1, . . . , nim}, is the set of abnormal manifesta-

tions implied by the hypothesisH.
• IH = {ihk|k = 1, . . . , nih} is the set of hypotheses implied by

H (in medical domains,ihk is a disease caused byH).
• Rdftp = 〈T dftp,Ldftp〉 is a consistentFTCN , where tem-

poral variables inT dftp are associated toH, IM and IH,
T dftp = {tH , tim

1 , · · · , tim
nim

, tih
1 , · · · , tih

nih
} and the tem-

poral constraints between them are defined inLdftp, where
Ldftp = C(tH , tim

1 , · · · , tim
nim

, tih
1 , · · · , tih

nih
). Furthermore, only

those constraints defined by the expert are instantiated, and a
subsequent process computes the minimal network of constraints
between all temporal variables.

• CTX = {CTXi} is the set of temporal contexts. A context
describes how theDFTP definition is modified when a con-
text factor occurs (temporal or atemporal concepts). Formally
CTXi = 〈ACi, TCi, R

ct
i , MFi〉 where:

– ACi is the set of possible atemporal concepts described in the
context (e.g. patient age, smoker).

– TCi is the set of possible temporal concepts described in the
context (e.g. a drug was given at a certain time).

– Rct
i is a FTCN that includes constraints in the hypothesisH

with the temporal conceptsTCi

– MFi = {mf1, ..., mfm} is the set of modification functions
(mfi) that describes the DFTP modifications. These functions
create, delete and modify elements of theIM , IH sets, and the
Rdftp network.

Theoretical descriptions of diseases are clearly shown in medical
manuals, however those descriptions are deeply conditioned by the
present situation of each particular patient. Temporal contexts are
therefore important aspects of diagnosis. The presence or absence
of manifestations can be explained by a given disease, but this could
change depending on patient contextual conditions. These conditions
affect existing manifestations, but they also could justify new symp-
toms not gathered in the originalDFTP . Other possible represent-
ations ofTBM are possible. However, the representation of context
knowledge and the behavior in medical environments is easily rep-
resented by the model previously proposed in this work.

As anexample, we present a (simplified) description of the acute
myocardial infarction (AIM) according to theTBM presented: The
AIM (Root Hypothesis: (AIM,t1)) is manifested by aprecordial
pain, andmoderate values of the ST levels(implied manifestations:
(pain, location,precordial,t2), (ST-level, intensity, moderate,t3)), the
second onemore or less two minutes afterthe infarction (tem-
poral constraint:t3 APPROX 2 MINS AFTERt1). The AIM could
also produce amixed shock syndrome(implied hypothesis: (Mixed-
Shock-Syndrome,t4)).

4 DIAGNOSIS ALGORITHM INPUTS AND
OUTPUTS

In order to provide a solution, the diagnosis process requires as in-
puts (apart from theTBM ) the patient’s observations (EV T− =

{evti|i = 1, ..., nobs}), the contextual observables (CTXobs =
{ctxi|i = 1, .., nctx}), and a consistent temporal network (Rinput),
whose temporal variables are associated to elements inEV T− and
CTX. In most cases, these temporal variables are specified as abso-
lute time instants, which makes the reasoning process more efficient.

In our proposal, the diagnostic process output (i. e., the explan-
ation provided) is composed not only of a set of abducibles, such
as in [3, 11], but by all the elements that conform the final instanti-
ated causal network (physiopathological and ethiological diagnosis,
in medical domains). This kind of diagnosis explanation is neces-
sary from the point of view of decision support system development.
Therefore, the diagnosis algorithm output can be formally defined
as the tupleEXP = 〈CNexp, Rexp, DFTPexp, BLexp, ABexp〉
where:

• CNexp represents a directed graph describing the final causal net-
work, where nodes represent observables and hypotheses in the
final explanation.

• Rexp is aFTCN where the temporal variables are associated to
theCNexp nodes.

• DFTPexp is the set of contextualized DFTP selected for explan-
ation.

• BLexp represents the binding list. It is a set of links between the
hypothesis nodes of the causal network and their corresponding
temporal patterns definitions.

• AB ⊂ DFTPexp is the set of abducibles generated by the dia-
gnosis process.

In MBD, different interpretations of temporal diagnosis ex-
planation have been proposed. On the one hand, there is totally
consistency-based diagnosis [10, 12], in which the explanation
provided should be consistent with all observations. On the other
hand, there is totally abduction-based diagnosis [7, 13], in which the
explanation should logically entail all the observations.

The same considerations can be made for temporal dimension. In
[3], a generic knowledge level model for temporal MDB is proposed
in which the definition of explanation has been parameterized. This
parameterization allows the definition of explanation to be moved
on the continuous line defined between totally consistent diagnosis
and totally abductive diagnosis. In our proposal we opt for an inter-
mediate model in which an abductive component is applied to ab-
normal eventsEV T−, and components consistency is applied for
the temporal dimension. This intermediate interpretation of diagnosis
explanation can be formally stated as follows:

Definition 1 (Temporal Diagnosis). Given a Temporal Diagnostic
ProblemTDP =< TBM, EV T, CTXevt, R

input >, EXP =<
CNexp, Rexp, DFTPexp, BL, AB > is a possible explanation for
TDP iff:

1. DFTPexp

S
CTXevt

S
CTX |= EV T−,

2. Rinput S
Rexp is consistent.

5 THE DIAGNOSIS PROCESS

The diagnosis process in this work is described by an algorithm based
on theTBM described in Section 3. The following assumptions
have been made:

Multiple cardinality solution . Several hypotheses may be found
in a solution, which represent alternative or complementary solu-
tions. Furthermore, different instances of the same hypothesis (the
same hypothesis located at different time instants) are possible in a



solution. However, all hypotheses should be consistent with the con-
text information.

Parsimonious covering based diagnosis. The proposed al-
gorithm explains the abnormal event setEV T−new through parsimo-
nious covering. New hypotheses are included in the final explana-
tion if and only if events cannot be explained by the hypotheses
already instantiated. Of course, the solutions provided do not con-
tradict either temporal or atemporal contextual concepts.

Acceptable efficiency of the process. Despite the fact that the
algorithm presents an exponential time execution, the algorithm in-
cludes some heuristics (subsumption and temporal shifting) to im-
prove efficiency. Experimental results,as we will see in Section 6,
point to an acceptable time response.

5.1 Subsumption

The aim of the subsumption process is to avoid an excessive prolifer-
ation of temporally nearby hypotheses. Thus, before creating a new
instantiated pattern to explain a given eventevti, the subsumption
process tries to include it in one of the already instantiated patterns,
particularly those patterns inDFTPexp which match with the pat-
terns inTBM and which explainevti.

In order to subsume a givenevti, with dftpk = evoke(evti), in
DFTP ∈ DFTPexp, the subsumption process checks if the tem-
poral constraints defined indftpk in which evti takes part are con-
sistent with the temporal constraints ofRexp (the temporal constraint
network of the solution). In other words, the eventevti is included in
the solution and all temporal constraints related to this event indftpk

are added toRexp. After that, if Rexp is temporally consistent (that
is, if the consistency degree is greater than the previous established
threshold), the eventevti is subsumed. Furthermore, this event is ex-
plained by the hypothesis ofdftpk that already explains other events
of the solution. This process is carried out by a temporal query to the
temporal reasoner using local propagation of the fuzzy constraints,
similar to the technique defined in [2].

Figure 1 shows howevt3 is subsumed inDFTP . Thus, on the
right-hand side, the causal network of the pattern is represented,
whereevt3 is a cause ofH1. On the left-hand side a part of the tem-
poral constraint network of the solution is represented. Hence, the
new temporal constraints on the network can be observed, due to the
temporal variable associated toevt3.

The diagnosis algorithm tries to subsume an event in a pattern
when contextualization is not possible. We consider that contextu-
alization is a process of characterizing a pattern for a given event in
a given context. Therefore, there is no sense in associating this event
within an existing pattern of the solution, because is is always as-
sumed that any solution that can be framed in a context is better than
any other that can not.

However, subsumption usefulness refers to the time execution
factor. The subsumption process slows down the growth of instan-
tiated hypotheses, which is exponential. Subsumption allows events
to be explained by instantiated hypotheses of the solution, avoiding
temporal nearby instances of hypotheses.

5.2 Temporal Shifting

When subsumption is not possible, is a new pattern instantiation
enough?. The answer is no. When a given event cannot be sub-
sumed, it is due to temporal inconsistencies in the instantiated pat-
tern, DFTP . However,DFTP could possibly explain the new
event if temporal conditions were different.

Thus, we therefore propose including a new instance of the same
pattern and associating the event to it. If we reconsider the failed
subsumption, we will notice that only a few of the associated events
subsumed into it do not allow the new subsumption. According to
this, some of these events (already subsumed) can be subsumed by
the new instance of the pattern. In conclusion, a temporal shifting
process will produce two instances of the same pattern (at different
time instants), whose hypotheses explain at least one different event
and, perhaps, some common events.

evt 1 evt 1 evt 2 evt 3

H1 H1

evt 3 evt4evt4evt 2

H2 H2

R                            CNexp
exp

new causal  relation

old  temporal constraints
new temporal constraints

Figure 1. Subsunction.

In Figure 2, the temporal shifting ofH1 (H1) is represented when
theevt3 is explained. On the right-hand side, the causal network is
represented. There,H1 hypothesis can explainevt3 when the hypo-
thesis is shifted. On the left-hand side the temporal constraint net-
work (Rexp) is represented. Note that a temporal constraint inhibits
the subsumption ofevt3 in H1. Due to this,H1 is temporally shif-
ted (H1). This new instance of the hypothesis does explainevt3.
Moreover,evt2 could also be subsumed inH1.

consistent relation before temp.shift.

consistent relation after temp.shift.
inconsistent relation

evt 1

H1

evt 2 evt 3

H1H1H1

evt 1 evt 2 evt 3

exp
expR                            CN

Figure 2. Temporal Shifting.

The temporal shifting process is used when subsumption is not
possible. However, this process reduces the algorithm’s efficiency be-
cause of the large amount of calculi for temporal consistence check-
ing, in spite of the local propagation process. Furthermore, this pro-
cess could imply new subsumptions. In our opinion, this problem
could be partially reduced using some heuristics, which determine
whether the hypothesis must be shifted or not. In this work, we sug-
gest the application of this shifting technique only with the latest
temporal instance of the pattern (last(D), line 10 of Algorithm 1).

This heuristic increases the probability of finding at least one hy-
pothesis that can explain the event. Moreover, it avoids the combin-
atorial explosion of explaining the hypothesis, because a single tem-



poral shifted hypothesis per event is guaranteed. We are currently
considering working with temporal intervals which provide a higher
level of abstraction. The use of intervals shows us how to associate a
concrete persistence to aDFTP . The definition of hypotheses per-
sistence will allow the aggregation of nearby temporal hypotheses,
e.g. describing temporal influence interval on pattern instances. In
this case, it could be possible to aggregate those temporally shifted
hypotheses allocated in the same influence interval, so that a single
hypothesis substitutes all of them.

5.3 The Diagnosis Algorithm

Once the selected event is explained and removed fromEV Tnew

(initially EV Tnew = EV T−), its explaining hypothesis (hypo-
theses) will be a new event to be explained, and therefore will be
included inEV Tnew. The algorithm finishes when it is not possible
to find a higher level hypothesis, abducibles of the solution, that can
explain any of theEV Tnew events. The diagnosis process can be
described, as follows:

1. An evente is selected fromEV Tnew. The evente is possibly
associated to an evidence or a hypothesis.

2. The algorithm searches (evoke(), line 5) all possible patterns
D from TDM that can explain evente.

3.Finally, the algorithm tries to include each pattern ofD found
in the solution as follows: 1)The algorithm considers temporal and
atemporal concepts from the context information input (CTXobs),
then the algorithm tries to contextualize (contextualized(), line 7)
the pattern. 2)If contextualization is not possible, the diagnosis pro-
cess tries to subsume (subsume(), line 9) the event in any of the
already instantiated patterns that exist in the partial solution (see Sec-
tion 5.1). 3)When subsumption is not possible either, the temporal
shifting process (see Section 5.2) is applied (temporal shifting(),
line 12). Due to the computational cost of this procedure, this process
must fulfil some heuristic conditions like that proposed in section 5.2.
4)If non previous actions are possible, the diagnosis process will gen-
erate an instance of the new pattern in the solution (generatenew(),
line 17).

Function COVER (TBM,EV T−, CTXobs, Rinput) return EXP
1 : subsumed = FALSE
2 : EV Tnew = EV T−

3 : while EV Tnew 6= ∅ do
4 : for eachevti ∈ EV Tnew do
5 : D = evoke(evti)
6 : for eachdftpi ∈ D do
7 : if not contextualized(dftpi, evti, EXP ) then
8 : if dftpi ∈ DFTPexp then
9 : if ( not subsume(evti, dftpi, EXP ) and
10: not subsumedand last(D) =dftpi )then
11: subsumed = TRUE
12: dftpnew = temporalshifting(evti, dftpi, EXP )
13: evth = associateevent(dftpnew)
14: EV Tnew = EV Tnew ∪{evth}
15: endif
16: else
17: dftpnew = generatenew(evti, dftpi, EXP )
18: evth = associateevent (dftpnew)
19: EV Tnew = EV Tnew ∪ {evth}
20: endif
21: endif

22: endfor
23: EV Tnew = EV Tnew� {evti}
24: endfor
25: endwhile
endFunction

Algorithm 1: Parsimonious covering algorithm.

6 PERFORMANCE ANALYSIS.

In this work, we have focused our analysis on time execution factors,
trying to find the most relevant variables that influence the perform-
ance of the diagnosis process. The objective of this analysis is to
ascertain the influence of different parameters of the input space on
the overall performance. The following factors are considered:
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Figure 3. Experimental results of the algorithm. Prototype: Java.
Proc:AMDAthlonXP Freq:1.53GHz RAM:256MB

• The Number of Input Events. Far from reducing the number
of conjectures, the increase of evidences, in medical domains
increases their possible explanations. This is mainly due to the
nature of clinical hypothesis, where the same evidence could be
explained by several hypotheses. The increase of evidences re-
quires more time to complete the whole explanation process and,
therefore, the study considers only the time used to explain the
first hypothesis of each evidence. As is shown in Figure 6.a, the
execution time presents an exponential behavior of time, but this is
expected if we consider that the time spent for checking temporal
consistence (in temporal shifting and subsunctions) increases be-
cause of the growth of temporal variables and events at each iter-
ation.

• The Number of Patternsrequired to find a solution (Figure 6.b).
This parameter shows the influence of the number ofDFTPs
considered in finding the solution, that is, how the depth of the
causal network affects the process performance.

• Mean Pattern Connectivity Degree(Km). Let us define con-
nectivity (K) of a pattern (DFTP ) in the TBM as follows:



KDFTP = |IH|, that is, the number of implied hypotheses of
patterns. ThenKm can be defined as:

Km =

P
DFTP∈TBM KDFTP

| TBM | (1)

• Mean Pattern Explanation Degree(Em): Explanation degree
(E) of a pattern (DFTP ) in theTBM is defined asEDFTP =
|IM | + |IH| with IM ∧ IH ∈ DFTP , that is, the number of
causal links. TheEm is defined as:

Em =

P
∀DFTP∈TBM EDFTP

| TBM | (2)

These last two factors,Km andEm, can be considered as a meas-
ure of theTBM complexity.Em can be considered as an indication
of the complexity in covering the initial observations (Figure 6.c)
whereasKm can be associated to the complexity in buildingCNexp

upwards from the first hypotheses to abducibles (Figure 6.d).
This work is focuses on the capacity of the presented model to

represent causal and temporal knowledge, and the study of the per-
formance analysis. Today, we are at the knowledge acquisition step,
so a causal and temporal knowledge acquisition tool (CATEKAT )
has been implemented for elaborating a completeTBM [5]. How-
ever, this step is not finished yet. Thus, the input data set used in
this work has not been validated by the expert. In any case, we have
taken into account that the complexity of causal and constraints net-
work in the testing bench is similar to a small set of already validated
patterns.

7 CONCLUSIONS AND FUTURE WORKS

This paper describes a general framework for temporal MDB which
tackles the problems of modelling complex interaction between deep
causal models and context knowledge and structure of explanations
(solutions) provided. The proposed framework demonstrates the suit-
ability of FTCNs for time management. Following the general
framework proposed in [3], our proposal can be characterized in the
following terms: (a) the temporal phenomenon described in this pa-
per can be considered a temporal behavior one in which the con-
sequences of the fact that the system is in a given state (normal or
faulty) are observed after some time; (b) time is modelled by means
of a metric time-ontology in which temporal information is repres-
ented byFTCNs [4, 14]; and (c) with regard to the definition of the
explanation chosen, we demand that the explanation provided logic-
ally entails all abnormal observations, and that its temporal inform-
ation is consistent with the one observed. Therefore, we propose an
abductive approach for observations and a totally consistent-based
approach for temporal dimension.

The use of diagnostic temporal patterns proposed in this paper is
similar to that defined in [9], but our proposal makes it possible to
model causal relations between diagnostic patterns. Causal relations
between diagnostic patters allow us to define a causal network of dia-
gnostic patterns. Another difference lies in the temporal representa-
tion framework, since we use the Fuzzy Temporal Constraints Net-
work formalism, while the diagnostic patterns defined in [9] make
use of a quantitative interval based approach.

One of the main differences between our approach and Brusoni et
al. [3] is related to the way that contextual knowledge is integrated in
the model. In Brusioni’s approach, contextual knowledge is defined
as a set of maximal episodes that can be used in the antecedent of
the logical formulae which conform the temporal behavioral model.

In our model, contextual knowledge is defined as a set of logical for-
mulae which includes knowledge about temporal relations between
antecedents components, thus conforming a meta-knowledge base
which defines how the context knowledge affects disease evolution
definition. In our model, therefore, contextual information is ortho-
gonal to temporal behavior.

Future works will focus on the integration of this model with a
possibility theory based evaluation of hypothesis consistency (in or-
der to provide a consistent explanation), and on the logical formula-
tion in terms of temporal logic, like the one defined in [6].
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[4] M. Campos, A.Ćarceles, J. Palma, and R.Marı́n, ‘A general purporse
fuzzy temporal information management engine’, inProceedings of the
EurAsia-ICT 2002., pp. 93–97, (2002).

[5] M. Campos, J. Palma, B.Llamas, A.González, M. Meńargez, and
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to guide focus abductive diagnosis’,IEEE Transactions on Knowledge
and Data Engineering, 8(5), 690–706, (1996).

[8] L. Console and P. Torasso, ‘On co-operation between abductive and
temporal reasoning in medical diagnosis’,Artificial Intelligence in
Medicine, 3, 291–311, (1991).

[9] M. Dojat, N. Ramaux, and D. Fontaine, ‘Scenario recognition for tem-
poral reasoning in medical domains’,Artificial Intelligence in Medi-
cine, 14, 139–155, (1999).

[10] G. Friedrich and W. Nejdl, ‘MOMO- model-based diagnosis for every-
body’, in Proc. Of the IEEE Conf. On Artificial Intelligence Applica-
tions, (1990).

[11] J. Gamper and W. Nejdl, ‘Abstract temporal diagnosis in medical do-
mains’,Artificial Intelligence in Medicine, 10(3), 1116–1122, (1997).

[12] W. Hamscher, L. Console, and J. de Kleer,Readings in Model-Based
Diagnosis, Morgan Kauffman, San Mateo, 1992.

[13] W. Long, ‘Temporal reasoning for diagnosis in causal probabilistic
knowledge base’,Artificial Intelligence in Medicine, 8, 193–215,
(1996).
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