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Abstract.  Tasks like diagnosis, fai lure-modes-and-effects 
analysis (FMEA), and therapy proposal involve reasoning 
about variables and parameters deviating from some 
reference state. In model-based systems, one tries to capture 
this kind of inferences by models that describe how such 
deviations are emerging and propagated through a system. 
Several techniques and systems have been developed that 
address this issue, in particular in the area of qual itative 
modeling. However, to our knowledge, a rigorous 
mathematical foundation and a “ recipe”  for how to construct 
such compositional deviation models has not been presented 
in the l i terature, despite the widespread use of the idea and 
the techniques. In this paper, we present a general 
mathematical formalization of deviation models. Based on 
this, aspects of constructing libraries of deviation models, 
their properties, and their appl ication in consistency-based 
diagnosis and prediction-based FMEA in a component-
oriented framework are analyzed. 

1 INTRODUCTION 
Several tasks which are addressed by knowledge-based 
systems involve reasoning about variables and parameters 
deviating from some reference state. In diagnosis, one has to 
localize or identify the reasons for a device behavior that 
deviates from the normal, or intended, one. Fai lure-mode-
and-effect analysis (FMEA) determines the behavior 
deviations caused by component faults. And therapy 
generation attempts to identify influences on a system that 
remove or reduce deviations from a healthy state. In a model-
based approach, one tries to capture this kind of  inferences by 
models that describe how deviations from some reference 
state or behavior are emerging and propagated through a 
system. Several techniques and systems have been developed 
that address this issue, in particular in the area of qual itative 
modeling. 
 In previous work on the theory and applications of 
consistency-based diagnosis, so-cal led deviation models were 
often employed quite successfully. In this context, we face 
the requirement that the device or system model be 
compositional, i.e. can be generated by aggregating local 
models of the system constituents (e.g. components) that are 
stored in a l ibrary. However, to our knowledge, a rigorous 
mathematical foundation and a “ recipe”  for how to construct 
such compositional deviation models has not been presented 

in the l i terature, despite the widespread use of  the idea and 
the techniques. 

After a brief  look at related work and its underlying 
assumptions, we will propose a formalization of  deviation 
models based on relational models in section 3 and 4 and 
then analyze properties of such models in a compositional, 
component-oriented modeling framework for diagnosis and 
fault analysis (section 5). Section 6 discusses some issues 
concerning the use of  the models for predictive FMEA and 
consistency-based diagnosis. 

2 PREVIOUS WORK 
Very early work on Incremental Qualitative Analysis (IQ 
analysis) [de Kleer 79] and Differential Qualitative Analysis 
(DQ), or comparative analysis [Weld 88] aimed at expressing 
how a disturbance or parameter shift affects the behavior of a 
single system. These techniques compare two models that are 
structurally identical. Obviously, this is different from our 
intention to consider deviations between any two behaviors, 
including behaviors that are represented by models of a different 
structure (e.g. of a normal and a broken device). 

In previous work, “qualitative deviation models”  were used in 
applications of consistency-based diagnosis. For instance, 
[Struss-Sachenbacher-Dummert 97] based fault localization in 
an anti-lock braking system (ABS) of a car on such a model, 
assuming that the observations are given as qualitative 
deviations from some unspecified nominal behavior expressing 
statements like “The wheel rotates faster than it should” . 

The models expressed constraints on the deviations of system 
variables and parameters from the nominal behavior. For 
instance, the model of a valve is given by a constraint: 

[∆q] = [A] * ([∆p1] - [∆p2]) + [∆A] * ([p1] - [p2]) 
- [∆A] * ([∆p1] - [∆p2]) 

on the signs of the deviations of pressure ([∆pi]), flow ([∆q]),  
and area ([∆A]),  where [x] means sign(x). This constraint 
allows, for instance, to infer that an increase in p1 ([∆p1] = +) 
will lead to an increase in the flow ([∆q] = +), if p2 and the area 
remain unchanged ([∆p2] = 0, [∆A] = 0) and the valve is not 
closed ([A] = +). Such qualitative deviation models were 
constructed from equational component models. For each system 
variable and parameter vi, the deviation is defined as the 
difference between the actual and a reference value: 

�v := vact - vref 



Then algebraic expressions in an equation can be transformed 
to deviation models according to rules such as 

a + b = c � �a + �b = �c 
a * b = c � aact * �b + bact * �a - �a * �b = �c 

Furthermore, for any monotonically growing (section of a) 
function y = f(x), we obtain [�y] = [�x] as an element of a 
qualitative deviation model. This way, the deviation model of the 
valve stated above has been obtained by a well-defined 
transformation from the respective equation describing the 
behavior of a valve in absolute terms (with a positive constant c) 

q = sign(p1 – p2)*c*A*√ �p1 – p2� . 

 It is quite convenient that such model fragments often state 
direct relationships among deviations, independently of actual 
and reference values. In other cases (such as multiplication and 
division) we need information about the actual values (but 
possibly only their qualitative abstraction for qualitative 
deviation models). 

In contrast to IQ and DQ analysis, deviation models reflect he 
idea to compare two arbitrary behaviors. However, according to 
our knowledge, a general formal definition of such models has 
never been provided, and it turns out that the way they were 
constructed (as indicated above) was based on some assumptions 
that limit their applicability. A simple example can illustrates 
this: From a constraint 

(1) a + b = c 

over the absolute values, the deviation equation  

(2) ∆a + ∆b = ∆c 

was derived. But what is the basis for obtaining (2) from (1)? 
We find that 

∆a + ∆b = (aact – aref) + (bact – bref) 
= (aact + bact) - (aref – bref) =cact – cref = ∆c 

exploits the assumption that both the actual and the reference 
values satisfy the same constraint (1).  

We used the same kind of models in order to capture different 
intuitions which correspond to a different choice of the 
reference. In [Malik-Struss 96], we chose the equilibrium of a 
system (a controlled electric motor) to define the reference. 
Furthermore, we exploited deviation models to express 
constraints on changes over time. This means, we can select a 
previous (or future) state of a system as the reference. Then the 
deviation model of the valve can be interpreted like “ if the 
pressure pi has increased while p2 and A are identical, then the 
flow must have increased, as well” . This corresponds to the 
perspective of IQ analysis at a global level. In fact, if a 
(numerical) model contains monotonic functions only, then the 
local results of IQ analysis carry over to the entire domain, and 
the resulting models are identical to deviation models. 

More generally and more formally: if  R is a model  
relation over a vector of  variables v, then the respective 
deviation model is given by the relation 

(3)  ∆R := {  ∆v | ∆v:= vact – vref ∧ vact,vref ∈R }  

However, it is “ self-referential”  in the sense that it captures 
deviations w.r.t. the same model, and, hence, definition (3) 
does not properly ref lect our intention to describe behavior 
deviations in comparison to the nominal model. 

A simple example illustrates the consequences: The OK 
model of a closed valve states a zero flow: 

(4)  f = 0 

which leads to the sign-based deviation model  
(5)  [�f] = 0 

This expresses the fact that, for a properly working closed valve, 
any deviation in the pressure drop does not cause a deviation in 
the flow, it remains 0. However, (4) also models a clogged pipe. 
But, in this case, the sign-based deviation model should be  

(6) [�f] = -[fref ] 

stating that the zero flow represents a deviation which is 
opposite to the flow under the reference conditions. 
The example shows that 
• The same equation may lead to different deviation models.  
• It may be impossible to determine the deviation locally: (6) 

does not fix the deviation of the flow; rather, this depends 
on other components in the device. 

Of course, having given definition (3), it is obvious how to 
correct the bug. We will do this in the next section and then 
discuss the consequences. 

3 FORMALIZING DEVIATION MODELS 
In general, it is straightforward to provide a proper definition for 
deviation models. For this purpose, we consider behavior models 
to be represented by a relation over a vector v = (v1, …, vn) of 
system variables with the domain 

Dom(v) = Dom(v1) × … × Dom(vn), 

 i.e. R ⊂ Dom(v), which may be implemented as a set of 
constraints. At this stage, we do not restrict the domains. They 
may be real numbers, intervals, signs, etc. The only condition is 
that distances 

di: Dom(vi) × Dom(vi) → Dom(�vi) 

are defined, e.g. as subtraction “ -”  on the domains mentioned 
above, and their composition 

d = (d1, …, dn):  Dom(v) × Dom(v) → Dom(�v). 

A deviation model has to characterize the possible distances of 
the tuples w.r.t. a reference model relation, Rref. 
 
Definition 3.1 (Deviation Model) Let Rm, Rref ⊂ Dom(v) be 
two behavior models. 

∆c(Rm, Rref) := {(d(vm, vref), vref) | vm ∈Rm ∧ vref  ∈Rref} . 
   ⊂ Dom(�v) × Dom(v) 

is called the complete deviation model of Rm w.r.t. Rref  . 
∆p(Rm, Rref) := {d(vm, vref) | vm ∈Rm ∧ vref  ∈Rref} 
   = ∏�v (∆c(Rm, Rref) ) ⊂ Dom(�v), 

where ∏�v denotes the projection to the distance vector, is called 
the pure deviation model of Rm w.r.t. Rref 
A complete deviation model ∆c(Rm, Rref) is called redundant 
if  ∆c(Rm, Rref) = ∆p(Rm, Rref) × Dom(v). 
 
The redundancy property expresses that the deviation constraints 
do not depend on the reference value; the pure deviation model 
produces the same distance predictions as the complete model. 
For instance, for the addition relation, the deviations of a and b 
sum up to give the deviation of c regardless of the specific value 
of a and b. 
 Although Def. 3.1 is very general, it still contains an 
important presumption, namely that both relations are defined 
over the same variables (and domains) which may not be the 
case.  For instance, the OK model of a pipe may refer to pressure 
and flow only, while its fault models may include parameters 



such as the size of a leakage, the resistance due to partial 
clogging, etc. In this case, we can project both relations to the set 
of variables they have in common and apply the analysis to the 
resulting relations. Therefore, in order keep different problem 
dimension separate, we maintain this presumption for the 
investigation in this paper. Also, we continue to talk about model 
relations in general to avoid mixing the general problem of 
defining, constructing, and exploiting deviation models form the 
problem of generating appropriate qualitative deviation models. 
Finally, we restrict the following investigations to component-
oriented models for tasks like (consistency-based) diagnosis, 
diagnosability analysis, and FMEA.  

4 DEVIATION MODELS FOR COMPONENT-
ORIENTED FAULT ANALYSIS 

More formally, we can characterize the interesting class of 
models in the following way. A model of the entire device is 
composed of its components’  behavior models. Each model 
fragment Rij describes the behavior of a component Ci under a 
mode 

mij ∈ modes(Ci) = { OK, Fi1, …, Fik}  

which is the (unique) correct mode or a particular fault. For 
easier reading, we will denote the model relation for the OK 
mode by Ri,OK. Thus, for each mode assignment 

MA := {  mij | mij ∈ modes(Ci)}  

which assigns a unique mode to each component, we obtain the 
model relation as the join of the respective component model 
relations 

RMA =             Rij 
mij ∈ MA 

The class of tasks we want to consider can simply be 
characterized by the choice of Rref which is given by the 
behavior relation of the assignment of the mode OK to all 
components: 

Rref  = ROK :=      Ri,OK 
            i 

This is different from other possible uses of component models. 
For instance, in model-based design, the reference is given by 
some behavior specification rather than the correct behavior of 
the components of the design at a certain stage.  

Regarding the entire device, we can easily define the 
appropriate deviation model 
 
Definition 4.1 (Diagnostic Deviation Model)       A complete 
diagnostic deviation model of a mode assignment MA is defined 
as  

∆c(MA) := ∆c(RMA, ROK) 
and a pure diagnostic deviation model by 

∆p(MA) := ∆p(RMA, ROK) . 
 
While this definition is straightforward, it does not directly 
provide a satisfactory way to construct the desired deviation 
model. We can certainly (automatically) construct the behavior 
relations RMA and ROK and then compute the deviation model 
(automatically) according to definition 3.1. Even if this is 
feasible (considering the potentially large number of variables 
and tuples in the relation), it would not be convenient for another 
reason: the requirement of compositional modeling. What we 
would like to do is to compose the deviation model of the entire 
device from local component models the same way we compose 

the absolute model, RMA. This is what was actually done in our 
applications referenced above. Formally, deviation models were 
constructed locally for each component Ci according to 
definitions 4.1 and 3.1 

∆c(mij) := { (d(vi, viOK), viOK) | vi∈Rij ∧ viOK∈ RiOK}  

and then combined to establish a device model for a mode 
assignment MA 

       ∆’ c (MA) :=       ∆c(mij) 
               mij ∈ MA 

Actually, often pure deviation models were used: 
 
       ∆’p (MA) :=  { d(vi, viOK)| vi ∈Rij ∧ viOK ∈ RiOK}  
              mij ∈ MA 

The question to be answered is how this model relates to the 
diagnostic deviation model given by def initions 3.1/4.1. We 
have to compare the compositional deviation model  
 
   ∆’ c (MA) :=  { (d(vi, viOK), vi OK) | vi ∈Rij ∧ viOK ∈ RiOK}  
             mij ∈ MA 

with the global one: 
 
  ∆c (MA) = { (d(v, vOK), vOK) | v ∈  Rij ∧ vOK∈   RiOK}  
                      mi j ∈ MA              i 

Intuitively,  ∆’ c (MA) appears weaker, because it combines the 
OK relations in a join, whereas the local restrictions Rij are not 
explicitly joined, but only via the distance d. More precisely, 

(d(v, vOK), vOK) ∈ ∆c (MA) 

if and only if  

v ∈    Rij ∧ vOK ∈   RiOK}  
                               mij ∈ MA                  i 

If we denote the restriction of v  and vOK to the local variables of 
Ci  by vi and  vOKi, respectively, then this is equivalent to  

i (vi ∈Ri j ∧ vOKi ∈ Ri OK) . 

This implies  

i (d(vi , vOKi), vOKi) ∈ ∆c (mij) 

which means  
(d(v, vOK), vOK)∈    ∆c (mij) . 

              mij ∈ MA 

This proves  

Lemma 4.1 The global diagnostic deviation model ∆c (MA) is 
stronger than the compositional diagnostic deviation model 
∆’ c(MA): 

 ∆c (MA) ⊂ ∆’ c (MA). 

Are they equal? In the above sketch of the proof, we have 
implications in both directions, except for the one that is 
highlighted. Can we reverse this inference, as well? Not in 
general: if, for di ∈ Dom(∆vi), 

i (di, viOK) ∈ ∆c (mij) 

then  
i ∃ vi ∈ Rij ∃ viOK ∈ RiOK  di = d(vi, viOK) 

However, it is not guaranteed that these local tuples vi can be 
combined to form a global one, v, that is consistent with MA. 
The simplest counterexample is the following: assume the 



normal behavior includes two components C1, C2 that  both fix a 
variable x to be positive. Over the sign domain, this means 

R1 OK = R2 OK = {  (+) }  ∈ Dom(x) = {  -, 0 , + }  . 

Furthermore, assume a fault of C1 makes x zero, while a fault in 
C2 would change the sign of x: 

R1 1 = {  (0) } , R21 = {  (-) }  . 

Then in both components, the deviation models determine the 
deviation of x to be negative: 

∆c (mk1) = {  (-, +) }  , k=1,2, 

and, hence, 

∆’ c ({m11, m21} ) = {  (-, +) }  . 

However, since { m11, m21}  is inconsistent, we have 

∆c ({ m11, m21} ) = ∅ . 

This shows 

Lemma 4.2 In general, global and compositional diagnostic 
deviation models are not equivalent:  

∆c (MA) ≠ ∆’ c (MA). 

This means, in general, that we have to trade an important 
practical requirement, compositionality of the model, against 
another practically relevant feature, its completeness, i.e. its 
ability to detect all inconsistencies. 

Fortunately, we can recover at least partially from this 
dilemma, if we impose a restriction on the distances di. The idea 
is that, if a given reference value vref and distance tuple d0 

determine a unique v0 such that d(vo, vref) = d0, then each 
globally consistent tuple  (d0, vref) corresponds to a unique vector 
vo which must also be globally consistent. This property is 
satisfied for real numbers, if we define d(x, y) := x – y, but not 
for the sign domain or, more generally, for interval domains. So 
we can state 

Lemma 4.3 If for all i and for all yi ∈ Dom(vi) the distance d(x, 
yi) determines x  uniquely, i.e. the function  

dyi(x) := d(x, yi) 
is injective, then the compositional diagnostic deviation model is 
equivalent to the global one: 

∆’ c (MA) = ∆c (MA). 
In particular, this holds for Dom(v) = ℜ n and  

d (x, y) := x – y . 

Obviously, if all local deviation models are redundant then so 
are the compositional deviation models. This yields 

Lemma 4.4 A compositional complete diagnostic deviation 
model is redundant if  all local deviation models are redundant. 

However, if any local deviation model is not redundant, we must 
expect that dropping the reference values from the model makes 
the overall model strictly weaker. For instance, a multiplicative 
constraint a * b = c yields a complete deviation model specified 
by �a * �b + bref * �a + aref *  �b = �c, which does not allow to 
drop the reference values. The reference values have to be 
determined for this local model which means the complete 
deviations models also have to be used for the other local models 
even though they might be redundant. To give again the simplest 
example, assume there is a component enforcing an equality 
constraint a = b connected to the multiplication component. Then 
its deviation model is redundant, and the qualitative pure 
deviation model states [�a] = [�b]. However, the multiplicative 

deviation model cannot restrict the sign of [�c] from [�a] = [�b] 
= + alone, but it could, for instance, infer [�c] = +,  if [a] = [b] = 
+  is known from the complete deviation model of the equality 
constraint. 

5 PRACTICAL CONSEQUENCES OF THE 
ANALYSIS 

The theoretical analysis above may appear fairly abstract. 
However, the results have a tremendous impact on the use of 
deviation models in practice which we discuss in this section in a 
fundamental way, before we turn to specific issues that are 
related to the exploitation of deviation models in consistency 
based diagnosis. 

The step from self-referential to diagnostic deviation 
models sacrifices a lot of the simplicity of the models. As an 
abstract example, consider b = k*a with 0<k<1 constant as the 
fault model that is compared to the OK model b = a. 

Note that the resulting deviation model �b = �a + (k-1)*aok 

does not only contain a reference to aok. It also implies that 
determining the sign of �b requires determining whether �a > 
(k-1)*aok which can only be done at the numerical level. Because 
the result depends on aok, there exists no finite set of landmarks 
for �a that would allow determining the sign of �b. A sign-based 
deviation model would be totally ambiguous in this case. 

The example at the end of section 4 shows that we usually 
have to use complete deviation models, i.e. include and 
determine reference values in the deviation model. To clearly 
emphasize the practical impact: when we work with a 
compositional model, even if only a single local model �c(mij), is 
not redundant, all local models must be used in their complete 
form, even if they are redundant. This is because they may be 
required to restrict vi ok  which in turn is needed to derive a 
conclusion from �c(mi j). In other words, Rok has to be computed 
globally in addition to, and for enabling the computation of 
deviations.   

Let us discuss this from another perspective. In the above 
definitions and analysis, we included the reference, Rok , in the 
deviation model. Of course, due to the anti-symmetry of the 
distances di,  

di(vi,viok) = - di(vi ok,vi) 
we obtain the respective definitions and results for deviation 
models that include the mode assignment model, RMA, instead of 
ROK, in the deviation model. Then the above results imply that 
one has to apply the absolute behavior model of the mode 
assignment and additionally compute the deviations. But this 
means: reasoning about deviations does not substitute the use of 
the absolute model as we had hoped, but is simply additional 
effort to derive a convenient and intuitive description, e.g. for 
interpreting FMEA results.  

Finally, Lemma 4.2 states that compositional qualitative 
deviation models usually generate weaker results than global 
ones. This means that besides the usual incompleteness of the 
qualitative (interval-based) calculus, there is an additional loss 
of completeness in the step of constructing the qualitative 
deviation model.  
 So far, we analyzed properties of the relations representing 
deviation models, especially under the aspect of 
compositionality. In the next section, we discuss their use in 
(consistency-based) problem solvers for fault analysis tasks. 



6 USING DEVIATION MODELS IN MODEL-
BASED SYSTEMS 

 In FMEA, a scenario is described in terms of external 
conditions and a particular state of a device. Then, for each mode 
assignment corresponding to a (single) component fault, the 
respective model can be exploited to restrict the value of other 
variables with a focus on effects that represent a deviation from 
the function the device is supposed to perform. It is often quite 
natural to express both the fault and the relevant effects as 
deviations from the nominal state (“pressure lower than 
nominal” , “extension of the landing gear too slow”), which 
makes deviation models attractive for model-based FMEA 
generation. 

In our relational formalism, a scenario is also expressed as a 
relation on the variables and parameters that define it and usually 
contains a single tuple. It specifies a context in which the 
resulting device behaviors in the nominal mode and under a 
(single) component fault have to be compared. This implies the 
assumption that the scenario relation is consistent with both 
behaviors. Otherwise, there would be a modelling bug w.r.t to 
the scenario or the behaviors. This is plausible because the 
scenario is supposed to describe exogenous variables and a 
given state of the system, and the behavior models are only 
correct if they cover the device response to any physically 
possible situation (We mention this because we face a different 
situation in diagnosis, as discussed below). 

The deviation model is then used in the following way: 
• The scenario is described as a relation on absolute values of 

exogenous and state variables and deviation 0 for all of 
them. This reflects the fact that the scenario applies to both 
the OK and the faulty mode. 

• The model of the faulty device, RMA, specifies parameters 
and their deviations which are non-zero only for (some) 
parameters in the model(s) of the faulty component(s) and 0 
for all others. 

The model (if strong enough) will compute the absolute behavior 
under this scenario and the deviations w.r.t. to the nominal 
mode. This illustrates again what was discussed in the previous 
section, namely that computing the deviations is only an 
additional effort that serves convenience. In other systems, this is 
done outside the model by comparing the results of two behavior 
predictions.  

We now turn to the exploitation of deviation models in 
consistency-based diagnosis. Its basic task is to check 
whether a model of some behavior mode is consistent with a 
set of given observations in order to determine those modes 
that might describe the observed situation. In what way can a 
deviation model be exploited in this framework? 

To answer this question, we first look at the construction 
of  such models which corresponds to f irst joining three 
relations, ROK, RMA, and Rdev which contains the def initional 
relations for all distances di, and then projecting the result to 
(∆v, v): 

∆c(MA) = ∏�v,v (Rdev  RMA   ROK)  

The available observations relate to the current situation, and 
the goal is to check whether MA can consistently be assumed 
to be present in this situation. It is not the purpose to check 
whether or not the nominal mode is consistent. This has been 
done before with the result that i t is inconsistent with the 
given observations (because otherwise there would be no 
reason to investigate the fault corresponding to MA). Hence, 
ROK relates to a different situation and therefore has to be 

considered consistent with the observations. Furthermore, 
Rdev is just a collection of definitions which are not related to 
any situation and, hence, consistent with the observations. 
Therefore, if  ∆c(MA) is inconsistent with observations, the 
origin must lie in RMA. The example used to prove that 
compositional deviation models are general ly weaker than the 
respective global ones (Lemma 4.2) also i l lustrates that the 
deviation model which contains the deviations together with 
the OK reference may fail  to detect an inconsistency in RMA. 
Since this can seriously affect the diagnosis, we better use the 
form of deviation model that includes RMA. Again, we notice 
that the deviation part of the model is just a convenient 
supplement and does not contribute to the core part of  the 
problem solving. 

However, it can be an important, or even necessary, one, if  
the available observations are stated in terms of deviations, as 
is i l lustrated by the example of diagnosis of the ABS system 
based on qualitative driver observations.    

7 DISCUSSION    
We proposed a rigorous way of formalizing the definition and 
use of models that capture how faults create a deviation of a 
behavior from a nominal behavior and analyzed properties of 
these models (particularly in a compositional modeling 
framework) and the benefits they might promise. The result 
of this analysis is somewhat conflicting with expectations or 
claims we had, the major problems being that  
• the models expressing the deviations between two 

different model behaviors are more complicated than the 
“ self-referential”  ones, and 

• pure deviation models (which do not include the 
prediction of either the absolute OK or fault mode 
behavior) will  often be too weak,  

• which means that computation at the deviation level is 
just additional effort, though one that may be convenient 
or even necessary. 

Although this may be considered a fairly negative result, we 
reckon that such models will  remain useful for many 
applications and expect that the foundation given here allows 
determining the preconditions for such applications and the 
expected gain. 
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