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Abstract.
This paperdescribesa novel applicationof active learningtech-

niquesin thefield of roboticgrasping.A vision-basedgraspingsys-
temhasbeenimplementedonahumanoidrobot.It is ableto compute
asetof feasiblegraspsandto executeany of themandmeasuretheir
actualreliability.

An algorithmaimedat predictingtheperformanceof anuntested
graspusingtheresultsobservedon previoussimilar attemptsis pre-
sented.Thepreviousexperienceis storedusinga setof vision-based
graspdescriptors.Moreover, asecondalgorithmthatactively selects
thenext graspto beexecutedin orderto improvethepredictivequal-
ity of theaccumulated experienceis introduced.

An exhaustivedatabaseof experimental datais collectedandused
to testandvalidatebothalgorithms.

1 INTRODUCTION

Manipulationis one of the most useful skills in any robot system
andconstitutesakey componentfor many roboticapplicationsonall
kind of areassuchasindustrial,medical,service,andspacerobotics.
In this paperwe focusin a subfieldof manipulationnamedfixturing
that consistsin the taskof restrainingor immobilizing objectswith
the fingers.We manipulateobjectsby cagingthemwith the fingers
and,then,usingtherobotarmto moveandorientthem.

Extensive researchon this field during the last two decadeshas
establisheda strongtheoreticalframework. However, most of this
researchhasbeenbasedon perfectmodelsor idealoperationalcon-
ditions. Theseassumptionsoften becomeunrealisticin real world
applications.

We facetheproblemof graspselection.Givena object,many dif-
ferent feasiblegrips can be performedon it, and it is thus critical
to characterizethequality of candidategrips in orderto executethe
mostreliableones.

The approach introducedin this paperusesexperienceof real
graspingactionsto tunethebehaviour andthereliability assessment
capabilitiesof thegraspingsystem.More specifically, we follow an
active learningapproach. According to this paradigm,the agentis
allowedto interactwith its environment. Morespecifically, it canex-
ecuteactionswhichhaveanimpactonthegenerationof trainingdata.
Exploration refersto theprocessof selectingactionsin active learn-
ing. In the framework of our problem,the actionsare the different
candidategrips,atagivenmoment.Actionsareselectedby theagent
in an“intelligent” way, in orderto minimizethecostanddurationof
thelearningprocess.
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Eachgrip is characterized by a setof vision-basedhigh-level fea-
tures[2] that measuredifferentaspectsrelatedwith the stability of
thegrip. This permitsto representeachgrip asa point in a multidi-
mensionalspace.

We present(sec.4) a procedureto predicta querypoint basedon
its similarity to its neighbours.Thisis acaseof instance-basedlearn-
ing, also known as memory-basedlearning [1]. Theseapproaches
do not constructanexplicit representationof themodelto be learnt
whentrainingsamplesareprovided,but simplystorethem,andbuild
themodelwhenaqueryis presented.

We alsopresentin sec.5 anexplorationalgorithmthatmakesuse
of the problemrepresentationpreviously definedto decidethe next
action,thegraspto beexecuted, in orderto obtainabetterknowledge
of theenvironmentwith alowercost,thatis,with aminimunnumber
of executions.

Finally, we carry out an experimentalvalidationof this methods
usingrealdatafrom repeatedgraspingactionsof the robot (sec.6).
We develop (sec.3.1)on therobota practicaltestfor measuringthe
reliability of a grip, and through it we collect an extensive set of
samplesfrom real graspingexecutions,and usethem to tune, test
andvalidateourmethods.Moreover, wealsodevelop.

2 PREVIOUS RESEARCH: BACKGROUND

This paperpresentspartial resultsof a larger project that aims to
provide an experimentalapproachto the graspingproblem.Within
this projectwe have implementeda robotic graspingsystemon the
UMasshumanoidtorso,at the Laboratoryfor PerceptualRobotics
in the University of Massachusetts[8]. This humanoidrobot con-
sistsof two Whole Arm Manipulatorsfrom Barrett Technologies,
two three-fingerBarretthandswith tactile sensorsat the fingertips
andaBiSight stereohead.

The stereovision systemestimatesthe two-dimensionallocation
of the target object on the table,and provides a monocularimage
for surfacecurvatureanalysis(see[6] for moredetails).Oncea grip
is selected(consistingof contact locationsanda handposture),the
handis preshapedandpositionedabove the object.It movesdown,
closesthefingerssothattheobjectis grasped,lifted andtransported
to adesignatedlocation.

Themainmodules/stepsof thefunctioningof thisroboticgrasping
systemarethefollowing:

1 Image processing:analyzesan imageof anunknown planarob-
ject,extractits contourandidentify tripletsof graspingregions;

2 Grip synthesis: determinesa numberof feasiblegraspsselecting
the graspingpoints for eachregion triplet; after that, generates
finger configurationsthat could actuallybe appliedto the object
in orderto performagrip action;

3 Grasp selection:performan ‘intelligent’ selectionof thegrip to
execute;



(a)Photo (b) Kinematics

Figure1. BarrettHand,http://www.barretttechnology.com

4 Execution: executethe grip with supportof visual and tactile
feedback.

The work presentedin this paperis mainly focusedon the third
step.Detailsabouttheothermodulesof a systemof this kind, con-
cernedwith thegeneration of candidategraspingconfigurations,are
givenin [5, 6], thoughin thenext subsectionswe introducethenec-
essarybackgroundconcepts.

2.1 Grasp synthesis

We definea grasp as the set of threecontact points on an object
contour, andthecorrespondingforcedirections,perpendicular to the
contour, whichmeetin thegraspforcefocus.Wecallhandconfigura-
tion eachpossiblegrip obtainedapplyingthekinematicsconstraints
of a robothandto agraspasdefinedabove. To avoid misunderstand-
ings, in all this text whenreferringto graspsandconfigurationsto-
gether, thetermgrip is used.

We assumea real-timesystemactingin anunstructuredenviron-
ment,whichdetectsunknown objectsand,throughanalysisof visual
data,selectsandexecutesastablegrip of suchobjects.

Fastcomputationis necessaryin orderto achieveareal-timeinter-
actionwith theexternalworld.Theability to copewith uncertainties,
in termsof knowledgeof friction coefficientsor visualandposition-
ing errors,is amustin anuncontrolledenvironment.

With a perfectly homogeneousthree-fingerhand,for which the
fingersareall thesame,thethreepossiblewaysof combiningfingers
with contactpointsin a grasparenot distinguishable.This is not the
casefor the Barrett Hand, for which the kinematicsof the thumb
is different from that of the othertwo fingers.A photoof the hand
is reproducedin Fig. 1(a). Its kinematics aredepicted in Fig. 1(b).
The handhasfour degrees of freedom:the threefinger extensions� ��� � �	� ��
 andthespreadangle� .

For eachgrasptherearethreepossiblepositionsof thethumb. Af-
ter decidingwhereto placethethumb,therearestill potentiallyinfi-
nitewaysof makingthehandtouchtheobjectat threecontactpoints.
However, when the action line of the thumb is fixed as well, only
onesolutionis possible.A one-dimensionalsearchalongall possible
thumbforcedirectionsgivesthebestBarrettHandconfigurationfor
agraspafterthethumbpositionhasbeendefined. Thus,everygrasp
ideally generatesthreedifferentconfigurations,onefor eachthumb
position.Whenno solutionsarefound for a thumbpositionwithin
a grasp,dueto theconstraintsderiving from thehandgeometryand
kinematics,nocorrespondingconfigurationsareproduced.

(a)Grasp (b) Config.1 (c) Config.2

Figure2. Generatingconfigurationsfrom agrasp

Typically, dozensof configurationscan be generatedfor an ob-
ject,mostlydependingon thenumberof regionsfound.In Fig. 2(b)
and2(c) two configurationsgeneratedfrom thegraspof Fig. 2(a)are
depicted.

3 GRASPCHARACTERIZATION SCHEME
AND RELIABILITY MEASUREM ENT

A characterization schemeto provide a way to describegraspsso
thatthey canbeusedby thelearningprocedureshasbeendeveloped.
Wehaveoptedfor aschemethatmeasuresasetof propertiesof each
grasp.In this way a graspwill be representedby n measurements
becominga point in an n-dimensionalspace.This schemeconsists
of nineof thesehigh-level featuresthathave beendesignedin order
to meetthenext requirements:

Vision-basedcomputation. The features are computed from
visually-extractedinformation.

Hand constraining. Featurestakeinto accountparticularcharacter-
isticsof thehand.

Location and orientation invariance. Displacementsandrotations
of theobjectdonotaffect thevaluesof thefeatures.

Object independence.Graspswith the samephysical properties
have the samecharacterization independently of the object for
which they arecomputed.

Physicalmeaning. Featuresare computed to measurephysical
propertiesrelevantto grasping.

Stability and reliability. Featuresconsiderstability andreliability
hazardsof agrasp.

To summarize,every grip is describedby a nine-elementstuple,
and therefore,can be abstractedas a point in a nine-dimensions
space.This spacewould containall the possiblegrip descriptors.
For furtherdetailsanda betterexplanation of all thedescriptorsthe
readeris referredto [2].

3.1 Experimental measurementof grasp reliability

A key issuein our experimentalapproachis thedefinitionof a prac-
tical measurementof the reliability of a grasp.In orderto do this a
singleobjectis placedon a tablewithin therobotworkspace.Using
visualinformationtherobotlocatestheobjectandcomputesa setof
feasiblegraspconfigurations.Oneof the configurationsis selected,
eithermanuallyby a humanoperator, or automaticallyby therobot,
andexecuted.

If therobothasbeenableto lift theobjectsafely, a setof stability
testsareappliedin sequence. Theseareaimedat measuringthesta-
bility of thecurrentgrasp.They consistof threeconsecutiveshaking



movementsof thehandwhichareexecutedwith anincreasingaccel-
eration.After eachmovementthe tactile sensorsareusedto check
whethertheobjecthasbeendroppedoff.

Thisprotocolprovidesuswith aqualitativemeasureof thesuccess
of agrasp.Thus,anexperimentmayresultin fivedifferentreliability
classes:E indicatesthat the systemwasnot ableof lifting the ob-
jectat all; D, C, B indicatethattheobjectwasdropped,respectively,
duringthefirst, second,or third seriesof shakingmovements;finally
A meansthe objectdid not fall andwasreturnedsuccessfullyto its
initial positionon thetable.Hence,wedefine ������ �����������������
asthesetof reliability classes.

4 PREDICTION SCHEME

Thelearningmethodologythatweproposeis composedof two main
components.Thefirst is apredictionschemethatcomputes themost
likely reliability classof anuntestedgrip, usingpreviousexperience
asreference.This componentassumestheexistenceof a setof pre-
viously executedgripshaving thevaluesof thedescriptorsandtheir
reliability classknown.

Thesecondcomponent,thatwill be referredasexplorationfunc-
tion, is responsibleof building suchsetof previousattemptsby suc-
cessiveselectionof themostappropriategrip candidates.In thissub-
sectionwe focuson thefirst component.

In theoreticaltermsa datasetof previousexperience is composed
of � executedtriplets. Eachgrip  �! ��" �$#&%�%�%�� is describedby
theninevisual features' ��� %�%�%�')( introducedin subsection3. The9-
dimensionalspace*,+ is formedby the rangesof the valuesof the
features.Moreover, we have also recordedthe performanceof the
grip andhaveassignedit to aclass-&!/.� for each �! .
4.1 Voting KNN classificationrule

A predictionfunction hasthe form 0213 546�87- where  9.:*;+ and7-<.= . Thereexists a wide bibliography on the building of such
functionsbasedontheBayesiandecisiontheory[3]. In thispaperwe
havechosentheapproachof thenonparametrictechniques,in partic-
ular the voting k-nearestneighbor(KNN) rule [4, 3], for modeling
this function.Thenonparametric techniquesdo not assumeany den-
sity distributionof thefeaturesandtheclasses.To predicttheclassof
a querypoint  ?> , theKNN rule countstheK-nearestneighborsand
choosestheclassthatmostoftenappears,themostvoted.

In our implementationwe have introducedsomemodificationsto
thebasicschema.Firstweusetheeuclideanmetricfor measuringthe
distancebetween thepointsin the *;+ . Weweightedthecontribution
of eachof theKNN pointsaccordingto itsdistanceto thequerypoint.
Thisgivesmoreimportanceto thecloserpoints.Thekernelfunction
usedis @A13BC4&� ��ED/FHGJILKNM , whereT is anadjustableparameter, andB
is thedistance.

We defineKNN13 ?>�4,�O�P1Q �! � -&!�4 ��" �O#R%�%�%�S �  �!T.�*;+ � -U! "WV  �
as the k closestpoints to  ?> and B5! their correspondingdistances
from  ?> . The probability correspondingto a class 7- arecomputed
usingthisexpression:

X 1Y7- �  ?>�4R� Z\[L]
KNN
F Z�^ M_ [�`&a_

@A13B5!W4Zcb	]
KNN
F Z�^ M @A13Bed	4 (1)

FunctionX is alsoanexpressionof theposteriorprobability[4]. To
conclude, ourpredictorwouldbeformally definedby theexpression0213 �>	4;�gfihj lk�fim _ ]ln � X 13- �  �>	4 � . That is, the classpredicted- is
theonewith thelargestprobability X 13- �  ?>�4 .

5 ACTIVE LEAR NING FOR EXPERIENCE
ACQUISITION

The goal of the explorationprocedureis to selectthe next graspto
executeamonga setof candidates.This selectionmustbe donein
orderto improve thepredictive capabilities of thestoredexperience,
i.e., thesetof alreadyexecutedgrasps.

The algorithm we proposeassumesthat at any point during the
training of the graspingsystema set of candidate grips  �!o.p*,+
is proposedandthealgorithmhasto selectthenext graspto beex-
ecuted.To accomplish this task,it takes into accountthe resultsof
previousexperiments.

Theapproachwe proposefor theselectionis inspiredin the idea
hinted by Thrun [7], “queriesare favored that have the leastpre-
dictableoutcome”.That is, thosecandidates which category is less
predictablearepreferred.This ideais basedontheintuition thatsuch
candidates arelocated in areaswheretheimplicit modelrepresented
by theexperiencedatasetis lessclear.

We implementthis idea by defining the term prediction confi-
dence. For every grip candidate �! , a class -&!�.q is computed
using the prediction schemedefinedin the previous section.The
confidenceof that prediction is simply X 13-&! �  �!�4 . In formal terms
the predictionconfidencefor a grip  �> is definedas 0srEtLu)vP13 ?>�4o�wyx�z � X 13-|{  ?>�4 �P� -}.� .

Once defined the notion of confidence, it is easy to describe
the exploration function. It choosesthe candidate with a mini-
mum confidencevalue.Given a set of k graspcandidates *T>~��� �J� %�%�% �  �� �;� *;+ , theexplorationfunctionis definedas,

0��E���P1\*�>	4�� argminZ [ ])��^ 0 ����� G 13 �!W4 (2)

Hereinafter, we will refer to this methodas the minimumconfi-
denceexploration, or simply therisk explorationfunction.

6 VALID ATION AND RESULTS

6.1 Experimental sampledataset

In order to acquirea sampledatabaselarge enoughto validatethe
proposedmethods,aseriesof exhaustiveexperimentshavebeencar-
riedout.

Four real objectshave beenbuilt for this experiment.Two with
simpleshapesandtwo with morecomplex shapes.In orderto build
the sampledatabase the four objectsarepresentedto the grasping
system,anda sufficiently large numberof grips areexecuted. The
reliability of thesegrips is obtainedapplying the test describedin
section3.1.

A particularexecutionof agrip configurationcanbeinfluencedby
many unpredictable factors.To avoid this problem,eachgrip is ex-
ecuteda sufficiently largenumberof times,by varying the location
and orientationin the presentationof the object. In this way, sta-
tistically significantconclusionscanbereached. A collateralconse-
quenceis thatthesamplesobtainedarenaturallygroupeddepending
on repeatedgrips.

Thenumberof feasiblegripsthatarecomputedfor eachsingleob-
ject is usually large,varying from several dozensto morethanone
hundred.Therepetitionabove mentionedcouldleadto a nonpracti-
calnumberof executions,sofor eachobjectonly afew configuration
gripsareselectedto beexecuted.This selectionconsistsof themost
representativeconfigurationsof eachobject.Eachconfigurationgrip
is executed12 times,4 timesfor threedifferentorientationsof the
object.



Table1. SAMPLE DATA SETS

E D C B A Total
51 97 56 38 118 360

14.2% 26.9% 15.6% 10.6% 32.8% (34)

Sampledistributionsamongclassesfor thesampledataset.Thefigurein
bracketsindicatesthenumberof differentgrip configurationsreally tested.

Morethanthreehundredsampleswereobtainedfrom thisexhaus-
tive experimentation.Table 1 shows the numberof different grips
executed andthe percentagesof grips that resultedin eachclassof . This sampledatabasesareusedastrainingdatais thevalidation
of thetwo learningalgorithms.

6.2 Validation of the prediction function

Two basicquestionsneedto beansweredaboutthepredictioncapa-
bilities of therulesdescribedin section4.1: first, is it ableto gener-
alizeacrossdifferentobjects?,andsecond,did we have enoughdata
to properlyconstructa function?To answerthesequestionswehave
developedacross-validationmethodnamedleave-one-grasp-outval-
idationsimilar to thewell known leave-one-outvalidationandn-fold
cross-validation[3]. This consistsof the following steps:1) given
the whole dataset,remove all the pointsof a particulargraspcon-
figurationandusethis subsetasvalidationset;2) usetheremaining
samplesfor predictingthe outcomesof the validationsetandcom-
putethemeanerror;3) repeatsteps1) and2) for all configurations.
The validationerror will be the meanerror of the iterationsof step
2). The reasonfor removing all the pointsof a configurationfrom
thedatasetis thatall thepointsof aparticularconfigurationarevery
closein the *,+ andtheKNN rulewouldbeaffectedby theminstead
of usingpointsof unrelatedconfigurations,fartherin *;+ .

Theerrormetricis basedon theconcept of misclassificationerror
distance. Thedistancebetween two consecutiveclassesis definedas
1, thatbetween A andC as2,etc.In thiswaydefinetheerrordistance� 13 ?>�4R���\� � %�%�% �W�C� for thepredictionof agivenquerygrip. Givena
setof predictions*����� �! ��" ��#R%�%�% V&� , wedefinetheaverageerror
metric 7� 1c*;4�� � 1Q �!�4\� � .

Table2 shows the resultsobtainedafter repeatingthe validation
procedureexplainedabove andaveragingthe resultingpercentages
for all the casesof classificationerror distance.The final column
shows theerrorvaluescomputedusingerrormetric 7� . Thevalueof
parameterS of KNN hasbeenexperimentally setto 31.Wecompare
theseresultsagainstthetheoreticalfiguresthatwouldbeobtainedby
a predictionmethodthatwould have chosenrandomlythepredicted
class.

Table2. FULL DATASET EXPERIMENT

0 1 2 3 4 7�
random 23.5% 26.2% 20.3% 20.7% 9.3% 0.415
knn 51.1% 21.7% 13.3% 11.1% 2.8% 0.223

Percentagesof misclassificationsdependingon theerrordistance.Distance0
indicatesthesuccessful classification rates.

Wearealsointerestedin thesensitivity of theerrorwith respectto
the sizeof the dataset.We cananalyze it by modifying the second
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Figure3. Evolutionof theerrorwhenthesizeof theavailabledataset
varies.TheSolid blackline representstheerrorsobtainedby theKNN

predictionmethod,while thedashedline is thethresholdof therandomerror.

stepof the leave-one-grasp-outvalidationprocedure.Insteadof us-
ing thewholeremainingdataset,we choserandomlya setof given
size.This introducesa randomfactor, andto reducetheeffectof this
randomnesswe repeatthis stepa sufficiently largenumberof times.
Figure3 shows theresultsof this experiment.Again, theresultsare
comparedagainst the resultsthat would be obtainedby a random
predictionfunction.

Two mainconclusionscanbedrawn from theseresults.First, the
proposedpredictionstrategy clearly improvesthe performanceof a
naiverandomselection.In addition,from a practical point of view,
when performinga strongly stochasticaction like graspingan un-
modeledrealobjectwith arobotichand,anerrorbetweentwo neigh-
bor classescanbe consideredacceptable,especiallyin the caseof
a falsenegative. Indeed,it meansthat the reliability of the graspis
only slightly betterthanthepredictedone.Takingthis into account,
thesumof errorsof distance0 (successfulclassifications)and1 (ac-
ceptableerror) is about72%.which is a quitegoodperformancefor
acomplex problemlike thisones.

Second,the error is reducedasthe sizeof the availabledataset
increases.Thesetwo conclusionsaresatisfactoryenoughto suggest
that this partof themethodologyis adequateandjustifiestheuseof
theexplorationprocedurein a furtherstep.

6.3 Validation of the exploration procedure

Theperformanceof theexploration/selectionprocedureis measured
by thepredictivecapability of thesetof samplesexecuted, which re-
liability classis known. This canbe easilymeasuredby using this
datasetto predictthe classof the samplescontainedin a secondary
validation test. We have designeda validation framework that fol-
lows this principle.We alsotake inspirationfrom therunningof the
robotin thetrainingenvironmentor in a learningexperiment.In this
situationtherobotwill executeasequenceof selection-executionac-
tions.Eachof theseactionswill follow thenext steps:

1. Oneor moreobjectsappearin the workspaceof the robot. The
graspsfor themarecomputed.Thesearethegraspcandidates

2. Therobotselectsoneof themby usingtheexplorationfunction.
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3. Thegraspis executed andthereliability testis applied.
4. Thenew graspandtheperformanceoutcomeareaddedto theex-

periencedataset.

For the executionof the validationalgorithm,we take the whole
sampledatasetavailableandextractasubset,validationdatasetfrom
it. Theremainingis usedasapooldataset. In asequenceof selection
steps,a small subsetof candidatesamplesare extracted randomly
from this pool. The explorationfunction, in our case,the minimum
confidence rule, is appliedto selectoneof thesecandidates.These-
lectedcandidate is addedto theexperiencedatasetandthediscarded
candidates arereturnedbackto thepool.Theperformancemeasure-
mentis doneby usingthesamplesin theexperiencedatasetfor pre-
dicting the samplesin the validation set. The sequenceis repeated
until thepooldatasetis emptiedor it containsfew samples.

This procedureis repeateda sufficient numberof times varying
thecontentsof thepool andvalidationdatasetsandtheperformance
measurementsfor eachsizeof theexperiencedatasetareaveraged.

Figure4 presentstheevolutionof thepredictionerrorfor different
sizesof the experience dataset, that is equivalent to the numberof
stepsof thealgorithmdescribedin theaboveparagraphs.In thiscase
thenumberof samplesthatareselectedascandidatesat eachstepis
20. The error metric usedis 7� . The graphin solid black line shows
theevolution of theerrorwhentheminimumconfidenceexploration
procedure(seesec.5) is used.Thegraphin dashedlinesshows the
evolution of the predictionerror whenthe sampleto executeis se-
lectedrandomlyamongthe setof candidates.This caserepresents
theevolutionwhennospecificexplorationrule is applied.

The resultsshown in this figure clearly indicatethat the explo-
rationfunctionproposedin this paperreachesin lessthana hundred
trials the samelevel of predictionperformancethan a randomun-
biasedselectionprocedurewould reachin morethantwo hundred.
This is agoodargumentin favor of usingthisexplorationprocedures
sinceit would save morethana hundredtrials, that is, morethana
hundredexecutions of the whole reliability test,with the saving in
time (abouttwo minutesperexecution) andmechanical wearing.

7 CONCLUSION

In thispaperwehavepresentedthedevelopment of a learningframe-
work for assessingrobot graspreliability. This framework is based

on two learningalgorithmsanda representationof thedatawhich is
built onagraspcharacterizationschemecomposedof ninehigh level
vision-baseddescriptors.

In this paperwe focuson the two learningalgorithms.The first
oneis aimedat predictingthereliability of anuntestedgrip from its
comparisonto previousrecordedattempts.Thisalgorithmmakesuse
of thevotingk-nearestneighbourrule to performsuchprediction.

Thesecondalgorithm,basedon the ideaof active learning,is an
explorationrule thathasto selectamonga setof candidate gripsthe
next oneto execute,having thegoalof improving thepredictiveper-
formanceof theaccumulatedexperience.

An experimental measurementof the reliability of a grasphave
beendeveloped andusedto gatheranexhaustive databaseof sample
grips.Severalvalidationframeworksthatmake useof this database,
havebeendesignedto testandvalidatetheusefulnessandproperties
of theproposedalgorithms.

Theresultshaveprovedthatthealgorithmsproposedin thispaper
areable to carry out the expected taskswith a reasonablelevel of
performance,despitetheunpredictablenatureof thetaskspace.

Moreover, the experimentaland practicalapproachfollowed in
this paperindicatesa path that servicerobotic applicationswilling
to be usedin every-dayhumanenvironmentscould walk. The in-
clusionof active learningschemesin robotsystemsis anappropriate
wayto improvetheiradaptabilityto unmodeled or partiallyunknown
environmentsand,thus,building realintelligentrobotsystems.
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