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Abstract. Recent studies have argued that natural vision systems
perform classification by utilizing different mechanisms depending
on the visual input. In this paper we present a hybrid, data-driven ob-
ject detection system that combines parts-based matching and view-
based attention for faster detection. We propose a simple compet-
itive policy that allows incremental addition of new object classes
to the system without requiring class-vs-class training. Using our
framework, we show empirical support for the hypothesis that low-
frequency visual information can be effectively used to direct atten-
tion and possibly subsume further, more costly analysis. We evaluate
our approach on face and car detection problems, while concentrating
on the capability to learn from small samples. Our implementation is
freely available as Matlab source code.

1 Introduction

Despite significant amount of research directed at devising analyti-
cally good algorithms for various low-level tasks on images, it re-
mains unclear how the methods should be used to allow machines to
succeed in high-level tasks such as object detection and image under-
standing. Meanwhile, the vision research community has been con-
verging towards emphasizing integration [9]. One major paradigm of
vision is that veridical perception arises from data- and expectation-
driven interaction of the various parts of the system. The individual
pieces of the neural machinery may be operating reasonably only sta-
tistically [9] or converge to some solution relying on feedback from
the other levels in the visual system [7, 2].

In this paper we work towards integrating different types of meth-
ods by proposing a system for object detection that combines slow
parts-based matching with a fast attention mechanism2. In our sys-
tem, the attention mechanism is used to quickly select in a data-
driven fashion and per-view basis what more precise further mecha-
nisms need to be activated, if any. We will empirically show how this
mechanism is able to enhance detection and training speed signifi-
cantly without adverse effects in accuracy. Also, we will propose a
simple competitive policy to extend our system to multi-object de-
tection without need for class-vs-class training, allowing new ob-
ject categories to be added to the system incrementally. It should be
noted that whereas the modular form and the policy of our system are
fixed, the individual components are still estimated from the data, i.e.
learned statistically from labeled training examples.

Our system allows us to look for empirical support for an inter-
esting open problem in vision research. Recent work by Bar [2] ex-
amines the question of how biological vision systems can classify
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familiar scenes and objects very fast. Bar argues that it is possible for
a higher-level visual component to receive a low-frequency (LF) rep-
resentation of the scene (i.e. a blurred image) to use in fast decision
making. In our experiments we will show that in our system it is pos-
sible to train and evaluate the attention mechanism on low-frequency
images, without notable reduction in accuracy of the whole system.
This gives positive support for the LF hypothesis.

Another interesting issue is the ability to learn to recognize ob-
jects from only a few examples. From the viewpoint of learning the-
ory, this may be caused by suitable “bias” present in natural learners.
Previous work [11, 12] suggests that the fragment features used by
our parts-based component are well-biased towards visual detection
tasks. We will show empirical support for this hypothesis by compar-
ing our method to some state-of-the-art black-box learning methods.

To put our work in historical context, recent vision research sup-
ports the idea that natural perception is at least partly data-driven
[9, 2, 7, 10]. Papers by e.g. Bar [2] and Torralba and Oliva [10]
show support for the idea that low-frequency or coarse statistical in-
formation could in some cases suffice for decision making. Lee and
Mumford [7] go even further and argue for hierarchical inferencein
the cortex, where components of the visual system would be com-
municating with probabilistic information until convergence to some
likely interpretation of the scene.

On the side of object detection, a few systems have been recently
proposed that use some type of data-dependent rejection mechanism
[13, 5]. For example, the system of Viola and Jones [13] learns a
rejector cascade of simple wavelet-like features that can often skip
negative (non-class) image patches quickly.

Our system differs from the previous work in that it retains the
good aspects of the parts-based approach as in [11, 12] while being
faster and applicable in a multi-object setting. Like [13], our sys-
tem classifies easy examples faster than difficult ones. Unlike the
cascade method, however, our features range from simple to com-
plex. Also, our empirical finding that attention could potentially be
achieved with a very simple mechanism is of separate interest.

The rest of this paper is organized as follows. In section 2 we de-
scribe our hybrid method in detail and show justification for the used
prediction policies. Section 3 relates our experimental design and de-
scribes the used datasets. We present our empirical results in section
4. Finally, section 5 concludes with some future directions.

2 The hybrid method

The hybrid method presented in the current paper combines the ad-
vantages of quick view-based classification with a more accurate
parts-based matching. We will describe the parts-based module first.



2.1 Robust detection module (RDM)

A parts-based mechanism is used to classify the most challenging
images, i.e. those that require the most attention. It is a modification
of the scheme first proposed in [11, 12]. There, the mechanism is
primarily intended to demonstrate, as a proof of concept, that inter-
mediate complexity features are better suited to visual discrimination
than low-level features such as simple wavelets.

The learning algorithm extractsI ∈ N highly specific bitmap tem-
plates (fragments) of object parts from the in-class training dataTp.
The modeling assumption is that characteristic spatial arrangements
of these parts determine the object class. The model is best suited for
semi-rigid objects (e.g., faces) having fairly rigid parts, (e.g., eyes).

In practice, each fragment is associated with the rough image lo-
cation it was extracted from. The fragments are matched using nor-
malized cross-correlation. The degree of a match is compared to a
fragment-specific threshold: If the maximum match value around the
rough location exceeds the threshold, the fragment is present.

Fragments are selected for informativeness, as measured by class
conditional entropy. The first fragmentF (1) is selected to maximize

H(C) − H(C|F ), (1)

whereH(C) denotes the Shannon entropy of the class, andH(C|F )
is the class entropy given the status of the fragmentF is known (i.e.,
present or absent). Subsequently, we select the fragmentF (t) maxi-
mizing the additional information

minj<t(H(C|F (j)) − H(C|F (j), F (t))). (2)

The greedy selection algorithm is

1. S := image locations for promising candidate fragments inTp.
2. Fset := candidate fragments sampled around locations inS.
3. For eachFi ∈ Fset, choose the matching threshold that maxi-

mizes equation 1.
4. Build a binary occurrence tableO, in which O(i, j) = 1 iff the

i:th candidate fragmentFi occurs in thej:th image. Equations 1
and 2 can be evaluated usingO.

5. Allocate a gain tableG. The table will be incrementally filled in
the next loop withG(i, j) = H(C|Fi) − H(C|Fj , Fi).

6. Fort := 1 to I, do
ChooseF (t) according to equations 1 and 2. Fill inG as new gain
estimates become available, and useG to avoid re-evaluations of
equation 2 for known pairs.

Comparing the above to [11, 12], we see some differences: First,
we have replaced the brute-force search with an attention mechanism
that provides a setS of good sampling locations inTp (elaborated in
the next subsection). Second, we introduced a cacheG for speeding
up the fragment selection loop. The attention mechanism lets us con-
centrate on far fewer candidate fragments than would otherwise be
possible. Hence, a simple static tableG becomes a feasible cache.
Otherwise, it would be best to cache just the column minima ofG:
in terms of equation 2, we would then keep track of the “worst oppo-
nent” of each candidate, making the algorithm a bit more complex.

It is easy to see that caching (in any sane form) is useful, as eval-
uating equation 2 is expensive, having a computational cost propor-
tional to the size of the training data. In the following, we will briefly
analyze the effect of caching to the parts-based algorithm.

Let N = |Fset| be the initial number of candidate features and
I be the number of features we desire (N >> I). After the first
iteration, we must use formula (2) and test each of the remaining

(N−(t−1)) candidates against each of thet−1 previously selected
ones. The overall number of pairwise evaluations is

k1 ≈ N
I − 1

2
I −

Z I−1

1

t2dt (3)

Using a reasonable caching scheme, such as ourG, no pair has to be
evaluated twice, and the number of such evaluations becomes

k2 = N(I − 1) −
I − 1

2
I. (4)

When the values ofN and I are reasonable, it is easy to see that
typically k1 >> k2.

After selectingI fragments, we use the fragments as binary fea-
tures (i.e., present or not) shown to a linear discriminator. The dis-
criminator then classifies the images and is responsible for the output
of arobust detection module (RDM). The discriminator is learned us-
ing the same method as the attention controller that we describe in
the next subsection. The attention module provides the sampling lo-
cations for RDM learning, and controls the activation of the RDM.

2.2 Attention controller module (ACM)

An attention controller module (ACM) serves two purposes: it as-
sists in training the corresponding RDM by providing the required
sampling locations, and controls the selective activation of the RDM.

Some intuitive requirements can be given for an attention mecha-
nism: It should be able to make fast preliminary predictions, and give
rates of confidence for the predictions. A reliable confidence estima-
tion is required for controlling the RDM. It might be of additional
interest if the attention model could be formulated in a neurally plau-
sible way. In the following, we will propose a simple linear attention
model to meet these requirements.

We use a global, view-based approach. Given a similarity mea-
sures(xi,xj) ∈ R between two views(xi, yi) and(xj , yj), where
xi ∈ R

k is a data vector andyi ∈ {−1, 1} its binary affiliation w.r.t.
some target classc (e.g., “cars”), we can set up a class-membership
functionfc(x) : R

d → {−1, 1} as

fc(x) = sign(
X

i

yis(xi,x)), (5)

Now fc(x) has a view-based form, but is slow to evaluate. How-
ever, it can be shown (see e.g. [4]) that the expression is equivalent
to a dual form linear classifier,

f(x) = sign(wT
x + b) = sign(

X

i

yiαix
T
i x + b), (6)

if a simple dot product is used as the similarity measures(., .) be-
tween the examples. In equation 6,b ∈ R is an estimated parameter
of the model and theαi ∈ R

+ reflect that not all views are neces-
sarily weighted equally. The important point is that a single weight
vectorw ∈ R

d incorporates information from possibly all the given
example viewsxi and is still in essence view-based.

An established way to learn such a hyperplane from labeled data
is to use the Support Vector Machine (SVM) framework [4]. We now
briefly describe the SVM variant we used. With the previously de-
fined notation andl as the size of the training setT , the optimization
criteria for a1-normsoft margin linear SVM can be specified as

minimizeξ,w,b w
T
w + C

Pl

i=1 ξi,
subject to yi(w

T
xi + b) ≥ 1 − ξi, ∀i,

ξi ≥ 0, ∀i,



Figure 1. A side view car image and the highlighted regions around the
pixel locations inS, as given by the most significant coefficients ofw.
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Figure 2. Distribution of distances from the discriminating view-based
hyperplane(w, b) on the car detection problem.

whereξ ∈ R are the slack variables related to misclassifying the
respective example, andC ∈ R

+ a misclassification cost parameter
given as input. The optimization attempts to find a regularized hy-
perplane(w, b) separating the classes while allowing for occasional
classification errors, as controlled byC. For a more detailed descrip-
tion, see e.g. [4].

Empirically, it turns out that the estimated linear classifier(w, b)
can be used for an ACM. First, it can work as an attention mecha-
nism in the learning phase, and the sampling locations for the RDM
can be found just by looking at the most significant coefficients of
w. This is illustrated in figure 1. Second, the distance of each exam-
ple from the separating hyperplane can be calculated efficiently and
used as a confidence value. If the ACM is confident, the RDM does
not have to be activated. Evidence for this behavior can be seen in fig-
ure 2, which shows the distribution of case distances from a learned
hyperplane in a car detection problem. Although the linear classifier
cannot separate the classes perfectly, the distributions are suitable for
the use of simple thresholding to determine regions where the classi-
fier is accurate, and where it will abstain and defer to the RDM. The
thresholds could be estimated from a separate tuning set, but here we
used the medians of the distances of the examples in the training set.

2.3 Detection in a single-object setting

The ACM and RDM modules should be combined in a disciplined
way that allows high accuracy and speed. We will first propose a
detection policy for a single object case:

1. The object-specific ACM sees an image and makes a prediction.
2. If the ACM is not confident, it abstains and activates the corre-

sponding RDM, which chooses the final prediction. Else, the pre-
diction of the ACM is final.

The analysis is straightforward. Letd(x) = w
T
x + b stand for the

raw ACM output. We abbreviate this byd, becausex is not used di-
rectly in the following. Similarly, letD stand for the raw RDM out-

put (i.e., it is also a linear machine having similar functional form).
We assume thatP (D|d, y) = P (D|y), i.e., the RDM output is in-
dependent of the ACM outputif the class is known. Without loss of
generality, we assume for notational simplicity that the confidence
regions of the ACM can be represented by a single valueT ∈ R

+,
i.e., the ACM is confident iff|d| > T . For brevity, we abbreviate
conditional probabilitiesP (A|B) asPB(A), and the probability of
correctness asP (ok). Note thatP (ok|D, |d| < T ) = P (ok|D),
because whenD becomes known, the system makes the prediction
based on that value alone. The probability of a correct prediction is

P (ok) = P (|d| > T )P|d|>T (ok) + P (|d| < T )PD(ok). (7)

We can view equation 7 as a function ofT :

acc(T ) = β(T )γ(T ) + (1 − β(T ))δ. (8)

WhenT grows, the event|d| > T becomes less likely andβ(T ) =
P (|d| > T ) diminishes. Also, the nature of the data and the opti-
mization criteria allows us to assume that the classification of exam-
ples having|d| > T becomes more accurate asT grows, increasing
γ(T ) = P|d|>T (ok) as well ( see figure 2). We observe that

• If ∃T s.t. γ(T ) > δ > γ(0), andβ(T ) > 0, then the hybrid
accuracy exceeds both the RDM and ACM. The ACM becomes a
specialist of a subset of examples.

• With a smallerT , we may haveγ(T ) = δ, and a largerβ(T ), thus
gaining speed without losing accuracy. In practiceβ(T ) > 0.4.

• We can sacrifice accuracy for speed by allowing a very lowT s.t.
γ(0) < γ(T ) < δ.

Next, we extend the policy to detect multiple objects.

2.4 Extension to a multi-object setting

In a multi-object setting we havem object classes and a singleno
object class. Each of them object classes has an ACM and a RDM
trained to discriminate the object from theno object class.

For our multi-object policy to work, the classes should be distinct
enough to allow coarse discrimination on the basis of low-frequency
information. However, many conceivable classes differ also in their
details. A typical RDM searches for highly specific object parts, such
as car tires, which seldom appear in other classes. Thus, this property
of the domain allows us to potentially skip class-vs-class -training.

Each of them ACMs must select an answer from the set
{yes, abstain, no}. Each activated RDM selects from{yes, no}.
The mutually exclusive detection policy is as follows,

1. If all m ACMs sayno, thenprediction =no object.
2. Else, if a single ACMj saysyes, thenprediction = j.
3. Else, if more than one ACM saysyes, the predicted class is se-

lected randomly from the positive matches (practically rare).
4. Else, letA be the set of object classes whose ACMs abstained. For

each classi ∈ A, activate the corresponding RDM and determine
the predicted class: If all sayno, thenno object. Else, if more than
oneyes, randomize among the positive matches (practically rare).
Else, the singleyes determines the prediction.

To allow analysis, we must elaborate. We denote the object classes
as1, . . . , m, andno object as−1. Class priors areP (i) > 0 for
all classesi. The eventdi > Ti means ACMi predictsyes, and
di < −Ti meansno. Else, ACMi abstains. The eventsDi > 0
andDi < 0 for the RDMs are interpreted the same way. Classifier



outputs are assumed independent if the class is known. To simplify
the analysis, we pessimistically assume that the randomized predic-
tions are always wrong. An image is classified correctly iff one of the
following conditions is true,

• An objecti is detectedfast, if di > Ti and∀j 6= i ⇒ dj < Tj .
• An object is detectedslowly, if first |di| < Ti and thenDi > 0,

and ∀j 6= i ⇒ dj < Tj and ∀j 6= i, RDMj active⇒ Dj < 0.
• A non-object is dismissed, i.e., no module saysyes.

AbbreviatingPi(Di > 0) asPi(Di), we get

P (ok) =
P

i>0 P (i)Pi(ok) + P (−1)P−1(ok) (9)

Pi(ok) = Pi(di > Ti)Ri + Pi(|di| < Ti)Pi(Di)Disi (10)

P−1(ok) =
Q

j>0 P−1(disj) (11)

Ri =
Q

j>0:j 6=i Pi(dj < Tj) (12)

Disi =
Q

j>0:j 6=i Pi(disj) (13)

Pi(disj) = 1 − Pi(dj > Tj) − Pi(|dj | < Tj)Pi(Dj), (14)

where the (dismissal)disj means there is no false detection of class
j. Next, we prove that the policy may, in principle, exceed the accu-
racy of a committee of RDMs.

We make some reasonable assumptions about the thresholds.
Well-behaved ACMs havePi(dj > Tj) << Pi(dj < −Tj), and
Pi(dj < −Tj) > 0. In addition,Pi(dj > Tj) < Pi(Dj > 0), i.e.,
increasingTj can make early false detections rare. If the accuracies
of the RDMs are limited by (letε > 0,j 6= i)

Pi(Di) <
Pi(di > Ti)

Pi(di < −Ti) + Pi(di > Ti)
(15)

Pi(Dj) >
Pi(dj > Tj)

Pi(dj < −Tj) − ε
, (16)

then the hybrid exceeds the accuracy of the committee of RDMs. To
see this, we first take the trivial inequality (againi 6= j)

Pi(Dj) >
h

Pi(|dj | < Tj) + Pi(dj < −Tj) − ε
i

Pi(Dj). (17)

Multiplying (17) by−1, adding1 to both sides, and finally substitut-
ing bound (16) yields

Pi(disj) > Pi(Dj < 0). (18)

It immediately follows from (18) that

Disi =
Y

j>0:j 6=i

Pi(disj) >
Y

j>0:j 6=i

Pi(Dj < 0) = Dis∗i . (19)

The new termDis∗i is the probability that the individual machines of
a pure RDM committee do not make false detections.

Next, performing simple algebraic manipulation of the assumption
Pi(dj > Tj) < Pi(Dj > 0) yields

Pi(dj < Tj) > Pi(Dj < 0). (20)

Using (20), we immediately see that

Ri =
Y

j>0:j 6=i

Pi(dj < Tj) >
Y

j>0:j 6=i

Pi(Dj < 0) = Dis∗i . (21)

Substituting the inequalities (19,21) into (10) yields

Pi(ok) >
h

Pi(di > Ti) + Pi(|di| < Ti)Pi(Di)
i

Dis∗i (22)

>
h

Pi(|di| > Ti) + Pi(|di| < Ti)
i

Pi(Di)Dis∗i (23)

= Pi(Di)Dis∗i (24)

= P ∗
i (ok), (25)

where (23) resulted from substituting the bound (15) into (22). The
new termP ∗

i (ok) is the probability that a pure RDM committee pre-
dicts correctly if the true class isi > 0. Finally, substituting (18) into
(11) gives the corresponding result for theno object class

P−1(ok) > P ∗
−1(ok). (26)

Substituting (25) and (26) into (9) shows that if the bounds (15)
and (16) hold, the hybrid is more accurate than a pure RDM commit-
tee. If the bounds are relaxed, we can trade accuracy for speed.

3 Experimental design

We evaluated our method on two different problems: car and face
detection. The car data from Agarwal and Roth [1] has about 1000
gray-scale images in100 × 40 resolution. Our face dataset is more
complicated, as we randomly sampled the face images from the AR
dataset [8] which we then embedded on larger backgrounds sampled
from the BioID database [6], which we also used for the non-face im-
ages. This was to make the problem more challenging for our hybrid
method. The modified face dataset has about1900 gray-scale images
in 200 × 40 resolution. Both datasets were balanced to contain ap-
proximately equal amount of in-class and out-class images.

To evaluate the low-frequency hypothesis, we performed two ex-
periments, where we convolved the images with Gaussian filters.
First, we used a7 × 7 mask with standard deviationσ = 1. In the
second experiment, we applied a9 × 9 mask withσ = 2 for heavier
blurring. The blurring approximates discarding high-frequency infor-
mation. Unlike the ACM, the RDM was allowed to use the original
data, as is acceptable from the viewpoint of the LF hypothesis.

In the following, we use some abbreviations. A1 is our hybrid ap-
proach where the ACM is used only for the selection of fragments
in the learning phase. A2 is the same, except that the ACM is also
used in the evaluation phase for fast classification of easy instances.
RP is a pure RDM that selects fragments from a random set of can-
didates sampled from the in-class data. When RP is compared to the
hybrid, the random set size equals the size of theFset used by the
hybrid. SVM1 and SVM2 are linear and second-order polynomial
soft margin Support Vector Machines, respectively. For both, we used
cost-constraintC = 1. RF80 denotes Random Forests [3] using 80
full-grown decision trees. These three methods are state-of-the-art
machine learning algorithms and operate here on raw image data.

The settings of the components of the hybrid method were as fol-
lows. The candidate fragment size in all RDMs was fixed to16× 16
pixels and the number of fragmentsI was set50. For the ACMs,
we chose the locations of the 60 most significant coefficients (out
of over 4000) of w as the seed locations. The RDM subsequently
sampled 5 fragment candidates from each location (i.e., it chose 5
positive images randomly, and from each, extracted a fragment cen-
tered on the seed pixel). We chose the thresholds of the confidence
regions by simply selecting the medians of{d(xi) : yi = 1} and
{d(xi) : yi = −1} calculated from the training set.

The results reported describe percentage-correct accuracies onin-
verted 10-fold cross-validation. Instead of using(n − 1)/n of the
data for training and1/n for testing as per iteration in normaln-fold
cross-validation, we inverted the roles of the training and testing sets
to measure how the methods could learn from small training samples.

For testing the hybrid method in a multi-object situation, we
cropped the face data to the same resolution as the car data. Then,
for each fold of the inverted cross-validation, we trained both car and
face detectors with their respective, disjoint training folds. To create
the respective test fold, we combined the disjoint test folds of that



Figure 3. Some example fragments A2 extracted from faces and cars.

iteration into one three-class fold. The combined set was then used
to evaluate the A2, now using the multi-object policy of subsection
2.4. The multi-class results of the other methods were obtained using
multiple binary classifiers and aone-against-all wrapper.

4 Results

Our results are shown in table 1. In the car problem, A1 using the
attentive mechanism has similar accuracy to RP, the basic parts-based
method. In the face problem, A1 seems to have an advantage over RP.
Here, the actual face area is small compared to the background area,
while the car images contain relatively little background. The precise
framing of the selected parts does not matter much (see figure 3).
Attentive selection seems useful when there is more to select from,
i.e., when the important parts do not dominate the images. At least,
there are no apparent disadvantages.

Table 1. Inverted 10-fold cross-validation accuracies.

A1 A2 RP SVM1 SVM2 RF80
Cars 0.9681 0.9702 0.9506 0.9263 0.9378 0.9247
Faces 0.9679 0.9691 0.9303 0.9019 0.8787 0.9224
Multi - 0.9483 - 0.9030 0.9009 0.9190
Cσ=1 - 0.9664 - 0.9194 0.9349 0.9239
Cσ=2 - 0.9605 - 0.9090 0.9272 0.9167
Fσ=1 - 0.9616 - 0.8912 0.8710 0.9161
Fσ=2 - 0.9545 - 0.8738 0.8568 0.9066

Comparing A2 to A1 shows that utilizing the simple linear ma-
chine in the evaluation phase did not degrade the accuracies. In the
car problem, the ACM of A2 was about 770 times faster than the
RDM, and in the face problem, about 340 times faster. We denote
the constant evaluation times of the modules bytACM andtRDM .
The ACM is confident with probabilityp, and the expected evalua-
tion time of A2 in the single-object setting is:

E[tA2] = ptACM + (1 − p)(tACM + tRDM ). (27)

In the car problemp was about0.44 and in the face problem it was
about0.42. Substituting observed values into (27) and calculating
E[tA2]/tRDM gave us the relative values of0.56 and0.58 for the
two problems. On the average, classifying a car using A2 costs just
56% of the pure RDM cost, because44% of the cars are classified
instantly using ACM only. While the precise values are implemen-
tation specific, a reasonable advantage in speed is maintained if the
ACM is at least an order of magnitude faster than the RDM. Recall-
ing that the ACM computes a simple dot product of an image, while
the RDM must compute normalized cross-correlation of dozens of
fragment templates, the speed advantage seems useful in practice.

Dataset “multi” in table 1 denotes the multi-class experiment with
faces and cars. Here A2 is again somewhat better than the black-box
methods. As for the run-time behavior of A2, for approximately1/3
of the test cases, RDMs weren’t used at all, while for another1/3 one

of the RDMs was required, and for the remaining1/3, both RDMs
were executed. The usage frequencies of the RDMs were nearly sym-
metric for both object classes. A calculation similar to (27) shows
that in this problem A2 is expected to take about50% of the time
required by a pure RDM commitee.

Finally, the results of the LF experiment are shown in the lower
half of table 1. It can be seen that blurring the data caused only
graceful degradation for all of the methods. This supports the LF
hypothesis, and that to some extent general visual categories might
be recognizable with LF information alone. Also, if the ACM is used
in lower resolution, the hybrid speed advantage is emphasized.

5 Conclusion

We proposed a hybrid, multi-class object detection system combin-
ing parts-based matching with fast attention, and showed empirical
support for the hypothesis that low-frequency visual data could be
used for attention.

It would be interesting to evaluate our method and policy on
datasets with more different object classes, possibly revealing prac-
tical weaknesses in our policy, such as scalability issues. Perhaps a
more dynamic policy could be estimated from data. Also, the expres-
sive power of the current system is somewhat limited. It is clear that
the RDM is unsuitable for classifying textures or deformable shapes
that have no rigid parts. In addition, it has no explicit internal mech-
anisms for handling rotation or scaling. ACM, on the other hand,
requires centered training data. A possible future direction would be
to use the RDM module to select, label and center the data while
training the ACM module. Finally, both RDM and ACM are batch
methods that might be replaceable by on-line algorithms.
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