
Diagnosis as Semiring-based Constraint Optimization
Martin Sachenbacher and Brian C. Williams 1

Abstract.
Constraint optimization is at the core of many problems in Ar-

tificial Intelligence. In this paper, we frame model-based diagnosis
as a constraint optimization problem over lattices. We then show
how it can be captured in a framework for “soft” constraints known
as semiring-CSPs. The well-defined mathematical properties of a
semiring-CSP permit us to devise efficient solution methods based on
decomposing diagnostic problems into trees and applying dynamic
programming. We relate the approach to SAB and TREE*, two di-
agnosis algorithms for tree-structured systems, which correspond to
special cases of semiring-based constraint optimization.

1 INTRODUCTION

Many problems in Artificial Intelligence can be framed as optimiza-
tion problems, where the task is to find a best assignment to a set
of variables such that a set of constraints is satisfied. Formalisms
for soft constraints aim at more closely integrating constraint satis-
faction and optimization. Soft constraints extend hard constraints by
defining preference levels, such that assignments are associated with
an element from an ordered set. This element can be interpreted as
weight, cost, utility, probability, or user preference. A general frame-
work for soft constraints are semiring-CSPs [2], which are based on
the mathematical structure of a semiring (a set with two operations
+ and× on it). The semiring operations (+ and×) model constraint
projection and combination, respectively.

In this paper, we show how model-based diagnosis, and in general
optimization problems composed of a lattice preference structure and
hard constraints, can be framed as semiring-CSPs. The approach is
based on breaking down a global objective function, and defining
preference levels locally per each constraint. This extends on work
in [14], and leads to a general framework where different notions of
model-based diagnosis found in the literature (cardinality-minimal
diagnosis [7], subset-minimal diagnosis [11, 3], and probabilistic di-
agnosis [3]) can be easily obtained by choosing an appropriate semir-
ing. In the process, we interpret and exploit assumptions commonly
made in model-based diagnosis as special properties of the optimiza-
tion problem behind it.

For classical constraint satisfaction problems (CSPs), local consis-
tency techniques [10] provide the basis for effective solution meth-
ods. The mathematical properties of semiring-constraints ensure that
local consistency is still applicable, except that it has to be organized
as directional consistency in a tree-structured evaluation scheme. We
present a method for computing solutions to a diagnostic problem,
formulated as a semiring-CSP, that is based on decomposing the con-
straint network into an equivalent, tree-structured instance [8]. From

1 MIT Computer Science and Artificial Intelligence Laboratory, Cambridge,
MA 02139, USA email:{sachenba,williams}@mit.edu

the tree, leading solutions can be efficiently enumerated using di-
rectional consistency (an instance of dynamic programming) and a
monotonicity property of semirings that allows early pruning of in-
ferior solutions.

The paper is organized as follows. The next section formally de-
fines model-based diagnosis as constraint optimization over lattices.
Section 3 reviews semiring-CSPs. Section 4 frames constraint opti-
mization over lattices, and in particular diagnosis, as a semiring-CSP,
and defines conditions under which the global objective function can
be folded into the constraints to define preference levels locally. Sec-
tion 5 presents an algorithm for solving semiring-CSPs efficiently
based on tree decomposition, dynamic programming and pruning.
Finally, in Section 6 we show that SAB and TREE*, two diagnosis
algorithms for tree-structured systems [6, 13], can be understood as
special instances of semiring-based constraint optimization.

2 DIAGNOSIS AS CONSTRAINT
OPTIMIZATION OVER LATTICES

Definition 1 (Constraint System) A constraint systemover{>,⊥}
is a tuple(X, D, F ), whereX = {x1, . . . ,xn} is a set of variables,
D = {D1, . . . , Dn} is a set of finite domains, andF = {f1, . . . ,fm}
is a set of constraints. The constraintsfj are functions defined over
var(fj), where allowed tuples have value> and disallowed tuples
have value⊥.

For example, the boolean polycell circuit [14] shown in Fig. 1
can be framed as a constraint system with variablesX =
{a, b, c, d, e, f, g, x, y, z, o1, o2, o3, a1, a2}. Variables a to z are
boolean variables with domain{0, 1}, whereas variableso1 to a2
describe the mode of a component and have domain{G,B}. If a
component is good (denoted G) then it correctly performs its boolean
function. If a component is broken (denoted B) then no assumption
is made about its behavior. For the moment, we assume that obser-
vations (as stated in Fig. 1) are included in the set of constraints. We
shall return later to the issue of how they can be added at run-time.

Figure 1. The Boolean Polycell example consists of three OR gates and
two AND gates. Input and output values are observed as indicated.



In the following, byt ↓Y we denote the projection of a tuple on a
subsetY of its variables. Given a constraint systemC and a subset
of the variablesZ ⊆ X, asolutionis a tupletZ over the variables in
Z such that there exists an extensiont of tZ to all variablesX that
fulfills the constraints, that is,t ↓Z= tZ andfj(t ↓var(fj)) = >
for all fj ∈ F . We denote the set of solutions toC as sol(C).
In diagnosis, the setZ corresponds to the mode variables. For ex-
ample, for the boolean polycell in Fig. 1,Z is the set of variables
{o1, o2, o3, a1, a2}. Optimization extends a constraint system by an
objective function that defines preference levels on the solutions:

Definition 2 (Objective Function) An objective functionU maps
tuples overZ ⊆ X to a setA with a partial order≤A that forms a
complete lattice (that is, every subset of elementsI ⊆ A has a great-
est lower bound glb(I) ∈ A and a least upper bound lub(I) ∈ A).

Objective functions and lattices can frame both qualitative and
quantitative notions of minimality in diagnosis. In cardinality-
minimal diagnosis [7],A is the set of integer values with total or-
der≤, andU returns for each mode assignment the number of fault
modes. In probabilistic diagnosis [3],A is the interval[0, 1] with total
order≤, andU associates a probability value with each mode assign-
ment. In subset-minimal diagnosis [11, 3],A is the lattice of subsets
of Z with partial order⊆, and each mode assignment is mapped to
the subset of variables that represent a fault mode. One can think of
further instances, for example, associating a repair cost, or partially
ordered user preferences, with each mode assignment.

For the boolean polycell example in Fig. 1, the cardinality-
minimal diagnoses areo1=B, o2=G, o3=G, a1=G, a2=G with value
1 ando1=G, o2=G, o3=G, a1=B, a2=G with value 1. If we assume
that OR gates have 1% probability of failure and AND gates have
.5% probability of failure, then the two leading probabilistic diag-
noses are the same assignments with values .0097 and .0048, respec-
tively. The subset-minimal diagnoses areo1=B, o2=G,o3=G,a1=G,
a2=G with value{o1}, o1=G,o2=G,o3=G,a1=B, a2=G with value
{a1}, ando1=G,o2=B, o3=G,a1=G,a2=B with value{o2, a2}.

3 SEMIRING-CSPS

Semiring-CSPs [2] are a framework for “soft” constraints where the
constraints are extended to include a preference level. Semiring-
CSPs subsume many other notions of preferences in constraints, such
as fuzzy CSPs, probabilistic CSPs, optimal CSPs [14], or partial con-
straint satisfaction.

Definition 3 ([2]) A c-semiringis a tuple(A, +,×,0,1) such that

1. A is a set and0,1 ∈ A;
2. + is a commutative, associative and idempotent (i.e.,a ∈ A im-

plies a + a = a) operation with unit element0 and absorbing
element1 (i.e.,a + 0 = a anda + 1 = 1;

3. × is a commutative, associative operation with unit element1 and
absorbing element0 (i.e.,a× 1 = a anda× 0 = 0);

4. × distributes over+ (i.e.,a× (b + c) = (a× b) + (a× c)).

For instance,Sb = ({0, 1},∨,∧, 0, 1) forms a c-semiring. The
idempotency of the+ operation induces a partial order≤S overA
as follows:a ≤S b iff a + b = b (for Sb, 0 ≤S 1). In [2] it is
shown that(A,≤S) forms a lattice. The partial order defines levels
of preference and in turn the “best” solutions for constraints defined
over a c-semiring.

Definition 4 (Constraint System over Semiring) A constraint sys-
tem over a c-semiringis a constraint system where the constraints
fj ∈ F are functions defined over var(fj) assigning to each tuple a
value inA.

“Classical” constraints [10] correspond to constraint systems over
the semiringSb, where allowed tuples have value1 and disallowed
tuples have value0.

Definition 5 (Combination and Projection) Let f and g be two
constraints defined over var(f) and var(g), respectively. Then,

1. Thecombinationof f andg, denotedf ⊗ g, is a new constraint
over var(f) ∪ var(g), where each tuplet has valuef(t ↓var(f)

)× g(t ↓var(g));
2. Theprojectionof f onto a set of variablesY , denotedf ⇓Y , is

a new constraint overY ∩ var(f), where each tuplet has value
f(t1) + f(t2) + . . . + f(tk), andt1, t2, . . . , tk are all the tuples
of f for whichti ↓Y = t.

Given a constraint system(X, D, F ) over a c-semiring, the con-
straint optimization problem is to compute a functiong overZ ⊆ X
such thatg(t) is the best value attainable by extendingt to X, i.e.,
g(t) = (

⊗m
j=1 fj) ⇓Z .

4 DIAGNOSIS AS SEMIRING-BASED
CONSTRAINT OPTIMIZATION

In this section, we show how optimization over lattices, as defined in
Sec. 2, and in particular diagnosis, can be formulated as a semiring-
CSP. We first show that it is possible to “reconstruct” an equivalent
semiring-CSP from a constraint system over{>,⊥} and a lattice.
We then investigate under which conditions it is possible to break
down the global objective function and to define preference levels
locally, that is, per each constraint, such that the ranking of solutions
is still preserved. This builds on conditions that were defined in [5]
in the context of cost-based optimization in tree-structured CSPs. We
illustrate how these conditions correspond to assumptions commonly
made in model-based diagnosis.

Definition 6 (Separable Objective Function) An objective func-
tion U is ×-separableinto a set of functionsu1, . . . , uk, if × is a
commutative, associative operation onA with unit element lub(A),
absorbing element glb(A), andu1 ⊗ . . .⊗ uk = U .

Theorem 1 (Optimization as Semiring-CSP)Let C = (X, D, F )
be a constraint system over{>,⊥} andU be an objective function
×-separable intou1, . . . , uk. Define a constraint system(X, D, F ′)
overA as follows: For eachfj ∈ F , let f ′j be defined over var(fj)
asf ′j(t) = glb(A) if fj(t) = ⊥ andf ′j(t) = lub(A), otherwise. Let
F ′ = f ′1∪. . .∪f ′m∪u1∪. . .∪uk. Then(A, lub,×, glb(A), lub(A))
is a c-semiring, and(

⊗m+k
i=1 f ′i) ⇓Z = U(sol(C)).

Every objective functionU is trivially ×-separable into itself, by
choosinga× b = glb({a, b}). This implies that every constraint sys-
tem C over {>,⊥} with objective functionU can be turned into
a semiring-CSP overA that has the same set of solutions asC and
ranks them in the same way asU . For instance, the objective function
U for subset-minimal diagnosis (Sec. 2) is×-separable into unary
functionsui defined overz ∈ Z, where× ≡ ∪, ui(t) = ∅ if t
represents a correct assignment, andui(t) = {z} if t represents a
faulty assignment. Likewise, the objective functions for cardinality-
minimal diagnosis and probabilistic diagnosis are×-separable into



unary functions, where× ≡ + and× ≡ ·, respectively. For model-
based diagnosis, non-trivially×-separable objective functions corre-
spond to the assumption that faults or sets of faults occur indepen-
dent of each other. Together with the results in [2], Theorem 1 es-
tablishes a firm correspondence between lattice preference structures
over “hard” constraints (functions onto{>,⊥}) and semiring-CSPs.

Up to now, we have two different types of constraints in the
semiring-CSP: functionsui that are defined only over variables from
the setZ of variables of interest, and bi-valued functionsfj that are
defined over variables from the setX of all variables. We seek to
eliminate this distinction by combining the two types of constraints.

Definition 7 (Containment) A functionui ∈ F iscontainedin fj ∈
F , if var(ui) ⊆ var(fj).

A partui of the objective function that is contained in a hard con-
straint fj can be applied to the tuples offj , turning it into a soft
constraint. We can thus reduce the set of constraints, without chang-
ing the set of solutions, by simply composingui andfj :

Theorem 2 (Absorbing Contained Constraints) Let (X, D, F )
be a constraint system over a c-semiring(A, +,×,0,1). Let
ui, fj ∈ F be functions such thatui is contained infj . Then for the
constraint system(X, D, F ′) whereF ′ = F \ {ui, fj} ∪ (ui ⊗ fj),
(
⊗m

j=1 fj) ⇓Z = (
⊗m−1

j=1 f ′j) ⇓Z .

For model-based diagnosis, the assumption that faults are inde-
pendent for individual components means that there exists a×-
separation such that eachui will be contained in at least onefj . Con-
sequently, the objective function can be completely absorbed into the
constraints representing the components. Note that this does not ex-
clude cases where a component has more than one mode variable
(e.g., sets of mode variables that are temporally indexed for different
time steps), and it does not exclude cases where the objective func-
tion associates values with tuples of mode variables (e.g., a probabil-
ity with the transition between two modes).

We can now summarize different notions of model-based diagno-
sis, introduced in Sec. 2, as special cases of semiring-based constraint
optimization. Table 1 shows the resulting constraint (after absorp-
tion) for an AND-gate for each of the three notions of diagnosis.

• Cardinality-Minimal Diagnosiscan be obtained by choosing the
semiringSc = (N+

0 ∪∞, min, +,∞, 0).
• Probability-Maximal Diagnosiscan be obtained by choosing the

semiringSp = ([0, 1], max, ·, 0, 1). For probabilistic diagnosis,
the objective function being×-separable corresponds to the as-
sumption that failures are conditionally independent.

• Subset-Minimal Diagnosiscan be obtained by choosing the semir-
ing Ss = (2Z ,∩,∪, Z, ∅). The operator∩ induces an ordering on
a, b ∈ 2Z as follows:a ≤S b iff a ⊇ b.

Table 1. Constraintfa1 in the polycell example (Fig. 1) for semiringsSc

(left), Sp (center), andSs (right). Tuples not shown have value0.

a2 g y z a2 g y z a2 g y z
G 0 0 0 0 G 0 0 0 .995 G 0 0 0 ∅
G 0 0 1 0 G 0 0 1 .995 G 0 0 1 ∅
G 0 1 0 0 G 0 1 0 .995 G 0 1 0 ∅
B 0 0 0 1 B 0 0 0 .005 B 0 0 0 {a1}
B 0 0 1 1 B 0 0 1 .005 B 0 0 1 {a1}
B 0 1 0 1 B 0 1 0 .005 B 0 1 0 {a1}
B 0 1 1 1 B 0 1 1 .005 B 0 1 1 {a1}

Figure 2. Hypergraph for the example in Fig. 1.

5 DECOMPOSITION AND DYNAMIC
PROGRAMMING

Framing a diagnostic problem as a semiring-CSP is the basis for solv-
ing it using constraint optimization methods. In particular, semiring-
CSPs allow one to apply dynamic programming and early pruning
to efficiently compute leading solutions. In this section, we present
a backtrack-free algorithm that returns all solutions up to a user-
specified threshold of preference.

The mathematical properties of c-semirings guarantee that local
constraint propagation [10], an efficient technique to solve classical
(hard) constraints, works in this extended framework as well. The ex-
ception is that the×-operation is not necessarily idempotent, which
means that constraint propagation cannot be applied in a “chaotic”
way anymore. Research that aims at extending the notion of local
consistency to soft constraints [12] has, therefore, focused on direc-
tional consistency, where constraints are propagated in an organized
way following a hierarchical (tree) scheme.

The goal of structural decomposition methods [8, 9] is to turn ar-
bitrary constraint networks into equivalent, tree-structured (acyclic)
instances, possibly by aggregating constraints together. Structural de-
composition is based on the hypergraphH of a constraint system
(X, D, F ), which associates a node with each variablexi ∈ X, and
a hyperedge with each constraintfj ∈ F . Figure 2 shows the hyper-
graph for the boolean polycell circuit.

Definition 8 (Tree Decomposition [8, 9]) A tree decompositionfor
a constraint system(X, D, F ) is a triple (T, χ, λ), whereT =
(V, E) is a rooted tree, andχ, λ are labeling functions associating
with each nodev ∈ V two setsχ(v) ⊆ X andλ(v) ⊆ F , such that

1. For eachfj ∈ F , there exists exactly onev ∈ V such thatfj ∈
λ(v). For thisv, var(fj) ⊆ χ(v); (covering condition);

2. For eachxi ∈ X, the set{v ∈ V | xi ∈ χ(v)} induces a
connected subtree ofT (connectedness condition).

Figure 3 shows a tree decomposition of the boolean polycell. For
a constraint systemC = (X, D, F ), a tree decompositionT defines
an equivalent, tree-structured constraint system(X, D, F ′) found by
combining the constraints inλ(v) for each nodev ∈ V , that is,
F ′ =

⋃
v∈N (

⊗
fj∈λ(v) fj). Note that a unary constraint over a vari-

ablexi can be added to the tree decomposition, without violating the
covering and connectedness conditions, by adding it as a child of any
nodev for which xi ∈ χ(v). This allows one to perform decompo-
sition as an off-line step, and to add observations for variables after
the tree has been constructed.

Decomposition can be understood as a minimal “repair” to
the constraint network such that directional consistency (dynamic
programming) becomes applicable. Solutions to a tree-structured



Figure 3. A tree decomposition of the hypergraph in Fig. 2, showing the
labelsχ andλ for each node.

semiring-CSP can be computed backtrack-free in two steps. The first
step computes values for tuples bottom-up, using an instance of dy-
namic programming. This step can be viewed as generating an exact
heuristic for search. In a second, top-down step, these values are used
to enumerate solutions. This step can be viewed as a search that is
guided by an exact heuristic, and therefore backtrack-free.

Work on constraint optimization based on decomposition and dy-
namic programming [5, 4, 9] has focussed on the task of computing
best values for individual variables, or a single best assignment to
all variables. We extend this work to address important requirements
of the diagnosis context. First, in diagnosis it is typical that only a
limited number of leading solutions is required. For instance, if the
values of the solutions correspond to probabilities, the task could be
to find a set of most likely solutions that cover most of the proba-
bility density space. We deliver on this requirement by exploiting an
extensiveness property of c-semirings to prune the search space in
the bottom-up and top-down phase. Second, in diagnosis it is typical
that most variables are not mode variables. It would, therefore, be too
costly to enumerate solutions to the constraints that differ only in the
values for variablesX \ Z. Our approach avoids this by systemati-
cally eliminating these variables during the top-down phase.

The pseudocode for the bottom-up dynamic programming phase
is shown in Fig. 4. In Fig. 4, function children() returns the set of
children of a node.f(v) is the constraint for nodev. The operation
f(v)⊗ f(ci) ⇓var(f(v)), also known as semi-join, is the step that es-
tablishes directional consistency between a nodev and its childci. It
is a generalization of directional arc consistency for CSPs [10] to the
case of soft constraints. The restriction operator|b≤ “prunes” tuples of
a constraint by setting their value to0 if it is worse thanb. Formally,
fj |b≤ returns a functionf ′j wheref ′j(t) = fj(t) if fj(t) ≤S b, and
f ′j(t) = 0, otherwise. If the bottom-up algorithm is provided with a
cut-off parameterb, the restriction operator limits the computation to
tuples whose value is≤S b. This exploits the extensiveness property
of c-semirings [2], that is,(a× b) ≤S a for all a, b ∈ A.

function solve(v, b)
for each ci ∈ children(v)

solve(ci)
f(v)← (f(v)⊗ f(ci) ⇓var(f(v))) |b≤
if c(v) ≡ 0 then

throw inconsistent()
end if

end for

Figure 4. Bottom-up phase for solving a tree-structured semiring-CSP
through dynamic programming

function extract(T, b)
v ← preorder-node-iterator-first(T )
M ← ∅
r ← f(v) |b≤
begin loop

for each ci ∈ children(v)
M ←M ∪ (χ(v) ∩ χ(ci))

end for
r ← r ⇓(var(r)∩M)∪Z

v ← preorder-node-iterator-next(T )
if (v = nil ) then

return r
end if
if not (× idempotent)then

r ← r ⊗−1 f(v) ⇓var(r)

end if
r ← (r ⊗ f(v)) |b≤
M ←M\(χ(parent(v)) ∩ χ(v))

end loop

Figure 5. Top-down phase for enumerating solutions to a tree-structured
semiring-CSP for which× is idempotent or has an inverse.

Values for solutions can be found by calling solve(root(T ), b),
where root(T ) is the root node ofT . After completion of the algo-
rithm, the best value of the tuples inf(root(T )) is the value of the
optimal solution. If≤S is only a partial order, then the best value of
the tuples inf(root(T )) is a lub for the value of the optimal solu-
tion. The problem has no consistent solution if and only if there is a
nodev in the tree for whichf(v) ≡ 0.

The time complexity of the bottom-up phase is exponential in the
maximum number of variables in a tree node (called the tree width),
and its space complexity is exponential in the maximal number of
variables that are shared between two tree nodes (called the separator
size) [4, 9]. Hence, the benefit of tree decomposition is that it breaks
down the complexity from being exponential in the number of all
variables to being exponential in the number of variables per tree
element (node or edge). Note that the complexity does not depend on
the chosen semiring.

The pseudocode for the top-down solution enumeration phase is
shown in Fig. 5. It enumerates the solutions with valuea ≤S b. For
instance, in cardinality-minimal diagnosis (semiringSc), one might
perform the bottom-up phase with a limitation to single and double
faults (b=2), and, if it turns out that single faults exist, enumerate only
the single faults (b=1) in the top-down phase.

The algorithm in Fig. 5 can be understood as projecting the tree
on the variablesZ. Function preorder-node-iterator() enumerates the
nodes of the treeT in pre-order (for the tree in Fig. 3, for example,
in orderv0, v1, v2, v3). A multi-setM represents the variables that
are shared between the traversed and the untraversed part of the tree
(M is a multi-set rather than a set because the same variable can
occur on more than one edge of the tree). Constraintr contains the
partial solutions and is defined over variables fromZ andM . The
algorithm updatesM as the tree is traversed. A variable inX \Z can
be eliminated fromr once it no longer occurs inM . In addition, if
the operator× is not idempotent, the bottom-up propagation has to
be “canceled” by a semijoin operationr ⊗−1 f(v) ⇓var(r) using the
inverse (×−1) of the operator×.



The complexity of the top-down phase, as stated in Fig. 5, is worst-
case exponential in the number of variablesX (it is possible to fur-
ther optimize the solution enumeration phase to being worst-case ex-
ponential in the number of variablesZ only). The algorithm requires
that the×-operator of the semiring is idempotent or has an inverse.
This is the case for all three semiringsSc, Ss, andSp.

6 SAB AND TREE*

SAB [6] and TREE* [13] are two diagnostic algorithms for tree-
structured systems.

SAB is a dynamic programming algorithm based on “weighing”
assignments to mode variables. A correct assignment has weight 0,
whereas an abnormal (faulty) assignment has weight 1. The goal is
to minimize the total sum of weights. This corresponds to the semir-
ing Sc. The assumption that mode variables are not shared between
constraints is built into the weighting scheme; SAB would lead to
incorrect results if applied to diagnostic models that violate this as-
sumption. SAB has been combined with tree decomposition. How-
ever, SAB only extracts a single best solution, and does not use a
restriction operator. In [6], it has been shown that SAB compares
favorably to the conflict-based diagnostic algorithm GDE [3].

Like SAB, TREE* computes cardinality-minimal diagnoses.
TREE* is based on the idea that the set of consistent assignments
to Z is sometimes small enough to associate it directly with each tu-
ple, instead of associating a lub with each tuple that guides the enu-
meration of these assignments in a separate top-down phase. That is,
TREE* collapses the bottom-up and the top-down phase into a sin-
gle phase. The set of assignments is concise because a cut-off is used
and because mode assignments are compactly represented as subsets
of Z. In TREE*, the variablesZ (mode variables) are not included
in the constraint system. Instead, mode assignments are associated
with tuples of the constraints. Mode assignments combine through
the operator∪. Since sets of mode assignments are considered, the
values of tuples combine through the cartesian product,A × B =
{a ∪ b | a ∈ A, b ∈ B}. TREE* uses a cut-off to restrict the car-
dinality of the sets and thus the cardinality of the diagnoses. Since
there is no separate solution enumeration phase, solutions are found
by combining the values of tuples in the root of the tree (that is, a
special root node withχ = ∅ is used).

TREE* treats the constraints and the values for their tuples sep-
arately, that is, it performs semi-joins on bi-valued constraints, and
updates the values of the tuples in a subsequent step. However, note
that updating the values can become exponential inZ even if the
task is only to find a single best diagnosis. Efficient data-structures,
such as algebraic decision diagrams (ADDs) [1], exist for constraints
(functions) over c-semirings whereA is a subset of the real numbers
(as is the case forSc andSp). For larger constraints and largerZ, it is
therefore more efficient to separate the bottom-up and the top-down
phases. Also, this allows for using two different cut-off parametersb,
which permits better control over the number of diagnoses generated.

TREE* has been combined with a decomposition method for hard
constraints called hypertree decomposition [8]. For hard constraints,
hypertree decomposition is a more powerful decomposition method
because, unlike tree decomposition, it allows for re-using constraints
in different nodes of the tree. However, in the context of soft con-
straints, this advantage diminishes because multiple occurrences of
the same constraint clash with the possible non-idempotency of the
constraint combination operator [9]. In [13] it has been empirically
shown that TREE* can outperform SAB, an effect that can be mainly
attributed to the use of a cut-off in TREE*.

7 CONCLUSION

This work builds on recent research in constraint programming and
optimization, extending and modifying it for the context of model-
based diagnosis. Semiring-CSPs [2] are based on local preferences
(defined per each constraint), whereas diagnosis is based on global
preferences (defined per each solution). We therefore “reversed” the
view in [2], starting from lattices over hard constraints, and inves-
tigated ways to fold them into a constraint system. This enhances
the practical usefulness of semiring-CSPs, and it leads to methods
and algorithms that allow one to perform model-based diagnosis over
the general class of lattice preference structures. In contrast, existing
diagnosis algorithms, such as SAB and TREE*, require that prefer-
ences are mutually independent for individual variables; in the termi-
nology of our framework, the objective function must be×-separable
into unary functions. This is not required in our framework, although
it can still be exploited: if the objective function is×-separable into
small (unary) functions, this will lead to better (complete) absorp-
tion of contained constraints (Theorem 2), and therefore, to a smaller
constraint system.

Our work establishes a firm relationship between diagnosis as con-
straint satisfaction over lattices, semiring-based constraint optimiza-
tion, and constraint propagation (dynamic programming) algorithms.
The algorithms presented in this paper have been implemented us-
ing a (modified) version of algebraic decision diagrams (ADDs) [1]
in order to represent semiring-constraints. We are currently experi-
menting with random examples and real-world applications from the
spacecraft domain. Current and future work includes incorporating
techniques from distributed database systems in order to perform the
constraint operations in an intelligent way, in particular, processing
large constraints only partially and caching intermediate results for
incremental propagation.

REFERENCES
[1] R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo,

and F. Somenzi, ‘Algebraic Decision Diagrams and Their Applica-
tions’, in IEEE International Conference on CAD, pp. 188–191, (1993).

[2] S. Bistarelli, U. Montanari, and F. Rossi, ‘Semiring-based constraint
satisfaction and optimization’,Journal of the ACM, 44(2), (1997).

[3] J. de Kleer and B.C. Williams, ‘Diagnosing multiple faults’,Artificial
Intelligence, 32(1), 97–130, (1987).

[4] R. Dechter, ‘Bucket elimination: A unifying framework for reasoning’,
Artificial Intelligence, 113, 41–85, (1999).

[5] R. Dechter, A. Dechter, and J. Pearl, ‘Optimization in constraint net-
works’, in Influence Diagrams, Belief Nets and Decision Analysis, eds.,
R.M. Oliver and J.Q. Smith, 411–425, John Wiley & Sons, (1990).

[6] Y. El Fattah and R. Dechter, ‘Diagnosing tree-decomposable circuits’,
in Proceedings of IJCAI-95, pp. 1742–1749, (1995).

[7] M.R. Genesereth, ‘The use of design descriptions in automated diagno-
sis’, Artificial Intelligence, 24(1–3), 411–436, (1984).

[8] G. Gottlob, N. Leone, and F. Scarcello, ‘A comparison of structural CSP
decomposition methods’,Artificial Intelligence, 124(2), (2000).

[9] K. Kask, R. Dechter, J. Larrosa, and F. Cozman, ‘Unifying tree-
decomposition schemes for automated reasoning’, Technical report,
University of California, Irvine, (2001).

[10] A.K. Mackworth, ‘Constraint satisfaction’, inEncyclopedia of Artificial
Intelligence, ed., S.C. Shapiro, 285–293, John Wiley & Sons, (1992).

[11] R. Reiter, ‘A theory of diagnosis from first principles’,Artificial Intel-
ligence, 32(1), 57–95, (1987).

[12] T. Schiex, ‘Arc consistency for soft constraints’, inPrinciples and Prac-
tice of Constraint Programming, pp. 411–424, (2000).

[13] M. Stumptner and F. Wotawa, ‘Diagnosing tree-structured systems’,Ar-
tificial Intelligence, 127(1), 1–29, (2001).

[14] B.C. Williams and R. Ragno, ‘Conflict-directed A* and its role in
model-based embedded systems’,Journal of Discrete Applied Math-
ematics, (2003). To appear.


