
Indirect and Conditional Sensing in the
Event Calculus

Jeremy Forth and Murray Shanahan
�

Abstract.
Controlling the sensing of an environment by an agent has been ac-
cepted as necessary for effective operation within most practical do-
mains. Usually, however, agents operate in partially observable do-
mains where not all parameters of interest are accessible to direct
sensing. In such circumstances, sensing actions must be chosen for
what they will reveal indirectly, through an axiomatized model of the
domain causal structure, including ramifications. This article shows
how sensing can be chosen so as to acquire and use indirectly ob-
tained information to meet goals not otherwise possible. Classical
logic Event Calculus is extended with both a knowledge formalism
and causal ramifications, and is used to show how inferring unknown
information about a domain leads to conditional sensing actions.

1 Introduction

To perform effectively in most practical domains, a rational agent
must possess the ability to reason about, and create plans for sensing,
conditional, and knowledge-producing actions [8]. This requires the
agent not only reason about the state of objects in the domain, but
also about the agent’s own knowledge about the state of the domain.
Such acquisition of knowledge may be achieved by direct sensing of
the environment, or alternatively, indirectly through inference using
existing or newly acquired knowledge.

This paper extends Classical Logic Event Calculus [11] to reason
about knowledge for the purposes of describing and controlling sens-
ing actions in a partially observable causal domain. Partial observ-
ability is usual in most practical circumstances, and restricts an agent
in its range of directly sensed parameters of the environment. In cases
where the state of an unobservable domain fluent is required, this in-
formation must be inferred using the causal domain model along with
other known fluents. Determining which fluents to sense, and when,
is the problem to be solved at plan time.

Unknown fluents frequently need to be inferred through the mod-
eling of ramifications in the environment. This is achieved through a
new causal ramification theory presented later. At plan time, it may
not be possible to find an effective fixed set of sensing actions that
will yield the desired result. While it is always possible to plan to
sense more fluents than are strictly needed, and thereby guarantee
sufficient information has been acquired for all possible cases, a real
agent would never be expected to function in this manner. Instead, a
behavior of sensing solely what is necessary is much to be preferred.
This conditional sensing is part of a later ramification example.

Previous work in the literature such as [10], [5], [6], and [15]
have addressed different aspects of knowledge producing actions,

�

Imperial College, London, UK. email: jforth,m.shanahan@imperial.ac.uk

adopting Possible-World state-based approaches, different to this ac-
count. The present work is based on a meta-language representation
of knowledge, more similar in style to [9], though this used a state-
based action representation unlike Event Calculus.

Knowledge producing actions were first introduced into an exe-
cutable logic programming version of the Event Calculus by [14]
which focused on a map building task. We contribute further by ex-
tending the expressiveness of the Event Calculus formalism and ad-
dressing the inferential aspect of sensing. We present a solution for
selective and conditional sensing of an environment with ramifica-
tions in order to infer desired knowledge.

2 Integrating Knowledge

Providing an agent with the capability to reason about its knowledge
of the environment requires that we provide a theory that can rep-
resent and reason about that part of itself devoted to describing the
environment. In particular, knowledge producing actions modify an
agent’s theory, as well as possibly modifying the environment. To
represent the effects of such actions properly, the theory must con-
tain a representation of what will be derivable from future versions
of itself. To do this, we augment the domain fluents with meta-level
knowledge fluents which at any given time point are semantically at-
tached to the corresponding domain fluent using the knowledge ax-
ioms.

Such a theory introduces logical complexity because of the inher-
ent requirement for formulas representing objects in the domain to
be presented as arguments to other predicates. Moreover, permitting
inference in such a general system introduces well known inconsis-
tency as exhibited by paradoxes such as the Knower. It therefore be-
comes necessary to use a logical system that will allow useful rea-
soning to take place whilst avoiding inconsistency.

The language used to represent knowledge here is a self-referential
(amalgamated) language permitting a predicate to take a formula as
an argument through the use of a naming relation to convert the for-
mula to a unique term. For simplicity, we adopt the convention of
sentences naming themselves. Using such a language, very general
expressions are possible, such as those describing incomplete knowl-
edge, and it may be comfortably used to represent what will become
known after executing a knowledge producing action.

Previous work by Gupta and Herzberger, further refined by [16]
and [2], provides a system of logic with a semantic definition of truth
based on an iterative revision process termed “Taski-revision”. This
operates on a traditional two-valued truth model obeying the law of
excluded middle. Based upon classical semantics, truth is defined by
a non-monotonic revision process that proceeds by determining the
truth models at each stage of iteration. The process finishes when
no further stabilization occurs with successive revision steps. The

stable models then provide a semantic definition of truth for the self-
referential system. In this paper, we will recast such a system to rea-
son about knowledge, where knowledge is defined semantically by
stable models.

Shown below are axioms employed in a first-order self-referential
theory of knowledge, somewhat similar to modal logic’s S4 system.
To guarantee freedom from inconsistency, the necessitation rule K5
has been weakened over S4 so that just all classical truths are known.
Such flexibility avoids the logical omniscience problem of Possible
World semantics, and makes it possible to model inference power
of varied proof procedures. Full necessitation of S4 is particularly
problematic when reasoning about other agents knowledge, due to it
forcing an assumption that all agents know all axioms. Since Event
Calculus uses the distinguished predicate ���������
	�� to represent the
state of all time varying fluents, including knowledge fluents, all
knowledge axioms must be defined within this predicate.

HoldsAt
�� k
�� ��� ���
� � � k
�� � � � k
���������������� (K1)

HoldsAt
�� � � k
�� � � k
��!�"� ��������� (K2)

HoldsAt
�� k
�� � � �#������� (K3)

HoldsAt
�� k
�� � � k
 k
�� �������$��� (K4)

% � PC & HoldsAt
��'��������(!)
* HoldsAt
 k
�� �+�$��� (K5)

HoldsAt
�� kw
�� � def, � k
�� ��- k
�./� ����������� (K6)

We use a single temporal structure to represent both domain knowl-
edge, and also the agent’s knowledge. In order to reason about agent
knowledge within the temporal structure, we must define inference
rules KEC1, KEC2 that apply to fluent formulas contained within.
There must be a way to couple a negated derived fluent, for instance
���0�1���2	3��
�. On �4��� with a negated predicate taking the non-negated
fluent as its argument: . HoldsAt
�56*7����� . NEG accomplishes this.

HoldsAt
�� � � � � � �$��� � (KEC1)
�HoldsAt
�� � �4��� � HoldsAt
������$�����

� � HoldsAt
�� � �4��� � HoldsAt
�� �"� � �4��� (KEC2)

HoldsAt
�./�!�$��� , . HoldsAt
��'����� (NEG)

3 Classical Logic Event Calculus

The Event Calculus formalism employed here is a positive-time only
version based on classical logic, described in [11], with further dis-
cussion available in [7] and [12].

Definitions of the predicates Happens, Initiates, Terminates and
Possible are given in the domain-dependent part of the theory, along
with an appropriate axiomatization of the sort time (e.g. as natural
numbers). Action variables are represented by 8 , 8 � while time vari-
ables are represented by � , � � , ��� . Since the knowledge theory allows
us to derive new fluent formulas at each time point, fluents are di-
vided into sorts for primary (frame) fluents �
9 as specified in the
domain axiomatization, and also derived (non-frame) fluents. Gener-
alized fluents � , comprise both sorts. Knowledge fluents are subject
to default persistence.

A fluent’s positive (respectively negative) persistence between
two timepoints is compromised if an action occurs within this

interval that terminates (respectively initiates) that fluent, or if any
action occurs that is not “possible” at any earlier timepoint:

Clipped
:� � ����9#�4���;� def,
(EC1)

� <�8 �����Happens
=8 �4���?>@�#AB� � >C. Possible
=8 �$�����
-D<�8 �4���Happens
=8 �$���E>F� �#G ��AH� � �
> Terminates
=8 �I�;9��4���?> Releases
=8J����9����������

Declipped
:� � �I� 9 �4� � � def,
(EC2)

� <�8 �����Happens
=8 �4���?>@�#AB���K>C. Possible
=8 �$�����
-D<�8 �4���Happens
=8 �$���E>F� � G ��AH���4�
> Initiates
=8 ��� 9 �$���E> Releases
=8 �I� 9 �4�������

Prior to a non “possible” action, fluents which have been initiated by
an occurrence of an action continue to hold until an occurrence of an
action which terminates them:

HoldsAt
�� 9 �4� � �KL (EC3)
�Happens
=8 �4� � ��> Initiates
=8 �I� 9 �$� � �
>M� � AH���K>N. Clipped
:� � �I�;9'�$�������

Fluents which have been terminated by an occurrence of an action
continue not to hold until an occurrence of an action which initiates
them:

. HoldsAt
�� 9 �$� � �DL (EC4)
�Happens
=8 �4� � ��> Terminates
=8 ���;9'�$� � �
>M� � AH���K>N. Declipped
:� � �I�;9#�$���
���

Prior to a non “possible” action, fluents change their truth values
only via the occurrence of initiating and terminating actions:

HoldsAt
��;9��4�����KLO� InitallyP
���9#�4� � �?>F� � AH��� (EC5)
>K. Clipped
:� � �+��9��4�������

. HoldsAt
��;9#�$���
�DLP� InitallyN
���9���� � �?>F� � AH��� (EC6)
>K. Declipped
:� � ��� 9 �4� � ���

InitallyP
�� 9 �Q- InitallyN
�� 9 � (EC7)

4 Acting in Causal Domains

Sensing actions can be axiomatized in a domain independent way
by assuming all fluents can be sensed directly. The effect of a pure
sensing action is limited, by definition, to changing the agent’s
knowledge base, with no effect on the domain. Clearly, in many
practical situations, sensing must impact the environment, but this
will be handled as a refinement to the pure sensing action defined
below. A function �
)
*R�
) is introduced, mapping a fluent to an action:

Initiates
��
)2*S�
)T
���9U�+� kw
���9U�+�4��� (SA1)

Possible
��
)
*S�2)T
��;90�+�4��� (SP1)

Many actions have effects on the domain as well as on the agent’s
knowledge of the domain’s state. An agent may come to know
the status of a door by sensing, or alternatively by performing an
5WV!)2*YXH����Z action. It is desirable to free the axiomatizer from
the requirement of capturing all the knowledge effects of actions
separately from physical effects on the domain. We may have a

domain dependent axiom �T* % � % 8T��)��U
�5WV)
*SXH����Z���5WV!)2*7����� which
initiates fluent 5WV!)2* upon the occurrence of action 5WV)
*SXH����Z .
Accordingly, we need to be able to initiate the fluent �J
�5WV)
*S�
whenever action 5WV!)2*YXH����Z is planned to be performed. This is
accomplished through axioms KE1 and KE2. To address the special
case of non-deterministic actions, we exclude knowledge effects
where an action both initiates and terminates the same fluent, as in
the case of a coin-toss action.

Initiates
=8 � k
��;9T�+�$���DL (KE1)
� Initiates
=8J��� 9 �4���?> . Terminates
=8 �I� 9 �������

Terminates
=8 � k
�� 9 �+�4���KL (KE2)
� Terminates
=8 �I��9#�4���?>N. Initiates
=8 �I��9��������

So as to avoid possible inconsistency between the representation
of the meta-knowledge and domain object knowledge, persistence
must not occur on a knowledge fluent after an action has taken place
affecting that fluent, either by direct action, or indirectly through
ramifications.

Releases
=8 � kw
��;9T�+�$���DL (KP1)
� Initiates
=8J��� 9 �4���?- Terminates
=8 �I� 9 �$�����

Action preconditions are usually specified in terms of physical do-
main prerequisites for an action to take place. An action precondition
for an open-door action may be door-closed. Conditional actions
however require preconditions to refer to the agent’s knowledge. For
instance, switching a light on just if it’s off, has a precondition of
knowing whether the light is on prior to executing the conditional
action. Handling knowledge preconditions correctly requires that
we specify when an agent knows enough to execute an action. If an
action definition takes the form of conjunction of ground HoldsAt
literals,

Initiates
=8 ���;9'�4���/L (DE1)
�
�./� HoldsAt
�� � �4��� ������� > �����
�./� HoldsAt
����J������� �

Terminates
=8 �I� 9 �$���/L (DE2)
�
�./� HoldsAt
�� � �4��� � ����� > �����
�./� HoldsAt
�� � ����� � �

we say we have enough knowledge to perform an action dependent
on binary conditions when we know whether any fluent defined
as a condition for the action’s effect is true or not at the time of
execution. This principle is captured in the following axiom:

Possible
=8J�$���/L (KP)
�HoldsAt
 kw
�� � �+�4��� � ����� > �����HoldsAt
 kw
�� � �+�4��� � �

Although much of the purpose of a rational agent planning to
execute conditional actions is to increase knowledge and certainty
about the environment, non-deterministic actions actually reduce it.
Accordingly, this must be allowed for in the theory. After executing
a non-deterministic action, we know we don’t know the resulting
fluent state:

Terminates
=8 � kw
���9U�+�4���DL (KP2)
� Initiates
=8J����9��4���?> Terminates
=8 �I�;9#�$�����

Finally, we introduce the functions
% � and

% �'*J�2� (from fluent and
action pairs, to action) to represent conditional actions, executed just
if the conditional fluent holds, or does not hold respectively.

Initiates
 % �R
�� � ��8#�+��� ��9 �$��� L (CA1)
� Initiates
=8 ������9'�$���E> HoldsAt
�� � �4�����

Terminates
 % �R
�� � ��8#�+�I����9'�$���DL (CA2)
� Terminates
=8 �I����9'�$���E> HoldsAt
�� � �������

Possible
 % �R
��'��8#�+�4���DL HoldsAt
 kw
�� �+�$��� (CP1)

Similarly for action ifnot:

Initiates
 % �'*Y�2��
�� � ��8#�+�I� ��9 �4���KL (CA3)
� Initiates
=8 ������9'�$���E> . HoldsAt
�� � �4�����

Terminates
 % �'*Y�2��
�� � ��8#�+�I����9'�4���KL (CA4)
� Terminates
=8 �I� ��9 �$���E>C. HoldsAt
�� � �4�����

Possible
 % �'*J���;
��'��8'�+�����KL HoldsAt
 kw
�� �+�4��� (CP2)

5 Ramifications

If a domain has fluents with interdependencies, then these can fre-
quently be represented as ramifications. In such cases, it is clear that
gaining knowledge about one fluent may provide knowledge about
another. We show how reasoning about knowledge can yield useful
information about which sensing actions to take in an environment.
Closely connected to reasoning about knowledge in the presence of
ramifications, is the ability of an agent to function effectively in a
partially observable environment, where not all fluents can be sensed
directly. Planning in such domains, with the capability to consider
the epistemic state, results in the generation of tests or experiments
in the course of meeting a goal; a type of active perception.

Solutions to different classes of ramification problem are detailed
in [13] for the Event Calculus. Two distinct methods presented use
state constraints to represent static relationships, and effect con-
straints for dynamic (triggered) changes. Here we will present a com-
bination of the two approaches, chiefly because such a combination
aligns very well with the semantic definition of causal ramifications
in the language � , based on inductive fixed point definitions. A ver-
sion of language � without ramifications is translated into Event Cal-
culus in [7]. We will provide the result of a mapping of a version of
� with ramifications defined semantically in [3] into Event Calculus.

Language � has two types of causal construct, one for direct ac-
tions (initiates, terminates) and another for expressing ramification
relationships between fluents (whenever). If the causal description
of a domain is expressed in terms of members 	 of the set of actions
and members 	 of the set of fluents, and C comprised of literals
��

� � ����� � � ��
 , then the direct action constructs 	 initiates 	 when�
, and 	 terminates 	 when

�
, can be mapped into classical logic

straightforwardly.

Initiates �U
�	 ��	W�4���QL (R1)�
������� HoldsAt
�	��Y�4���J> �

� ������� . HoldsAt
�	�� �4���

Terminates �0
�	 ��	W�4���/L (R2)�
� � ��� HoldsAt
�	 � �4���J> �

� � � ��� . HoldsAt
�	 � �4���

For domains described using ramification construct whenever of lan-
guage � , there arises a natural question over which class of domain
is to be represented. As an example, consider a domain description
with two ramifications: 	 � whenever . 	/� , and 	7� whenever 	 � .

This may arise in the description of a domain containing two logic
gates, one inverting the other not, connected back to back. In prac-
tice this would create an oscillating circuit having no steady state.
We wish to specify a class of domain that explicitly excludes do-
mains with such negative cycles. A suitable class of domains for this
purpose are those in which the fluents can be ordered in stratified lay-
ers, so that each stratum of fluents only depends on effects in layers
strictly lower. Although stratification assignment is not unique, any
correct choice of valid stratification is equivalent to any other correct
choice from a semantic standpoint.

A domain theory containing ramification statements 	 whenever�
, where C is comprised of literals

��
� � ����� � � �
 , is stratified in

terms of fluent effect arrangement, with direct actions at stratum level
0, and progressively propagated indirect effects at lower priorities
(higher indices). A stratum function ���J�!���)
* ��� � �;�4Z�8T����� is de-
fined to apply such an index to each fluent so as to make each stratum
dependent solely on fluents in the layer below.

Indirect triggering of fluents by actions is then expressed by
looking at the conditions under which whenever is triggered. Let	
�
7� and �6
�
7� be the following sub-formulae expressed in terms
of a single fluent variable
 .

	�

�
7��� � Initiates �������I
=8 ��
 �4��� (RM1)

	��
�
7��� � Terminates ��������
=8 ��
 �4��� (RM2)

��� 9
�
7��� � HoldsAt
�
 �4���/> (RM3)
./< 8 �
 Happens
=8 � �$���E> Terminates �������
=8 � ��
 �$�����
� � �
�
7��� � . HoldsAt
�
 �4���/> (RM4)
./< 8 �
 Happens
=8 � �$���E> Initiates �������+
=8 � ��
 �������

Propagated effects between fluents due to a whenever statement
will then occur under the trigger conditions expressed compactly in
RM5, where

 �
� � � �
 is a partition of

�
.

� � ��� ��"! � � �
/

�

�����# 	�

�	 �?> �
� ���%$ � � 9'
�	 ���/> (RM5)

 �
� � ���#

	��
�	 �E> �
� � ���%$ ��� �
�	 ���/�

Given the above specification of the triggering conditions for an
arbitrary whenever statement, we must now just specify the effect
to be propagated upon triggering. The case of effect literal

�
be-

ing atomic fluent 	 corresponds to RM6, while
�

being . 	 , to RM7.

Initiates ��� � �I
=8 � 	W�����KL �
(RM6)

Terminates ��� � �I
=8 ��	W�4���KL �
(RM7)

Causal domain closure must now be preformed by prioritized
parallel circumscription using the assigned stratification to express
a preference for minimizing firstly the effects of direct actions, and
subsequently the effects of successive levels of indirect actions.

��
'& � CIRC[R1-2, RM6-7; �T* % � % 8T��)��
 , ()
Z)� % *J8T��)��
 ;
�T* % � % 8 �4)��
'* � , ()
Z)� % *J8T��)��
�* � ,...,
�T* % � % 8 �4)���� , ()2Z)� % *J8T��)�� �]

All that now remains is to combine each stratum’s effect axiom into
a single pair of minimized causal predicates containing the complete

description of domain causality:

Initiates
=8 �I��9#�4��� , � Initiates �
=8 �I�;9��4���/- (RM8)
Initiates �
=8 �I� 9 �����/- � ����� �W- Initiates �Y
=8J��� 9 �4�����

Terminates
=8 �I� 9 �4��� , � Terminates �U
=8J��� 9 �4���Q- (RM9)
Terminates �
=8 ���;9#�4���/- � ����� ��- Terminates �
=8 �I�;9'�4�����

With the triggering of change of state now axiomatized, the static
component must be dealt with in terms of a constraint. For the case
where

�
corresponds to atom 	 , SC2 applies, while for its negation

. 	 , SC3 applies:

HoldsAt
�	W�4���KL (SC2)�
������� HoldsAt
�	��Y�4���J> �

� ������� . HoldsAt
�	�� �4���

. HoldsAt
�	W�4���KL (SC3)�
������� HoldsAt
�	��Y�4���J> �

� ������� . HoldsAt
�	�� �4���

The above described mapping from language � specifying ramifica-
tions, into classical logic can be proved to be sound and complete
with respect to � ’s semantics. A full proof has been undertaken as
part of other work, consisting of a direct mapping into Least Fixed
Point logic with an inductive model-theoretic proof to show corre-
spondence with a circumscribed classical-logic Event Calculus the-
ory similar to that described here.

6 Indirect Sensing through Ramifications

Unobservable fluents may still be important for their effect on the en-
vironment. Consequently there are occasions when we must use the
state of such unobservable fluents to determine further actions. When
this information is needed, it is possible to infer the state of the hid-
den fluent using the theory of ramifications after we know sufficiently
about the state of the associated fluent(s). This is the subject of the
next example.

First, the sensing action definition must be extended to only
permit sensing of fluents which are accessible in the environment.
We introduce a notion of time-varying observability for fluents:

Possible
��
)
*S�2)T
�� 9 �+�4���DL HoldsAt
=�)+
�
)
Z),T8-+;�:)T
�� 9 �+�4��� (SP2)

6.1 Example 1

On1

On2

Out

Figure 1: Unobservable output.

The purpose of Figure 1 is to illustrate the use of conditional sensing
actions chosen to allow an agent to infer the value of 5.�'� after sens-
ing just one of the two inputs, as long as this sensed input is found to

be inactive. If found to be active, then a second sensing action must
take place. Either way, the goal of knowing whether the output is
active is met.

There are two primary fluents: 56*�� and 56*�� , both of which
can be directly observed. The output is a derived fluent, which,
for the sake of example is specified to be unobservable. The goal
is a knowledge goal stating that the robot knows if the output
is active or not: HoldsAt
 kw
�5.�#���+���0� . Due to sensing being
the only action in this example, it is necessary to use just the
state constraint component of the ramification description. The
power of the knowledge axioms becomes immediately apparent,
with knowledge constraint KSC2 being generated automatically
from the domain constraint SC2 given by the domain axiomatization.

HoldsAt
�5.�'�;�$��� ,
(SC2)

�HoldsAt
�56*����I���E> HoldsAt
�56*��T�I�����

HoldsAt
����
�5.�'���+�4���KL (KSC2)
�HoldsAt
����
�56*	�
�+�����E> HoldsAt
����
�56*��0�+�������

Stating that the fluents 56*�� and 56*�� are observable:

HoldsAt
=�"+��
)2Z),T8 +��:)T
 On �
�+�4��� (FD1)

HoldsAt
=�"+��
)2Z),T8 +��:)T
 On ���+�4��� (FD2)

A two-action narrative is generated at plan time; a sensing action of
fluent 56*	� followed by a conditional sensing action of fluent 56*�� ,
contingent upon 56*	� having been found active:

Happens
��
)
*R�
)T
 On �2�+�
�
� (N3)

Happens
 % �R
 On ���+�
)2*S�
)T
�56*��0���+����� (N4)

Uniqueness-of-names axioms are:

UNA[On �], UNA[56*��] (UN2)

We can prove the knowledge goal by forming the parallel circum-
scriptions,

CIRC[SA1,CA1-2; �T* % � % 8T��)�� , ()
Z)� % *J8 �4)��],
CIRC[N3-4; ��82VUV!)2*S�], and
CIRC[CP1,SP2; �6�0�2� % +;�:)],

in conjunction with FD1, FD2, KSC2, UN2, knowledge axioms and
Event Calculus axioms already presented:

HoldsAt
 kw
 Out �+���U� (P10)

This result demonstrates that the conditional sensing plan for knowl-
edge acquisition in the domain of Figure 1 will always yield informa-
tion about the state of the unobservable output. However, depending
on the state of the first sensed fluent On � , the agent may not have to
sense On � at all.

7 Discussion and Conclusion

We have introduced a knowledge formalism and accompanied causal
ramifications into Event Calculus to allow an agent to represent its
knowledge of an environment sufficiently for reasoning about sens-
ing actions, conditional actions, and inference of environmental un-
knowns. While increasing the expressivity of the EC formalism does

allow for a wider range of problems to be represented, it also makes
the mapping into an efficient executable form more challenging. In
addition to [14], a promising approach is an amalgamated language
logic programming system permitting self-reference as described by
[1] and [4]. Future research plans also include augmenting language
� with knowledge, which will provide an alternative semantic de-
scription from which efficient executables can be generated.

ACKNOWLEDGEMENTS

Thanks to Rob Miller for many helpful discussions, and to the refer-
ees whose comments improved this paper.

REFERENCES
[1] Kenneth A. Bowen and Robert A. Kowalski, ‘Amalgamating language

and metalanguage in logic programming’, in Logic Programming, eds.,
Keith L. Clark and Sten-Åke Tårnlund, Academic Press, New York,
(1982).

[2] N. J. Davies, ‘A first order theory of knowledge, belief and action’,
in Proceedings of the 10th European Conference on Artificial Intel-
ligence, ed., Bernd Neumann, pp. 408–412, Vienna, Austria, (August
1992). John Wiley Sons.

[3] Antonios C. Kakas and Rob Miller, ‘Reasoning about actions, narra-
tives and ramifications’, volume 1(4). Linkping University Electronic
Press, (1997).

[4] Robert Kowalski and Jin-Sang Kim, ‘A metalogic programming ap-
proach to multi-agent knowledge and belief’, 231–246, (1991).

[5] Hector J. Levesque, ‘What is planning in the presence of sensing?’, in
Proceedings of the Thirteenth National Conference on Artificial Intelli-
gence and the Eighth Innovative Applications of Artificial Intelligence
Conference, pp. 1139–1146, Menlo Park, (August 4–8 1996). AAAI
Press / MIT Press.

[6] Sheila A. McIlraith and Richard Scherl, ‘What sensing tells us: Towards
a formal theory of testing for dynamical systems’, in Proceedings of
the 7th Conference on Artificial Intelligence (AAAI-00) and of the 12th
Conference on Innovative Applications of Artificial Intelligence (IAAI-
00), pp. 483–490, Menlo Park, CA, (July 30– 3 2000). AAAI Press.

[7] R. Miller and M. Shanahan, ‘The event calculus in classical logic - alter-
native axiomatisations’, Linkping Electronic Articles in Computer and
Information Science, 4(16), 1999., (1999).

[8] Robert C. Moore, ‘A formal theory of knowledge and action’, in For-
mal Theories of the Commonsense World, Ablex Publishing Corp., Nor-
wood, New Jersey, (1984).

[9] Leora Morgenstern, ‘Knowledge preconditions for actions and plans’,
in Proceedings of the National Conference on Artificial Intelligence,
pp. 867–874, Seattle, WA, (August 1987). (Also published in Readings
in Distributed Artificial Intelligence, Alan H. Bond and Les Gasser,
editors, pages 151–158, Morgan Kaufmann, 1988.).

[10] Richard B. Scherl and Hector J. Levesque, ‘The frame problem and
knowledge-producing actions’, in Proceedings of the Eleventh National
Conference on Artificial Intelligence, eds., Richard Fikes and Wendy
Lehnert, pp. 698–695, Menlo Park, California, (1993). American Asso-
ciation for Artificial Intelligence, AAAI Press.

[11] Murray Shanahan, ‘The event calculus explained’, Lecture Notes in
Computer Science.

[12] Murray Shanahan, Solving the frame problem: a mathematical investi-
gation of the common sense law of inertia, MIT Press, 1997.

[13] Murray Shanahan, ‘The ramification problem in the event calculus’, in
Proceedings of the 16th International Joint Conference on Artificial In-
telligence (IJCAI-99-Vol1), ed., Dean Thomas, pp. 140–146, S.F., (July
31–August 6 1999). Morgan Kaufmann Publishers.

[14] Murray Shanahan and Mark Witkowski, ‘High-level robot control
through logic’, Lecture Notes in Computer Science.

[15] Michael Thielscher, ‘Inferring implicit state knowledge and plans with
sensing actions’, in Proceedings of the German Annual Conference on
Artificial Intelligence (KI), eds., F. Baader, G. Brewka, and T. Eiter,
volume 2174 of LNAI, Vienna, Austria, (September 2001). Springer.

[16] R. Turner, Truth and Modality for Knowledge Representation, Pitman
Publishing: London, 1990.

