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Abstract. Recent studies have argued that natural vision systemfamiliar scenes and objects very fast. Bar argues that it is possible for
perform classification by utilizing different mechanisms dependinga higher-level visual component to receive a low-frequency (ep) r
on the visual input. In this paper we present a hybrid, data-driven obresentation of the scene (i.e. a blurred image) to use in fast decision
ject detection system that combines parts-based matching and viewraking. In our experiments we will show that in our system it is pos-
based attention for faster detection. We propose a simple compesible to train and evaluate the attention mechanism on low-frequency
itive policy that allows incremental addition of new object classesimages, without notable reduction in accuracy of the whole system.
to the system without requiring class-vs-class training. Using oufThis gives positive support for the LF hypothesis.
framework, we show empirical support for the hypothesis that low- Another interesting issue is the ability to learn to recognize ob-
frequency visual information can be effectively used to direct attenjects from only a few examples. From the viewpoint of learning the-
tion and possibly subsume further, more costly analysis. We evaluatery, this may be caused by suitable “bias” present in natural learners.
our approach on face and car detection problems, while concentratirgrevious work [11, 12] suggests that the fragment features used by
on the capability to learn from small samples. Our implementation iour parts-based component are well-biased towards visual detection
freely available as Matlab source code. tasks. We will show empirical support for this hypothesis by compar-
ing our method to some state-of-the-art black-box learning methods.
. To put our work in historical context, recent vision research sup-
1 Introduction ports the idea that natural perception is at least partly data-driven

Despite significant amount of research directed at devising analyti[-g’ 2, 7, 10]. Papers by e.g. Bar [2] and Torralba and Oliva [10]

. . - . show support for the idea that low-frequency or coarse statistical in-
cally good algorithms for various low-level tasks on images, it re- PP q Y

h . ormation could in some cases suffice for decision making. Lee and
mains unclear how the methods should be used to allow machines {\ﬂ g

succeed in high-level tasks such as object detection and image und%_umford [7] go even further and argue for hierarchical infereince

. . . . e cortex, where components of the visual system would be com-
standing. Meanwhile, the vision research community has been con-

. S . . . unicating with probabilistic information until convergence to some
verging towards emphasizing integration [9]. One major paradigm of. . .
ikely interpretation of the scene.

vision is that veridical perception arises from data- and expectation- On the side of object detection, a few systems have been recently

driven interaction of the various parts of the system. The individual oo .
ieces of the neural machinery may be operating reasonably only st roposed that use some type of data-dependent rejection mechanism
P ymay P 9 yonly 3, 5]. For example, the system of Viola and Jones [13] learns a

tistically [9] or converge to some solution relying on feedback from . . . .
. ; rejector cascade of simple wavelet-like features that can often skip
the other levels in the visual system [7, 2]. . . i
. ) ; . negative (non-class) image patches quickly.
In this paper we work towards integrating different types of meth- X . . . .
. . . ) Our system differs from the previous work in that it retains the
ods by proposing a system for object detection that combines slow - . ;
. . . . good aspects of the parts-based approach as in [11, 12] while being
parts-based matching with a fast attention mechahismour sys- . . S . -
. o - . faster and applicable in a multi-object setting. Like [13], our sys-
tem, the attention mechanism is used to quickly select in a dat

. . . . . Fem classifies easy examples faster than difficult ones. Unlike the
driven fashion and per-view basis what more precise further mecha Y P

. : . . - ._cascade method, however, our features range from simple to com-
nisms need to be activated, if any. We will empirically show how this . A . -
lex. Also, our empirical finding that attention could potentially be

mechanism is able to enhance detection and training speed signiﬁ- . . : L .
achieved with a very simple mechanism is of separate interest.

cfantly without gldverse. effects in accuracy. Also, we W”.l PTOPOSE & 10 rest of this paper is organized as follows. In section 2 we de-
ts;r:t%ﬁ (\:/\c/)imgﬁ?t::/:egoflgyc:tlgses)it\zg|::sf tsr)‘l'j;?r% t(?s\IrIg\L/j\/Iitr:gerli(\j\t/ gﬁ'_scrib_e our hypri_d methoq in detail and showju§tification fo_r the used
ject categories to be added to the system increrr’1entally It should t%re_dlctlon policies. Section 3 relates our experln_wgntal deS|gn_ and d_e-
. ) scribes the used datasets. We present our empirical results in section
noted that whereas the modular form and the policy of our system arg Finally, section 5 concludes with some future directions
fixed, the individual components are still estimated from the data, i.e.” ' '
learned statistically from labeled training examples.

Our system allows us to look for empirical support for an inter-
esting open problem in vision research. Recent work by Bar [2] ex- .
amines the question of how biological vision systems can classifi? 1 nehybrid method
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2.1 Robust detection module (RDM) (N —(t—1)) candidates against each of the 1 previously selected

L . . ones. The overall number of pairwise evaluations is
A parts-based mechanism is used to classify the most challenging P

images, i.e. those that require the most attention. It is a modification [ NI - 11 _ = 2dt ®)
of the scheme first proposed in [11, 12]. There, the mechanism is v 2 1
primarily intended to demonstrate, as a proof of concept, that interUsing a reasonable caching scheme, such a&/onp pair has to be

mediate complexity features are better suited to visual discriminatiorévaluated twice. and the number of such evaluations becomes
than low-level features such as simple wavelets. ' I

The learning algorithm extracfse N highly specific bitmap tem- ke = N(I-1)-— _11, (4)
plates (fragments) of object parts from the in-class training @ata 2
The modeling assumption is that characteristic spatial arrangemen®hen the values ofV and I are reasonable, it is easy to see that
of these parts determine the object class. The model is best suited feypically k1 >> ka.
semi-rigid objects (e.g., faces) having fairly rigid parts, (e.g., pyes  After selecting/ fragments, we use the fragments as binary fea-
In practice, each fragment is associated with the rough image Iotures (i.e., present or not) shown to a linear discriminator. The dis-
cation it was extracted from. The fragments are matched using nogriminator then classifies the images and is responsible for the output
malized cross-correlation. The degree of a match is compared to @f arobust detection module (RDM). The discriminator is learned us-
fragment-specific threshold: If the maximum match value around théng the same method as the attention controller that we describe in
rough location exceeds the threshold, the fragment is present. the next subsection. The attention module provides the sampling lo-
Fragments are selected for informativeness, as measured by clagations for RDM learning, and controls the activation of the RDM.
conditional entropy. The first fragmeft" is selected to maximize

2.2 Attention controller module (ACM)

An attention controller module (ACM) serves two purposes: it as-
whereH (C) denotes the Shannon entropy of the class, (@' F') sists in training the corresponding RDM by providing the required
is the class entropy given the status of the fragnfeig known (i.e.,  sampling locations, and controls the selective activation of the RDM.

H(C)— H(C|F), (1)

present or absent). Subsequently, we select the fraghiéhmaxi- Some intuitive requirements can be given for an attention mecha-
mizing the additional information nism: It should be able to make fast preliminary predictions, and give
. ) rates of confidence for the predictions. A reliable confidence estima-

min;<:(H(C|FY) — H(C|FY, F)). (@) tion is required for controlling the RDM. It might be of additional

interest if the attention model could be formulated in a neurally plau-
sible way. In the following, we will propose a simple linear attention

. S := image locations for promising candidate fragment&;n model to meet these requirements. _ S

. Fset := candidate fragments sampled around locations.in We use a global, view-based approach. Given a similarity mea-

3. For eachF; € F'set, choose the matching threshold that maxi- Sures(ii; x;) € R between two viewgx;, y;) and(x;, y;), where
mizes equation 1. x; € R" is a data vector ang; € {—1, 1} its binary affiliation w.r.t.

4. Build a binary occurrence tabte, in which O(i, j) = 1 iffthe =~ SOMe target clas:?i(e.g., “cars”), we can set up a class-membership
i:th candidate fragmen; occurs in thej:th image. Equations 1 function f.(x) : R* — {—1,1} as
and 2 can be evaluated usity

The greedy selection algorithm is

N -

5. Allocate a gain tablé&. The table will be incrementally filled in fe(x) = sign(z yis(xi, %)), ®)
the next loop withG (i, j) = H(C|F;) — H(C|Fjy, Fy). . ‘ .
6. Fort:=1toI, do Now f.(x) has a view-based form, but is slow to evaluate. How-

ChooseF® according to equations 1 and 2. Fill@as new gain ~ €Ver, it can be _shown (sec_a_e.g. [4]) that the expression is equivalen
estimates become available, and @& avoid re-evaluations of 10 @ dual form linear classifier,
equation 2 for known pairs.

J(x) = sign(wx +b) = sign(}_yiux x+b),  (6)

k3

Comparing the above to [11, 12], we see some differences: First,
we have replaced the brute-force search with an attention mechanism
that provides a sef of good sampling locations if, (elaborated in  if @ simple dot product is used as the similarity meastre.) be-
the next subsection). Second, we introduced a cétha speeding  tween the examples. In equations6e R is an estimated parameter
up the fragment selection loop. The attention mechanism lets us coi®f the model and the; € R™ reflect that not all views are neces-
centrate on far fewer candidate fragments than would otherwise b&arily weighted equally. The important point is that a single weight
possible. Hence, a simple static taldlebecomes a feasible cache. Vectorw € R? incorporates information from possibly all the given
Otherwise, it would be best to cache just the column minimgof ~€xample viewsc; and is still in essence view-based.
in terms of equation 2, we would then keep track of the “worst oppo- AN established way to learn such a hyperplane from labeled data
nent” of each candidate, making the algorithm a bit more complex. is to use the Support Vector Machine (SVM) framework [4]. We now

It is easy to see that caching (in any sane form) is useful, as evapriefly describe the SVM variant we used. With the previously de-
uating equation 2 is expensive, having a computational cost propofined notation andas the size of the training s&t, the optimization
tional to the size of the training data. In the following, we will briefly criteria for al-normsoft margin linear SVM can be specified as
analyze the effect of caching to the parts-based algorithm.

Let N = |Fset| be the initial number of candidate features and ~ Minimize: w, w'w+CY\_ &,

I be the number of features we desif¥ (>> I). After the first subject to yi(whxi +b) > 1—&, Vi,
iteration, we must use formula (2) and test each of the remaining & > 0,4,



put (i.e., it is also a linear machine having similar functional form).
We assume thaP(D|d,y) = P(Dly), i.e., the RDM output is in-
dependent of the ACM outpit the class is known. Without loss of
generality, we assume for notational simplicity that the confidence
regions of the ACM can be represented by a single vdlue R™,
i.e., the ACM is confident iffd| > T'. For brevity, we abbreviate
Figurel. A side view car image and the highlighted regions around the conditional probabilitiesP(A|B) as Pg(A), and the probability of
pixel locations inS, as given by the most significant coefficientsvof correctness a®(ok). Note thatP(ok|D,|d| < T) = P(ok|D),
because whe® becomes known, the system makes the prediction
based on that value alone. The probability of a correct prediction is

P(ok) = P(|d| > T)Pgj>7(ok) + P(ld| < T)Pp(ok).  (7)
We can view equation 7 as a functionBf
ace(T) = B(T)y(T) + (1 = B(T))é. ®)

WhenT grows, the evenfd| > T becomes less likely and(T") =
P(|d| > T) diminishes. Also, the nature of the data and the opti-
) mization criteria allows us to assume that the classification of exam-
ER o i : E ples havingd| > T becomes more accurate Bgrows, increasing
7(T) = Pg>1(ok) as well ( see figure 2). We observe that

Figure2. Distribution of distances from the discriminating view-bds o If 3T st.y(T) > 6 > ~(0), and5(T) > 0, then the hybrid
hyperplangw, b) on the car detection problem. accuracy exceeds both the RDM and ACM. The ACM becomes a

specialist of a subset of examples.

e With a smallefT’, we may have/(T") = ¢, and alargeB(T), thus
where{ € R are the slack variables related to misclassifying the  gaining speed without losing accuracy. In practitd’) > 0.4.
respective example, atl € R* a misclassification cost parameter ¢ We can sacrifice accuracy for speed by allowing a veryTowit.
given as input. The optimization attempts to find a regularized hy- ~(0) < ~(T) < 6.
perplane(w, b) separating the classes while allowing for occasional
classification errors, as controlled By For a more detailed descrip- Next, we extend the policy to detect multiple objects.
tion, see e.g. [4].

Empirically, it turns out thf’;\t thg estimated linear classi.(ier, b) 2.4 Extension to a multi-object setting

can be used for an ACM. First, it can work as an attention mecha-
nism in the learning phase, and the sampling locations for the RDMn a multi-object setting we have: object classes and a singie
can be found just by looking at the most significant coefficients ofobject class. Each of the: object classes has an ACM and a RDM
w. This is illustrated in figure 1. Second, the distance of each examtrained to discriminate the object from the object class.
ple from the separating hyperplane can be calculated efficiently and For our multi-object policy to work, the classes should be distinct
used as a confidence value. If the ACM is confident, the RDM doe€nough to allow coarse discrimination on the basis of low-frequency
not have to be activated. Evidence for this behavior can be seen in figaformation. However, many conceivable classes differ also in their
ure 2, which shows the distribution of case distances from a learneéetails. A typical RDM searches for highly specific object parts, such
hyperplane in a car detection problem. Although the linear classifieas car tires, which seldom appear in other classes. Thus, this property
cannot separate the classes perfectly, the distributions are suitable fofthe domain allows us to potentially skip class-vs-class -training.
the use of simple thresholding to determine regions where the classi- Each of them ACMs must select an answer from the set
fier is accurate, and where it will abstain and defer to the RDM. The{yes, abstain,no}. Each activated RDM selects frofyes, no}.
thresholds could be estimated from a separate tuning set, but here Wwée mutually exclusive detection policy is as follows,

used the medians of the distances of the examples in the training set. o .
1. If all m ACMs sayno, thenprediction =no object.

L . . ) 2. Else, if a single ACM saysyes, thenprediction = j.
2.3 Detection in a single-object setting 3. Else, if more than one ACM saygs, the predicted class is se-
The ACM and RDM modules should be combined in a disciplined €ctéd randomly from the positive matches (practically rare).
way that allows high accuracy and speed. We will first propose & Else, letA be the set.of object classes whpse ACMs abstalned: For
detection policy for a single object case: each cla_ssﬁ € A, activate the correspond_lng RDM gnd determine

the predicted class: If all sayo, thenno object. Else, if more than

1. The object-specific ACM sees an image and makes a prediction. oneyes, randomize among the positive matches (practically rare).
2. If the ACM is not confident, it abstains and activates the corre- Else, the singlges determines the prediction.

sponding RDM, which chooses the final prediction. Else, the pre- ) i
diction of the ACM is final. To allow analysis, we must elaborate. We denote the object classes

asl,...,m, andno object as —1. Class priors are”(:) > 0 for
The analysis is straightforward. Lé{x) = w”x + b stand for the  all classesi. The eventd; > T; means ACM predictsyes, and
raw ACM output. We abbreviate this hf becausex is not used di- d; < —7; meansno. Else, ACM abstains. The eventsD; > 0
rectly in the following. Similarly, letD stand for the raw RDM out- andD; < 0 for the RDMs are interpreted the same way. Classifier



outputs are assumed independent if the class is known. To simplifwhere (23) resulted from substituting the bound (15) into (22). The
the analysis, we pessimistically assume that the randomized predioew termP;" (ok) is the probability that a pure RDM committee pre-
tions are always wrong. An image is classified correctly iff one of thedicts correctly if the true class is> 0. Finally, substituting (18) into

following conditions is true, (11) gives the corresponding result for theobject class
e An obj.ectz'.is detectedagt, if .di.> T; andVj # i = d; < Tj. P_y(ok) > P*(ok). (26)
e An object is detectedlowly, if first |d;| < T; and thenD; > 0,
andVyj # i = d; < T; andVj # i, RDM; active= D; < 0. Substituting (25) and (26) into (9) shows that if the bounds (15)
e A non-object is dismissed, i.e., no module sgys. and (16) hold, the hybrid is more accurate than a pure RDM commit-

i fth | , f .
AbbreviatingP,(D; > 0) asP;(D;), we get tee. If the bounds are relaxed, we can trade accuracy for speed

Plok) = Xliso P()Pi(ok) + P(=1)P-1(ok)  (9) 3 Experimental design
Pi(ok) = Pi(d; > T3)Ri + Pi(|di| < T3)Pi(D;)Dis; (10 .
(ok) ( VB + Pi(|di| ) )Pi(Di)Dis; (10) We evaluated our method on two different problems: car and face
P-1(ok) = l_[j>0 P(dis;) (11) detection. The car data from Agarwal and Roth [1] has about 1000
R; = [js0, 0 Pild; <Tj) (12)  gray-scale images ih00 x 40 resolution. Our face dataset is more
Dis; = 1,505 Pildis;) (13)  complicated, as we randomly sampled the face images from the AR

dataset [8] which we then embedded on larger backgrounds sampled
from the BiolD database [6], which we also used for the non-face im-
where the (dismissaljis; means there is no false detection of class ages. This was to make the problem more challenging for our hybrid
j. Next, we prove that the policy may, in principle, exceed the accumethod. The modified face dataset has ali®Q0 gray-scale images

Pi(disj) = 1—Pi(d; >Tj;) — Pi(|dj‘ < T;)Pi(Dj), (14)

racy of a committee of RDMs. in 200 x 40 resolution. Both datasets were balanced to contain ap-
We make some reasonable assumptions about the thresholgwoximately equal amount of in-class and out-class images.
Well-behaved ACMs haveé’;(d; > T;) << P;(d; < —Tj), and To evaluate the low-frequency hypothesis, we performed two ex-
P;(d; < —Tj) > 0. In addition,P;(d; > T;) < P;(D; > 0),i.e.,  periments, where we convolved the images with Gaussian filters.
increasindl; can make early false detections rare. If the accuracies-irst, we used & x 7 mask with standard deviation = 1. In the
of the RDMs are limited by (let > 0,5 # i) second experiment, we applied a 9 mask witho = 2 for heavier
Pi(di > T)) blurring. The blurring approximates discarding high-frequency infor
Pi(D;) < (15) mation. Unlike the ACM, the RDM was allowed to use the original

Pildi < =T0) + Pi(di > T0) data, as is acceptable from the viewpoint of the LF hypothesis.

Pi(Dy) PZ(dJ—>T])7 (16) In the following, we use some abbreviations. Al is our hybrid ap-

Pi(dj < —Tj)—¢ proach where the ACM is used only for the selection of fragments

then the hybrid exceeds the accuracy of the committee of RDMs. T# the learning phase. A2 is the same, except that the ACM is also
see this, we first take the trivial inequality (agaig j) used in the evaluation phase for fast classification of easy instances.

RP is a pure RDM that selects fragments from a random set of can-
Pi(D;) > |Pi(ld;| <Tj) + Pi(d; < =Tj) — 6} Pi(Dj). (17)  didates sampled from the in-class data. When RP is compared to the
hybrid, the random set size equals the size offiket used by the
hybrid. SVM1 and SVM2 are linear and second-order polynomial
soft margin Support Vector Machines, respectively. For both, ved us
P;(dis;) > Pi(D; < 0). (18)  cost-constrainC = 1. RF80 denotes Random Forests [3] using 80
full-grown decision trees. These three methods are state-of-the-art
machine learning algorithms and operate here on raw image data.
Dis; = H Pi(dis;) > H Pi(D; < 0) = Dis;. (19) The settings .of the components pf the hybrid metr_]od were as fol-
500 502 lows. The candidate fragment size in all RDMs was fixed@o< 16
. . o . pixels and the number of fragmeniswas set50. For the ACMs,
The new termDis; IS the probability that the |nd|V|_duaI machines of we chose the locations of the 60 most significant coefficients (out
apure RDM commm_ee do not mal_<e falsz_e dete_ctlons. . of over4000) of w as the seed locations. The RDM subsequently
Next, performing simple al_gebralc manipulation of the assumpt'onsampled 5 fragment candidates from each location (i.e., it chose 5
Fi(d; > T;) < Pi(D; > 0) yields positive images randomly, and from each, extracted a fragment cen-
Pi(d; < T;) > P;(D; < 0). (20) tered on the seed pixel). We chose the thresholds of the confidence
. . . regions by simply selecting the medians{ef(x;) : y; = 1} and
Using (20), we immediately see that {d(x:) : y: = —1} calculated from the training set.
Ri = H Py(d; <T;) > H P,(D; < 0) = Dis?. (21) The results reported Qes_cribe percentage-gorrect accuradies on
50 550 verted 10-fold cross-validation. Instead of usir(@ — 1)/n of the
. ) . ) ) data for training and /n for testing as per iteration in normatfold
Substituting the inequalities (19,21) into (10) yields cross-validation, we inverted the roles of the training and testing sets
Pi(ok) > [Pi (di > T:) + Pi(|ds| < Ti)Pi(Di)] Dis: (22) to measure how the met.hods could !earn from small trailning.samples.
For testing the hybrid method in a multi-object situation, we
> [pi(‘d” >T) + Pi(|di| < Ti)]Pi(Di)DiS;‘ (23)  cropped the face data to the same resolution as the car data. Then,
for each fold of the inverted cross-validation, we trained both car and
= Pi(Di)Dis; (24) face detectors with their respective, disjoint training folds. To create
P} (ok), (25) the respective test fold, we combined the disjoint test folds of that

Multiplying (17) by —1, addingl to both sides, and finally substitut-
ing bound (16) yields

It immediately follows from (18) that



of the RDMs was required, and for the remainihy3, both RDMs
were executed. The usage frequencies of the RDMs were nearly sym-
metric for both object classes. A calculation similar to (27) shows
that in this problem A2 is expected to take abé0¥% of the time
required by a pure RDM commitee.

Finally, the results of the LF experiment are shown in the lower
half of table 1. It can be seen that blurring the data caused only
graceful degradation for all of the methods. This supports the LF
hypothesis, and that to some extent general visual categories might
iteration into one three-class fold. The combined set was then usdok recognizable with LF information alone. Also, if the ACM is used
to evaluate the A2, now using the multi-object policy of subsectionin lower resolution, the hybrid speed advantage is emphasized.

2.4. The multi-class results of the other methods were obtained using
multiple binary classifiers andane-against-all wrapper.

FiN - iD=

Figure3. Some example fragments A2 extracted from faces and cars.

5 Conclusion

We proposed a hybrid, multi-class object detection system combin-
ing parts-based matching with fast attention, and showed empirical
Our results are shown in table 1. In the car problem, Al using thesupport for the hypothesis that low-frequency visual data could be
attentive mechanism has similar accuracy to RP, the basic parts-basesed for attention.

method. In the face problem, A1 seems to have an advantage over RP.It would be interesting to evaluate our method and policy on
Here, the actual face area is small compared to the background aredgtasets with more different object classes, possibly revealing prac-
while the car images contain relatively little background. The precisdical weaknesses in our policy, such as scalability issues. Perhaps a
framing of the selected parts does not matter much (see figure 3jnore dynamic policy could be estimated from data. Also, the expres-
Attentive selection seems useful when there is more to select fronsive power of the current system is somewhat limited. It is clear that
i.e., when the important parts do not dominate the images. At leasthe RDM is unsuitable for classifying textures or deformable shapes
there are no apparent disadvantages. that have no rigid parts. In addition, it has no explicit internal mech-
anisms for handling rotation or scaling. ACM, on the other hand,

4 Results

Table1l. Inverted 10-fold cross-validation accuracies. requires centered training data. A possible future direction would be
to use the RDM module to select, label and center the data while
Al A2 RP SVM1 SVM2 RF80 training the ACM module. Finally, both RDM and ACM are batch
Cars ~ 0.9681  0.9702  0.9506 0.9263 0.9378 0.9247  methods that might be replaceable by on-line algorithms.
Faces 0.9679 0.9691 0.9303 0.9019 0.8787 0.9224
Multi - 0.9483 - 0.9030 0.9009 0.9190
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