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Abstract. Artificial visual systems need an attentional selection
mechanism to constrain costly processing to relevant parts. An im-
portant design decision for such systems concerns the locus of selec-
tion. To guide the selection mechanism, traditional models of atten-
tion use either an early locus of selection based on low-level features
(e.g., conspicuous edges) or a late locus of selection based on high-
level features (e.g., object templates). An early locus is computation-
ally cheap and fast but is an unreliable indicator of the objecthood.
A late locus is computationally expensive and slow and requires the
object to be selected to be known, rendering selection for identifi-
cation useless. To combine the advantages of both loci, we propose
the COBA (COntext BAsed) model of attention, that guides selection
on the basis of the learned spatial context of objects. The feasibility
of context-based attention is assessed by experiments in which the
COBA model is applied to the detection of faces in natural images.
The results of the experiments show that the COBA model is highly
successful in reducing the number of false detections. From the re-
sults, we may conclude that context-based attentional selection is a
feasible and efficient selection mechanism for artificial visual sys-
tems.

1 INTRODUCTION
It is well known that natural visual systems rely on attentional mech-
anisms that select and process relevant objects in an efficient way.
Similarly, artificial visual systems need attentional-selection mech-
anisms to reduce the computational burden of processing entire im-
ages. So, their aim is to focus on the parts containing the object of
interest. In the domain of natural vision the locus of selection has
been debated for many years (see [1] for an overview). The two ex-
treme views are (1) that selection takes place at an early stage of
visual processing (i.e., early selection), and (2) that it takes place at a
late stage (i.e., late selection). In early selection, attention is guided
by conspicuous changes in elementary features, such as colour, tex-
ture or spatial frequency. Models of early selection contain so-called
saliency maps that respond to conspicuous changes in a single fea-
ture, e.g., [4]. The activities in these maps represent locations to be
attended. In late selection, attention is guided by complex feature
combinations or even objects [10]. Models of late selection rely on
object templates that are matched to the contents of images [9].

From a computational point of view, both early and late selection
pose considerable problems. In early selection, the likelihood of mis-
takes is large, since in natural images many changes of elementary
features occur. As a result, the attentional mechanism has to visit
many locations of which only a few correspond to objects of inter-
est. In late selection, object-based guidance of attention requires the
location (and identity) of the object to be known which renders the
selective function of attention for identification useless.
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Several models have attempted to combine saliency maps with
template matching. See, e.g., [4]. Below, we propose a novel ap-
proach, the COBA (COntext BAsed) model of attentional selection.
The main idea underlying the COBA model is that the spatial context
of an object is important for its localisation. The importance of spa-
tial context for reliable object recognition is illustrated in Figure 1.
The two small square images (left in the figure) are enlarged versions
of the square regions indicated by boxes in the large images. Consid-
ered in isolation, both small images are highly similar to faces. When
considered in their natural context, the interpretation as faces is sup-
pressed [2].

In the COBA model, attentional selection is guided by an object
saliency map. Active locations on the map indicate likely locations
of objects. Using automatic learning, the object saliency map is gen-
erated from feature combinations that form a likely spatial context
for objects. In this paper we focus on applying the COBA model to
spatial contexts and on the detection of faces in natural images. Our
method is related to the more global selection method proposed by
Torralba and Sinha [11]; this relation will be explored in more detail
in the Discussion section.

The outline of the remainder of this paper is as follows. Section 2
describes the COBA model and how it is trained to build an object
location saliency map. In section 3, the selection performance of the
COBA model is evaluated on natural images containing faces. Sec-
tion 4 discusses the results obtained in terms of efficiency and reli-
ability. Finally, section 5 concludes that context-based selection is a
feasible solution to the early-versus-late selection dilemma.

Figure 1. Examples of patterns that are similar to faces, but that are clearly
not faces when viewed in their context.

2 THE COBA MODEL

The COBA model consists of three stages. In the first stage, the im-
age is preprocessed using a biologically plausible transformation.
The second stage involves the local context-based estimation of ob-
ject locations. In the third stage, the local estimates are integrated
into a global saliency map. Below, we discuss each of these stages in
detail and provide an example of model training.



Figure 2. Graphical representation of the COBA attentional model.

2.1 Preprocessing
The COBA model operates on natural images that contain objects of
interest. The task is to detect the objects adequately. Therefore, we
introduce the concept of context windows, i.e., parts of the natural
image that are of the same size as the object, and that lie in the spa-
tial vicinity of the object. The square depicted in the left panel of
Figure 2 represents a context window (e.g., in Figure 3, this is the
upper-left solid square containing one eye and a part of the nose). In
the preprocessing stage of the COBA model, the contents of context
windows is transformed into feature vectors by means of a standard
multi-scale wavelet transformation. In the early stages of the natural
visual system a similar transformation on retinal images is performed
[7]. In the experiments reported here we use an overcomplete Haar-
wavelet basis for transforming the contents of the context windows
[8]. We extract quadruple-resolution wavelets at wavelet scale 4 from
a window of size 19 × 19 pixels [8]. In this way, relations between
large-scale features on a fine spatial resolution are incorporated in the
feature-vector representation. Quadruple-resolution scale-4 wavelets
yield 17×17 coefficients for a given orientation for a context window
of size 19 × 19. As we use 3 orientations (horizontal, vertical, and
diagonal), this yields a 867-dimensional feature vector for each con-
text window. To facilitate further processing, the raw feature vectors
are projected onto 16-dimensional reduced feature vectors v using
principal component analysis.

2.2 Context-based estimation of object locations
In the second stage of the COBA model the feature vectors (repre-
senting the contents of the context windows) are transformed into
estimates of object locations. The aim is to estimate the location of
the object relative to the context window, i.e., to estimate the vector
−→xr = (xr, yr) by means of the window features v, where xr rep-
resents the horizontal relative location and yr represents the vertical
relative location.

The transformation is learned using a training set consisting of
the estimated c−→xr (acquired from context windows) and the associ-
ated true object position −→xr. As a learning algorithm we use cluster-
weighted modelling [3], because it is straightforward and efficient.

The function that minimises the mean square error between c−→xr and
−→xr is the conditional expected value [6, p. 247]:

c−→xr =

Z
−→xrf(−→xr, v)d−→xr, (1)

where the joint probability density function (PDF) f(−→xr, v) describes
the relation between the two random variables −→xr and v. It is given
by:

f(−→xr|v) =
f(−→xr, v)

f(v)
. (2)

After training, the preprocessed contents of context windows is
translated into a PDF for the relative object location. The left panel
of Figure 2 is an illustration of such a PDF (the contour lines). The
arrow represents the estimate of the object location relative to the
context window (the square). Figure 3 illustrates the position and ex-
tent of a typical context window for the object class of faces. The
large dotted square denotes the region from which the context win-
dows (training samples) are taken, the top left corner of the dashed
square in the centre corresponds to the true face location, and the
solid square in the upper left corner of the training region represents
the context window for relative displacement of −8 pixels in both
the horizontal and vertical direction in the down-sampled image2.

Figure 3. The training region (the large dotted square) used to obtain
samples for the learning algorithm.

2.3 Integration of local estimates
The third stage of the COBA model is the addition of the PDFs ob-
tained at all locations and scales in the image to yield a global object
saliency map. The integration is illustrated in the middle panel of Fig-
ure 2 for a given scale and two locations. PDFs are obtained at a grid
of window locations. In order to obtain a larger-scale saliency map
for the object, all individual PDFs are added. This adding process is
performed by moving each individual PDF to its absolute location

2 We show the training region overlaid on a high-resolution face in Figure 3
to illustrate clearly what portion of the head is used as context. When ex-
tracting features from a facial context, the high-resolution image is first
downscaled such that the face has a size of 19 × 19 pixels.



in the image, which is obtained by adding the expectation value of
the relative location to the current location of the window. In the Fig-
ure, the expectation value for the position based on features from the
leftmost context window lies slightly below and to the right of the
current location. The expectation value for the position based on fea-
tures from the rightmost context window lies above and to the left of
the current position. The integration stage results in an image-wide
object salience map. The right panel of Figure 2 is an illustration of
the object saliency map. The contour lines demarcate the saliency.

2.4 Model training
Before evaluating the COBA model, we have to train the cluster-
weighted model to achieve reliable context-based estimates of object
location. The main design parameter for the cluster-weighted model
is the number of clusters that are used. We train a model using 8
clusters, as preliminary results have shown that further increasing
the number of clusters does not improve detection. The algorithm is
trained on a dataset of 1, 885 faces. Within the facial vicinity shown
in Figure 3, training samples are obtained from context windows at
relative displacements −8,−6,−4,−2, 0, +2, +4, +6, +8 in both
the horizontal and vertical directions. Thus, 81 relative displacements
for each face are used, which yields a total of 152, 685 samples in the
training set.

Figure 4 shows the trained attention model in terms of learned
cluster centres. Each cluster has a centre in the input space (i.e., a
combination of visual features) that is linked to a centre in the out-
put space (i.e., a relative face location). Each row in the left halve
of the figure corresponds to a cluster centre in the input space. The
three columns show horizontal, vertical, and diagonal wavelet de-
tails, respectively. The grey value represents the magnitude of the
brightness gradient in the given orientation. The right halve of the fig-
ure shows the cluster centres in the output space; each ellipse shows
a one standard-deviation confidence interval of the relative location
with respect to the location of the face (indicated by an X). For in-
stance, the particular pattern of brightness gradient magnitudes given
in the top row is indicative of a position slightly to the upper-right of
the actual face location.

Figure 4. The cluster centres for the Gaussian mixture models, with their
relative position and confidence intervals.

The Figure reveals that spatially large features such as the eyes,
the nose, the mouth, and the edges of the head, are used to locate the

face. For instance, the second row of Figure 4 shows that the presence
of the eyes in the centre of the window, indicated by the two bright
spots in the vertical details, provides a strong contextual clue that the
current position is slightly above the location of the face. However,
in practice, there will not be merely one cluster that determines the
location of the face; the perceived features are projected onto a lin-
ear combination of the eight cluster centres, and the estimated face
location will also be a linear combination of the relative positions of
each of the clusters.

3 EXPERIMENTAL EVALUATION
Below, we evaluate the COBA model of attentional selection on a
face-detection task. In active regions (i.e., regions with a high object
saliency) a face detector is applied to detect the presence of a face.
We use a face detector based on the work of Viola and Jones [12] and
Lienhart et al. [5].

3.1 Data
The performances of the context-selection method is assessed on 775
images from the Internet that together contain 1, 885 labelled faces
(henceforth referred to as the “web set”). The images contain labelled
faces that are at least 30×30 pixels in size. To ensure that all faces are
found, the images are classified for face sizes of 24.5 × 24.5 pixels
and up. To this end, a scale-space pyramid of the image is calculated
in which subsequent scales differ by a factor 1.1.

3.2 Experimental methodology
In order to obtain statistically valid results, we perform a 10-fold
cross-validation procedure. Therefore we split the dataset into 10
parts. In the model used for the localisation of faces in images be-
longing to set i, we leave out part i from the training set. In addition,
the model is used for different “step sizes”; for a given “step size” s,
a PDF is calculated only at every s pixels in both the horizontal and
vertical direction.

To assess the attentional selection performance, we employ three
performance measures: true positives (i.e., correctly detected faces),
false negatives (i.e., falsely rejected faces), and false positives (i.e.,
falsely detected faces).

From all object windows that are classified positively, at least one
should overlap sufficiently with a labelled face in order for that face
to be a true positive; the overlap criteria are: (1) the size of the win-
dow should be within a factor 1.5 of the size of the labelled face, and
(2) the window’s centre should be within a distance to the labelled
face’s centre that is not larger than 30 per cent of that face’s size. If
none of the detected windows satisfies the two overlap criteria for
a given labelled face, that labelled face is a false negative. Detected
windows that do not satisfy the overlap criteria for any of the labelled
faces are regarded as false positives.

To assess the benefits of context-based attentional selection with
the COBA model, the results obtained are compared to results ob-
tained without a selection mechanism. To this purpose, all images
were scanned pixel-wise in their entirety using the face detector. This
brute-force method yields a detection rate of 91.3% at 2.60 false pos-
itives per image on the web set.

3.3 Results
Figure 5 shows detection results for COBA on the web set. Both
graphs are obtained by varying the fraction of the search space in
which the object classifier is used. The range is based on the region-
selection results of the first stage of COBA; only the given frac-
tion of point with the highest saliency are selected as sufficiently
salient to be further examined by the object classifier. The left graph
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Figure 5. The detection results for the COBA model of attentional selection.

of Figure 5 shows a receiver operating characteristic (ROC) curve
(which shows the trade-off between detection rate and the false-
positive rate). The right graph shows the trade-off between the de-
tection rate and the fraction of the brute-force search space that is
actually searched after the spatial-context selection. In both curves,
the fraction of the search space is varied from 10−6 to 1 (no selec-
tion, equivalent to the brute-force method). In each figure, results
are shown for the step sizes 1, 4, 8, and 12. The graphs show that
a stricter context selection causes a lower false-positive rate and a
smaller search space, at the cost of a lower detection rate.

Our results are instrumental to arrive at three observations. The
main observation is that with context-based attentional selection, the
false positive rate can be reduced considerably while still retaining
a high detection rate. Although one could in principle choose any
point on the graphs to compare the results, we chose to compare de-
tection results under conditions at which the method is practically
applicable. The criterion we used for practical applicability is that
the method should yield a detection rate of at least 80%. An advan-
tage of the COBA model of attentional selection is that, after the
region-selection stage, we can choose in which fraction of the search
space we use the object classifier. Table 1 lists the fractions of the
search space that must be searched to obtain an 80% detection rate,
together with the number of false positives per image obtained at that
fraction. The best results at one false positive per image are obtained
with step size 1: the false-positive rate is reduced by a factor 9 while
the detection rate drops only slightly from 91.3% to 80.0%.

Table 1. Detection results with a search space fraction chosen such that the
detection rate is 80%.

False positives
Step size Fraction of search space per image

1 3.26 · 10−3 0.288

4 4.16 · 10−3 0.281

8 9.66 · 10−3 0.290

12 2.22 · 10−2 0.320

Additional experiments have been performed in which a richer
set of raw visual features were used. In this multiscale feature set,
double-resolution scale-2 wavelets have been extracted from the win-
dow, in addition to the quadruple-resolution scale-4 wavelets. This
yields a raw feature vector vR ∈ R

1,734 . Results for this feature set
are listed in Table 2. The results are slightly better than when using
the original raw features; the false-positive rate can be reduced by a
factor of 11.

Table 2. Detection results for the multiscale feature set, with a search
space fraction chosen such the detection rate is 80%.

False positives
Step size Fraction of search space per image

1 2.21 · 10−3 0.240

4 2.37 · 10−3 0.217

8 7.22 · 10−3 0.272

12 1.77 · 10−2 0.284

A second important observation is that the search space for the
selection mechanism can be reduced by a large factor while still
retaining an acceptable detection rate; e.g., when using our region-
selection model with a step size of 1 based on the multiscale feature
set, only a fraction 2.21 ·10−3 of the search space has to be searched.
This implies a search-space reduction of a factor 452. Given the ex-
periments listed in Tables 1 and 2, the search space reduction to ob-
tain a 80% detection rate lies between 45 and 452.

Our third observation is that the performance of the COBA model
of attentional selection is relatively insensitive to the choice of a step
size. Detection and false-positive rates are hardly affected by increas-
ing the step size from 1 to 4. Choosing a step size of 4 means that
our region-selection model needs to be evaluated at only 1/16th of
the locations compared to a step size of 1, thereby yielding a speed
increase of roughly a factor 15. Using larger step sizes of 8 and 12
reduces the number of region-selection model evaluations even fur-
ther, but deteriorates the detection rates. Moreover, these large step
sizes require the object classifier to be used in a larger portion of the
search space.

Figure 6 shows a typical example of attentional selection with the
COBA model. The left panel shows the original image. The centre
panel shows the object (face) saliency map in which grey values rep-
resent probabilities. The right panel shows the final detection results:
the solid squares represent object detections found in the first 10−3

fraction of the search space, whereas the dashed squares represent
object detections found in the remainder of the search space (ex-
haustive search). It is clear that by using context-based attentional
selection, the COBA model has lowered the number of false detec-
tions and reduced the search space considerably.

4 DISCUSSION
Inspired by the importance of spatial context for object recognition,
we presented the COBA model of attentional selection. Our results
show that the COBA model is effective in reducing the search space
while retaining a high detection rate. This means that it is able to



Figure 6. Typical example of context-based attentional selection with the COBA model.

distinguish between faces and face-like patterns in unlikely contexts,
such as those displayed in Figure 1. Purely object-based methods,
like most current object-detection methods, are not able to distin-
guish between face patterns and face-like non-face patterns.

The histograms in Figure 7 provide insight into the composition
of the search space of context-based attentional selection. The his-
tograms show the ranking distribution of the true positives (top his-
togram) and false positives (bottom histogram) in the attentional
search space (for step size 4). The histograms are obtained by us-
ing the image-wide saliency map to determine what fraction of the
search space would have to be searched to find each true-positive
or false-positive detection. It is clear that the majority of the true
positives are located in the first 1/1000th part of the search space,
whereas most of the false positives are not found until almost the
entire search space is analyzed.
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Figure 7. Attentional ranking of true and false positives using COBA

Our work is related to the work by Torralba and Sinha [11],
who predict object locations based on general image statistics. Their

method selects a rather large portion of the image as a region that
might contain the target object, and is thus less specific than the
COBA model in locating objects. Their method can be used as a
global pre-selection mechanism for the COBA model.

5 CONCLUSIONS
In this paper, we proposed a context-based model COBA of atten-
tional selection that learns to recognize likely object contexts to
generate a saliency map of object locations. Our results show that
context-based attentional selection is an efficient and viable way of
dealing with the early-versus-late selection dilemma. From the re-
sults, we may conclude that context-based selection reduces the num-
ber of false detections and the size of the search space. As a conse-
quence, it can be readily applied in artificial visual systems.
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