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Abstract. the tree, leading solutions can be efficiently enumerated using di-
Constraint optimization is at the core of many problems in Ar-rectional consistency (an instance of dynamic programming) and a
tificial Intelligence. In this paper, we frame model-based diagnosisnonotonicity property of semirings that allows early pruning of in-
as a constraint optimization problem over lattices. We then showerior solutions.
how it can be captured in a framework for “soft” constraints known The paper is organized as follows. The next section formally de-
as semiring-CSPs. The well-defined mathematical properties of &ines model-based diagnosis as constraint optimization over lattices.
semiring-CSP permit us to devise efficient solution methods based o8ection 3 reviews semiring-CSPs. Section 4 frames constraint opti-
decomposing diagnostic problems into trees and applying dynamimization over lattices, and in particular diagnosis, as a semiring-CSP,
programming. We relate the approach to SAB and TREE*, two di-and defines conditions under which the global objective function can
agnosis algorithms for tree-structured systems, which correspond toe folded into the constraints to define preference levels locally. Sec-
special cases of semiring-based constraint optimization. tion 5 presents an algorithm for solving semiring-CSPs efficiently
based on tree decomposition, dynamic programming and pruning.
Finally, in Section 6 we show that SAB and TREE*, two diagnosis
1 INTRODUCTION algorithms for tree-structured systems [6, 13], can be understood as

special instances of semiring-based constraint optimization.
Many problems in Artificial Intelligence can be framed as optimiza-

tion problems, where the task is to find a best assignment to a set

of variables such that a set of constraints is satisfied. Formalismé DIAGNOSIS AS CONSTRAINT
for soft constraints aim at more closely integrating constraint satis- OPTIMIZATION OVER LATTICES

faction and optimization. Soft constraints extend hard constraints byefinition 1 (Constraint System) A constraint systeraver{T, L}
defining preference levels, such that assignments are associated Withy tuple(X, D, F), whereX = {z1, ..., 2.} is a set of variables,

an element from an ordered set. This element can be interpreted as - {D:,...,D,}is asetoffinite domains, and= {f1, ..., fm}
weight, cost, utility, probability, or user preference. A general frame-is 3 set of constraints. The constraintsare functions defined over

work for soft constraints are semiring-CSPs [2], which are based ORar(f;), where allowed tuples have valte and disallowed tuples
the mathematical structure of a semiring (a set with two operation$,aye valuel .

-+ andx on it). The semiring operations-(and x) model constraint

projection and combination, respectively. For example, the boolean polycell circuit [14] shown in Fig. 1

In this paper, we show how model-based diagnosis, and in generghn be framed as a constraint system with variahés =
optimization problems composed of a lattice preference structure an{h b,c,de, f,g,z,y, 2 01,02, 03,al,a2}. Variablesa to z are
hard constraints, can be framed as semiring-CSPs. The approachyjgolean variables with domaifn, 1}, whereas variablesl to a2
based on breaking down a global objective function, and definingjescribe the mode of a component and have donﬁ@[B} If a
preference levels locally per each constraint. This extends on workomponent is good (denoted G) then it correctly performs its boolean
in [14], and leads to a general framework where different notions ofunction. If a component is broken (denoted B) then no assumption
model-based diagnosis found in the literature (Cardinality-minimalis made about its behavior. For the moment, we assume that obser-
diagnosis [7], subset-minimal diagnosis [11, 3], and probabilistic di-yations (as stated in Fig. 1) are included in the set of constraints. We
agnosis [3]) can be easily obtained by choosing an appropriate semighall return later to the issue of how they can be added at run-time.
ing. In the process, we interpret and exploit assumptions commonly
made in model-based diagnosis as special properties of the optimiza-
tion problem behind it.

For classical constraint satisfaction problems (CSPs), local consis-
tency techniques [10] provide the basis for effective solution meth-
ods. The mathematical properties of semiring-constraints ensure that
local consistency is still applicable, except that it has to be organized
as directional consistency in a tree-structured evaluation scheme. We
present a method for computing solutions to a diagnostic problem,
formulated as a semiring-CSP, that is based on decomposing the con-
straint network into an equivalent, tree-structured instance [8]. From

Figure 1. The Boolean Polycell example consists of three OR gates and
L MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, two AND gates. Input and output values are observed as indicated.
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In the following, byt |y we denote the projection of a tuple on a Definition 4 (Constraint System over Semiring) A constraint sys-
subsefY” of its variables. Given a constraint syst&rand a subset tem over a c-semirings a constraint system where the constraints
of the variablesZ C X, asolutionis a tupletz over the variablesin  f; € F are functions defined over vigf;) assigning to each tuple a
Z such that there exists an extensioof ¢ to all variablesX that  value inA.
fulfills the constraints, thatig, |z= tz and f;(t lvar(s;)) = T _ ) _
for all f; € F. We denote the set of solutions @ as so{C). “Classical” constraints [10] correspond to constraint systems over
In diagnosis, the sef corresponds to the mode variables. For ex- the semiringS,, where allowed tuples have valueand disallowed
ample, for the boolean polycell in Fig. Z is the set of variables tuples have value.

{01, 02,03, al,a2}. Optimization extends a constraint system by an

objective function that defines preference levels on the solutions: Definition 5 (Combination and Projection) Let f and g be two

constraints defined over v@gf) and var(g), respectively. Then,

Definition 2 (Objective Function) An objective functionU maps 1. Thecombinationof f and ¢, denotedf ® g, is a new constraint

tuples overZ C X to a setA with a partial order<,4 that forms a overvar(f) U var(g), where each tuple has valuef (¢ |va.(y)
complete lattice (that is, every subset of eleméris A has a great- ) X g(t Lvar(e));
est lower bound gly) € A and a least upper bound I{b) € A). 2. Theprojectionof f onto a set of variabled”, denotedf |y, is
a new constraint ove¥” N var(f), where each tuple has value
Objective functions and lattices can frame both qualitative and =~ f(¢,) 4 f(t2) + ... + f(tx), andti, ta, ..., t; are all the tuples

quantitative notions of minimality in diagnosis. In cardinality- of f for whicht; |y=t.

minimal diagnosis [7],A is the set of integer values with total or-

der<, andU returns for each mode assignment the number of fault Given a constraint systeii, D, F') over a c-semiring, the con-
modes. In probabilistic diagnosis [3),is the interval0, 1] with total ~ Straint optimization problem is to compute a functipoverZ C X
order<, andU associates a probability value with each mode assignsuch thatg(t) is the best value attainable by extendintp X, i.e.,
ment. In subset-minimal diagnosis [11, 21,is the lattice of subsets  g(t) = (&=, f;) {z.

of Z with partial orderC, and each mode assignment is mapped to

the subset of variables that represent a fault mode. One can think Q{ DIAGNOSIS AS SEMIRING-BASED

further instances, for example, associating a repair cost, or partially CONSTRAINT OPTIMIZATION
ordered user preferences, with each mode assignment.

For the boolean polycell example in Fig. 1, the cardinality- In this section, we show how optimization over lattices, as defined in
minimal diagnoses arel=B, 02=G, 03=G, a1=G, a2=G with value  Sec. 2, and in particular diagnosis, can be formulated as a semiring-
1 andol=G, 02=G, 03=G, a1=B, a2=G with value 1. If we assume CSP. We first show that it is possible to “reconstruct” an equivalent
that OR gates have 1% probability of failure and AND gates havesemiring-CSP from a constraint system oyé&r, L} and a lattice.

.5% probability of failure, then the two leading probabilistic diag- We then investigate under which conditions it is possible to break
noses are the same assignments with values .0097 and .0048, respaewn the global objective function and to define preference levels

tively. The subset-minimal diagnoses aile=B, 02=G, 03=G, a1=G, locally, that is, per each constraint, such that the ranking of solutions
a2=G with value{o1}, 01=G, 02=G, 03=G, a1=B, a2=G with value s still preserved. This builds on conditions that were defined in [5]
{al}, ando1=G, 02=B, 03=G, a1=G, a2=B with value{02, a2}. in the context of cost-based optimization in tree-structured CSPs. We

illustrate how these conditions correspond to assumptions commonly
made in model-based diagnosis.

3 SEMIRING-CSPS

o ] Definition 6 (Separable Objective Function) An objective func-
Semiring-CSPs [2] are a framework for “soft” constraints where thegq 77 is x-separablento a set of functionsu:, ..., ug, if x is a

constraints are extended to include a preference level. Semiringfommutative, associative operation dnwith unit element lupA),
CSPs subsume many other notions of preferences in constraints, SU&Bsorbing element giot), andu; ® ... ® ux = U.
as fuzzy CSPs, probabilistic CSPs, optimal CSPs [14], or partial con-
straint satisfaction. Theorem 1 (Optimization as Semiring-CSP)LetC' = (X, D, F)
be a constraint system ovéf, L} andU be an objective function
Definition 3 ([2]) A c-semiringis a tuple(A, +, x, 0, 1) such that x-separable intau1, . . . , ux. Define a constraint syste(X, D, F")
) over A as follows: For eachyf; € F, let f; be defined over vdy;)
1. Aisasetand,1 € A; as f1(t) = glb(A) if £;(t) = L and f;(t) = lub(A), otherwise. Let
2. + is a commutative, associative and idempotent (#es, A im- F' = flU...UflUuiU...Uug. Then(4, lub, x, glb(A), lub(A))
pliesa + a = a) operation with unit elemer@d and absorbing s g ¢c-semiring, and@7HF 1) bz = U(sol(C)).
element (i.e.,a+0=acanda+1=1; B

3. x is acommutative, associative operation with unit elemesntd Every objective functiorUU is trivially x-separable into itself, by
absorbing elemerl (i.e.,a x 1 = a anda x 0 = 0); choosingn x b =glb({a, b}). This implies that every constraint sys-
4. x distributes over- (i.e.,a x (b+¢) = (a x b) + (a X ¢)). tem C over {T, L} with objective functionU can be turned into

a semiring-CSP oveA that has the same set of solutionsGaand
For instanceS, = ({0,1},V, A,0,1) forms a c-semiring. The ranks them in the same way &s For instance, the objective function
idempotency of thel- operation induces a partial ordets over A U for subset-minimal diagnosis (Sec. 2)sjisseparable into unary
as follows:a <s biff a +b = b (for Sp, 0 <g 1). In [2] it is functionsu, defined overz € Z, wherex = U, u;(t) = 0 if ¢
shown that( A, <g) forms a lattice. The partial order defines levels represents a correct assignment, antt) = {z} if ¢ represents a
of preference and in turn the “best” solutions for constraints definedaulty assignment. Likewise, the objective functions for cardinality-
over a c-semiring. minimal diagnosis and probabilistic diagnosis areseparable into



unary functions, wherex = + andx = -, respectively. For model-
based diagnosis, non-trivially-separable objective functions corre-
spond to the assumption that faults or sets of faults occur indepen-
dent of each other. Together with the results in [2], Theorem 1 es-
tablishes a firm correspondence between lattice preference structures
over “hard” constraints (functions on{or’, L }) and semiring-CSPs.

Up to now, we have two different types of constraints in the
semiring-CSP: functions; that are defined only over variables from
the setZ of variables of interest, and bi-valued functiofisthat are
defined over variables from the s&t of all variables. We seek to
eliminate this distinction by combining the two types of constraints.

Figure 2. Hypergraph for the example in Fig. 1.

Definition 7 (Containment) A functionu; € F'iscontainedn f; €

F, if var(ui) C var(f;). 5 DECOMPOSITION AND DYNAMIC

A partu; of the objective function that is contained in a hard con- PROGRAMMING
straint f; can be applied to the tuples ¢f, turning it into a soft  Framing a diagnostic problem as a semiring-CSP is the basis for solv-
constraint. We can thus reduce the set of ConStraintS, without Changhg it using constraint Optimization methods. In particu|ar‘ Semiring_
ing the set of solutions, by simply composiagand f;: CSPs allow one to apply dynamic programming and early pruning
to efficiently compute leading solutions. In this section, we present
a backtrack-free algorithm that returns all solutions up to a user-
specified threshold of preference.

Theorem 2 (Absorbing Contained Constraints) Let (X, D, F)
be a constraint system over a c-semirirffgl, +, x,0,1). Let

ui, fj € I be functions SlfCh that; S contained inf;. Then for the The mathematical properties of c-semirings guarantee that local
conrsntralnt SYSterOX,ELIF 2 whereF” = F'\ {u;, fi}U (i ® fi),  constraint propagation [10], an efficient technique to solve classical
(@2, fi) bz = (@ fi) bz (hard) constraints, works in this extended framework as well. The ex-
é:_eption is that the<-operation is not necessarily idempotent, which
pendent for individual components means that there exists a means that constraint propagat_ion cannot be_ applied in_a ‘chaotic”
way anymore. Research that aims at extending the notion of local

separation such that eaghwill be contained in at least ong. Con- ist ‘ t traints [12] has. theref f d on di
sequently, the objective function can be completely absorbed into thgonsistency to soft constraints [ _] as, therelore, focused on direc-
gl(gnal consistency, where constraints are propagated in an organized

constraints representing the components. Note that this does not e followi hi hical (t h
clude cases where a component has more than one mode variadgy foflowing a nierarchica (tree) scheme.

(e.g., sets of mode variables that are temporally indexed for different. The goal of §tructura| de(.:omposn.lon methods [8, 9] is 1o turn ar
time steps), and it does not exclude cases where the objective fun itrary constraint networks into equivalent, tree-structured (acyclic)

tion associates values with tuples of mode variables (e.g., a probabi'lr-]Stancesf’ po_ssibly by aggregating constraints toge”‘ef' Structural de-
ity with the transition between two modes). composition is based on the hypergrgﬁhof a cor!stralnt system

We can now summarize different notions of model-based diagnoﬁX’ D, F), Wh'(.:h associates a r_10de Wlth. each variale X, and
sis, introduced in Sec. 2, as special cases of semiring-based constra%?ypemdge with each constrayf_;te_F. Figure 2 shows the hyper-
optimization. Table 1 shows the resulting constraint (after absorpgraph for the boolean polycell circuit.
tion) for an AND-gate for each of the three notions of diagnosis.

For model-based diagnosis, the assumption that faults are ind

Definition 8 (Tree Decomposition [8, 9]) A tree decompositiofor
a constraint systen{X, D, F') is a triple (T, x,\), whereT =
(V, E) is a rooted tree, and;, A are labeling functions associating
with each node € V two setsy(v) C X andA(v) C F, such that

e Cardinality-Minimal Diagnosiscan be obtained by choosing the
semiringS. = (N§ U oo, min, 4, oo, 0).

e Probability-Maximal Diagnosi€an be obtained by choosing the
semiringS, = ([0, 1], max,-,0,1). For probabilistic diagnosis,
the objective function being-separable corresponds to the as-
sumption that failures are conditionally independent.

e Subset-Minimal Diagnosisan be obtained by choosing the semir-
ing S, = (22,n,U, Z,0). The operaton induces an ordering on
a,b € 27 as follows:a <5 biff a 2 b. Figure 3 shows a tree decomposition of the boolean polycell. For

a constraint syster@ = (X, D, F'), a tree decompositioff defines
an equivalent, tree-structured constraint systgémD, F’) found by
Table 1. Constraintf,; in the _ponceII example (Fig. 1) for semirings. combining the constraints ih(v) for each nodev € V, that is,
(left), Sp (center) andsS; (right). Tuples not shown have val@e F' = U,en(®, crw 1i)- Note that a unary constraint over a vari-
ablex; can be added to the tree decomposition, without violating the

1. For eachf; € F, there exists exactly onec V such thatf;
A(v). For thisv, var(f;) C x(v); (covering condition);

2. For eachz; € X, theset{fv € V | a; € x(v)} induces a
connected subtree @f (connectedness condition).

a2g y z| a2g y z| a2g y z| . C Wit !

GO0 O0O0o G 0O 995 G 0O 0 covering and connectedness conditions, by adding it as a child of any
GO0O0O 10 GO0oO -995 GO0Oo 190 nodev for whichz; € x(v). This allows one to perform decompo-
60100 GOo1 995 Go1 0 sition as an off-line step, and to add observations for variables after
BOOO1 B O 0 0 .005 B O O @ {al} h has b q

Bo o 11 B O O 1 005 B O O {al} the tree has een constructed. N _
BO1O1 B O 1 0 .005 B O 1 @ {al} Decomposition can be understood as a minimal “repair” to
B O 1 11 B O 1 1 .005 B 01 {al} the constraint network such that directional consistency (dynamic

programming) becomes applicable. Solutions to a tree-structured



function extractT’, b)
v « preorder-node-iterator-first’)
M0
e fv) %
begin loop
for each¢; € children(v)
M — MU (x(v) N x(ci))
end for
rerT ‘u(var(r)ﬁ]\/f)UZ
v « preorder-node-iterator-net)
if (v =nil) then
return r

{03,(117C,€,f7$,y,z} {f037fa1} UO

{a2,g7y7z} {fa?} U1 U3 {01>a7 C,l’} {fol}

{027b7 d7 y} {foQ} V2

Figure 3. A tree decomposition of the hypergraph in Fig. 2, showing the
labelsx and for each node.

semiring-CSP can be computed backtrack-free in two steps. The first
step computes values for tuples bottom-up, using an instance of dy-
namic programming. This step can be viewed as generating an exact
heuristic for search. In a second, top-down step, these values are used
to enumerate solutions. This step can be viewed as a search that is

end if

if not (x idempotentthen
r—T ®71 f(’U) ‘U‘var(r)

end if

re(rofv) %

guided by an exact heuristic, and therefore backtrack-free. M — M\ (x(parent(v)) N x(v))
Work on constraint optimization based on decomposition and dy- end loop
namic programming [5, 4, 9] has focussed on the task of computing
best values for individual variables, or a single best assignment to
all variables. We extend this work to address important requirements
(_)f t_he diagnosis conte)_(t. First, n dlggn05|s_ it Is typl_cal that 0r_1|y a Figure 5. Top-down phase for enumerating solutions to a tree-structured
limited number of leading solutions is required. For instance, if the semiring-CSP for whichx is idempotent or has an inverse.
values of the solutions correspond to probabilities, the task could be
to find a set of most likely solutions that cover most of the proba-

bility density space. We deliver on this requirement by exploiting an  yjjyes for solutions can be found by calling solve(f@dy, b),
extensiveness property of c-semirings to prune the search space \jjhere roofT) is the root node off". After completion of the algo-

the bottom-up and top-down phase. Second, in diagnosis it is typicathm, the best value of the tuples ji{root(T)) is the value of the
that most variables are not mode variables. It would, therefore, be togptimal solution. If<s is only a partial order, then the best value of
costly to enumerate solutions to the constraints that differ only in thgpe tuples inf(root(T)) is a lub for the value of the optimal solu-
values for variablesy \ Z. Our approach avoids this by systemati- {jon. The problem has no consistent solution if and only if there is a
cally eliminating these variables during the top-down phase. nodev in the tree for whichf (v) = 0.

~ The pseudocode for the bottom-up dynamic programming phase The time complexity of the bottom-up phase is exponential in the
is shown in Fig. 4. In Fig. 4, function childrénreturns the set of  aximum number of variables in a tree node (called the tree width),
children of a nodef (v) is the constraint for node. The operation 4 its space complexity is exponential in the maximal number of
f(v) @ f(ci) Yvar(s (), @lSO known as semi-join, is the step that es-ayiaples that are shared between two tree nodes (called the separator
tablishes directional consistency between a nodad its childe;. It size) [4, 9]. Hence, the benefit of tree decomposition is that it breaks
is a generalization of directional arc consistency for CSPs [10] to thgjg\wn the complexity from being exponential in the number of all
case of soft constraints. The restriction operitdiprunes” tuples of - \ariables to being exponential in the number of variables per tree
a constraint by setting their value @df it is worse thanb. Formally, element (node or edge). Note that the complexity does not depend on
fi |% returns a functiory; where f}(t) = f;(t) if f;(t) <s b,and  the chosen semiring.

fj(t) = 0, otherwise. If the bottom-up algorithm is provided with a  The pseudocode for the top-down solution enumeration phase is
cut-off parameteb, the restriction operator limits the computation to ghown in Fig. 5. It enumerates the solutions with valugs b. For
tuples whose value is s b. This exploits the extensiveness property jnstance, in cardinality-minimal diagnosis (semirifig), one might

of c-semirings [2], thatisa x b) <s aforalla,b € A. perform the bottom-up phase with a limitation to single and double
faults (p=2), and, if it turns out that single faults exist, enumerate only
the single faults§=1) in the top-down phase.

The algorithm in Fig. 5 can be understood as projecting the tree
on the variables/. Function preorder-node-iterator() enumerates the
nodes of the tre& in pre-order (for the tree in Fig. 3, for example,
in orderwg, v1, v2, v3). A multi-set M represents the variables that
are shared between the traversed and the untraversed part of the tree
(M is a multi-set rather than a set because the same variable can
occur on more than one edge of the tree). Constraptntains the
partial solutions and is defined over variables fréhand M. The
algorithm updated/ as the tree is traversed. A variableXn\ Z can
be eliminated fromr once it no longer occurs /. In addition, if
the operatorx is not idempotent, the bottom-up propagation has to
be “canceled” by a semijoin operation® " f(v) Jyar() Using the
inverse & ~1) of the operatorx.

function solvg(v, b)

for each¢; € children(v)
solveg;)
f(”) - (f(’U) ® f(Cz) livar(f(v))) ‘bﬁ
if ¢(v) = 0then

throw inconsistent()

end if

end for

Figure 4. Bottom-up phase for solving a tree-structured semiring-CSP
through dynamic programming



The complexity of the top-down phase, as stated in Fig. 5, isworst7 CONCLUSION

case exponential in the number of variableqit is possible to fur- . ) ) . )
"his work builds on recent research in constraint programming and

ther optimize the solution enumeration phase to being worst-case ex- "> """ . e
ponential in the number of variablgsonly). The algorithm requires  OPtimization, extending and modifying it for the context of model-
based diagnosis. Semiring-CSPs [2] are based on local preferences

that the x-operator of the semiring is idempotent or has an inverse.” <>~ ? . S
This is the case for all three semirings, Ss, ands,. (defined per each constraint), whereas diagnosis is based on global

preferences (defined per each solution). We therefore “reversed” the
view in [2], starting from lattices over hard constraints, and inves-
tigated ways to fold them into a constraint system. This enhances
the practical usefulness of semiring-CSPs, and it leads to methods
SAB [6] and TREE* [13] are two diagnostic algorithms for tree- and algorithms that allow one to perform model-based diagnosis over
structured systems. the general class of lattice preference structures. In contrast, existing
SAB is a dynamic programming algorithm based on “weighing” diagnosis algorithms, such as SAB and TREE*, require that prefer-
assignments to mode variables. A correct assignment has weight @nces are mutually independent for individual variables; in the termi-
whereas an abnormal (faulty) assignment has weight 1. The goal isology of our framework, the objective function mustbeseparable
to minimize the total sum of weights. This corresponds to the semirinto unary functions. This is not required in our framewaork, although
ing S.. The assumption that mode variables are not shared betwegfican still be exploited: if the objective function is-separable into
constraints is built into the weighting scheme; SAB would lead tosmall (unary) functions, this will lead to better (complete) absorp-
incorrect results if applied to diagnostic models that violate this astjon of contained constraints (Theorem 2), and therefore, to a smaller
sumption. SAB has been combined with tree decomposition. Howgonstraint system.
ever, SAB only extracts a single best solution, and does not use a Qur work establishes a firm relationship between diagnosis as con-
restriction operator. In [6], it has been shown that SAB comparesstraint satisfaction over lattices, semiring-based constraint optimiza-
favorably to the conflict-based diagnostic algorithm GDE [3]. tion, and constraint propagation (dynamic programming) algorithms.
Like SAB, TREE* computes cardinality-minimal diagnoses. The algorithms presented in this paper have been implemented us-
TREE* is based on the idea that the set of consistent assignmenpﬁg a (modified) version of algebraic decision diagrams (ADDs) [1]
to Z is sometimes small enough to associate it directly with each tuin order to represent semiring-constraints. We are currently experi-
ple, instead of associating a lub with each tuple that guides the eniynenting with random examples and real-world applications from the
meration of these assignments in a separate top-down phase. Thatdpacecraft domain. Current and future work includes incorporating
TREE* collapses the bottom-up and the top-down phase into a sinechniques from distributed database systems in order to perform the
gle phase. The set of assignments is concise because a cut-off is usgshstraint operations in an intelligent way, in particular, processing
and because mode assignments are compactly represented as subggife constraints only partially and caching intermediate results for

6 SAB AND TREE*

of Z. In TREE*, the variablesZ (mode variables) are not included jncremental propagation.

in the constraint system. Instead, mode assignments are associated

with tuples of the constraints. Mode assignments combine thro”g'hEFERENCES

the operatorJ. Since sets of mode assignments are considered, the
values of tuples combine through the cartesian proddck B = [1
{aUb | a € A, b € B}. TREE* uses a cut-off to restrict the car-
dinality of the sets and thus the cardinality of the diagnoses. Since[2
there is no separate solution enumeration phase, solutions are found
by combining the values of tuples in the root of the tree (that is, a[3]
special root node witly = 0 is used).

TREE* treats the constraints and the values for their tuples sep-[4]
arately, that is, it performs semi-joins on bi-valued constraints, and[5]
updates the values of the tuples in a subsequent step. However, note
that updating the values can become exponentiaf iaven if the
task is only to find a single best diagnosis. Efficient data-structures,[e]
such as algebraic decision diagrams (ADDs) [1], exist for constraints, 7]
(functions) over c-semirings wherkis a subset of the real numbers
(asisthe case fas. andS),). For larger constraints and larg8r it is [8]
therefore more efficient to separate the bottom-up and the top-down
phases. Also, this allows for using two different cut-off paramdiers ]
which permits better control over the number of diagnoses generated.

TREE* has been combined with a decomposition method for har¢L0]
constraints called hypertree decomposition [8]. For hard constraints,
hypertree decomposition is a more powerful decomposition metho 1
because, unlike tree decomposition, it allows for re-using constraintﬁZ]
in different nodes of the tree. However, in the context of soft con-
straints, this advantage diminishes because multiple occurrences [88]
the same constraint clash with the possible non-idempotency of the
constraint combination operator [9]. In [13] it has been empirically[14]
shown that TREE* can outperform SAB, an effect that can be mainly
attributed to the use of a cut-off in TREE*.
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