
AB ST RACT . Generally in multi-agent negotiations, agents are
asked to submit various bids and counter-bids during several
iterations of a negotiation process before reaching a compromise.
In case of combined negotiations, agents need to solve particularly
the winner determination problem WDP to find the best
combination of bids in each iteration. In this paper, we tackle the
problem of searching and updating the optimal solution of the
WDP while moving from one iteration to another. We propose
thereby an algorithm that searches and updates this optimal
solution. Our algorithm is essentially based on exploring very
simple graphs for shared and unshared items. These graphs speed
up optimal solution searching.

1 I NT RODUCT ION
We are interested in searching the optimal solution, composed of
one bid or a combination of bids, using a WDP algorithm in case
of multi-items negotiations. Currently, several algorithms and even
extensions of these algorithms [1, 2, 3] are able to compute the
best bid or a combination of bids in order to maximize the utility
function of an agent. In this paper we focus on the evolution of
the optimal solution depending on the state of negotiation and
submitted bids from one iteration to another. Our aim is to
propose an algorithm to find this optimal solution in an
incremental way. This work is motivated by the iterated
negotiation processes found in current negotiation protocols:
processes in several phases or iterations. An optimal solution is
thus recomputed from one iteration to another and according to
the utility reached by the agents with this solution the negotiation
is stopped or resumed. The incremental searching requires an
algorithm capable of updating the optimal solution with minimum
computations in order to reduce its complexity. Such an algorithm
will compute a new solution by taking into account only the
changes that have appeared in prior iterations. The types of
modification to be considered depend on the evolution of the
bids. For instance, if a bid at stake becomes invalid –its sender
having retracted from the negotiation-, it will imply an operation
of deletion of this bid. If a bidder sends a new bid, it will imply an
operation of completing the list of the bids. As WDP is a NP-
Complete problem and its complexity becomes significant in
combined negotiations, we claim for the necessity of introducing
incremental algorithms. For n items and a negotiation protocol
with k phases or levels, if an operation (deletion, new, update) is
performed at each iteration, the algorithm would require more
than 2nk changes.

2 WDP ALGORI T HM

1 LIP6, Université Paris 6, Samir.Aknine@ lip6.fr

The simplified algorithm that is presented in this paper applies to
mono-unit reverse auctions in which a buyer agent intends to buy
from suppliers who can make various bids on one or several
items. The problem of the buyer agent is to find the combination
of bids which makes its payoff optimal using a WDP algorithm.
[2, 3] present several algorithms for solving the WDP. We propose
to extend these algorithms using our graph structures and
heuristics. The simplified WDP algorithm described in this section
is just an example of how we could extend the existing ones with
our structures. These graphs enable us to work on an intentional
representation of the bids rather than an extensional
representation. These graphs as well as their properties can be
applied to any current WDP algorithm. Following is an example
that depicts the main steps of the basic algorithm.
Example: A buyer agent wishes to acquire 7 items { 1,2,3,4,5,6,7} .
In order to include all of them in his query, the agent formulates a
query in a conjunctive form. It receives in return bids in the form:
{ 1,3,5, $9} which means that the seller proposes items 1, 3 and 5
and they cost $9.
Let’s suppose that it receives the following bids: O1{ 1, $2} , O2{ 2,
$1} , O3{ 4, $3} , O4{ 5, $2} , O5{ 6, $2} , O6{ 1,2, $4} , O7{ 1,5, $3} ,
O8{ 2,5, $3} , O9{ 2,4, $3} , O10{ 3,7, $4} , O11{ 4,5, $3} , O12{ 1,4,5,
$5} , O13{ 2,3,4, $6} , O14{ 2,4,5, $5} , O15{ 2,4,5,7, $7} , O16{ 1,3,4,5,
$7} , O17{ 1,2,4,7, $6} , O18{ 1,2,3,4,5, $9} .
Before building the graphs, the workspace must be partitioned.
The idea of this stage is to separate the various bids depending on
the items they contain. This is the reason why the associated score

of each item g is computed using the function f/ f(g) =�
=

n

i iT1

1
,

where n is the number of bids containing the item g and Ti is the
length of the bid i containing g. In our example, we obtain the
following partitions (Cf. Figure 1). The next step is the building of
two graphs to speed up the search for solutions.

Definition 2 A shared item graph is a connected directed acyclic graph
whose first level nodes are partitions of bids, intermediate nodes contain items
of these bids and whose terminal node is empty. In this graph a node ni is
connected to nj if all the items in nj are included in ni.
In the shared items graph (cf. Figure 1), the second partition p2 is
connected to the node containing items 3 and 4. The node
containing items 3 and 4 is connected to the one containing item
4, the latter being a subset of the former.

Definition 3 An unshared item graph is a connected directed acyclic
graph whose first level nodes are partitions of bids, intermediate nodes contain
unshared items and terminal nodes are empty. In this graph a node ni is
connected to nj if all the items in nj are included in ni.
In our example, the partition p2 is connected to the node
containing items 1, 2 and 5; as we can observe, these items belong
to some bids of the partition, but not to all of them. Node (1, 2, 5)

Iterated algorithm for the optimal winner determination in
combined negotiations

��������	�	

1

is thus connected to node (1, 2, 3, 4, 5). The reason is that if a
partition is connected to (1, 2, 3, 4, 5), none of its bids contain
these items, particularly (1, 2, 5).
These graphs simplify the solution search using any method. Only
n(n-1)/2 nodes are parsed instead of 2n since the algorithm makes
the search on the nodes of items rather than on the bids. They
considerably improve the solution search step and are built is fast.
Only bids complying with the three following properties will be
examined. It should be added that our optimal solution search
algorithm builds a tree whose branches are solutions. When a bid
is selected, none of the other bids of the partition it belongs to
can be examined anymore. While selecting a bid, its container
partition is marked using the reference of the branch in order to
avoid skimming through subsequent branches.

p7

p6

p5

p4

p3

p2

p1

5

{1,2,4,7 $6}
{2,4,5,7 $7}

{3,7 $4}

{1,3,4,5, $7}
{1,2,3,4,5, $9}

{2,3,4, $6}

{6, $2}

{1,4,5 $3}
{1,5 $3}
{1,2 $4}
{1 $2}

{2,4 $3}
{4,5 $3}

{2,4,5 $5}
{4 $3}

{2, $1}
{2,5, $3}

{5, $2}

7

3
4

6

4

1

2

Figure 1: Shared-item graph

Property 1 If a partition pi shares an intermediate node with another
partition pj, and if pj is marked in the shared item graph, our algorithm will
not explore pi. Also, if one of the nodes preceding pi, in the shared item graph
contains an item in the branch under construction, pi will not be explored
anymore.
Let’s suppose that a bid in the partition p2 in our example (cf.
Figure 1) has been selected. This partition will then be marked. As
p5 and p2 have the same intermediate node 4, p5 won’t be explored.
Remember that all the bids in p2 propose items 3 and 4, and all the
bids in p5 propose item 4. Therefore, it is useless to explore p5 as
any bid selected in p2 has already proposed item 4.
This property simplifies the search process. It keeps the algorithm
from skimming through all the partitions that cannot improve the
solution.

Property 2 For a partition pj to be explored, it must be connected to a node
ni of the unshared item graph and at least one item of this node has not been
added yet to the branch under construction.

Property 3 The union of the set of items in the branch under
construction and that of all the partitions not already explored
corresponds to the set of items mentioned in the query in the case
of a conjunctive form.
This property is intended to avoid examining branches that lack
some items. Let’s assume a query composed of items <1, 2, 3, 4,
5, 6, 7, 8> and a branch under construction with items <1, 3, 4,

5>. If all the partitions not already explored contain only items 2
and 6, there would not be any possible solution for this branch.

p7

p6

p5

p4

p3

p2

p1

5

{1,2,4,7 $6}
{2,4,5,7 $7}

{3,7 $4}

{1,3,4,5, $7}
{1,2,3,4,5, $9}

{2,3,4, $6}

{6, $2}

{1,4,5 $3}
{1,5 $3}
{1,2 $4}
{1 $2}

{2,4 $3}
{4,5 $3}

{2,4,5 $5}
{4 $3}

{2, $1}
{2,5, $3}

{5, $2}

1
2
3
4
5

2
5

1
2
5 2

4
5

Figure 2: Unshared-item graph

Once the first step has been accomplished, i.e. graph construction,
the optimal solution search is started applying the above
properties. Each bid of the first partition will correspond to a sub
tree having this bid as the root. The whole process leads to the
following solution tree.

Figure 3: Solution tree

3. CONCLUSION
This paper has presented a simplified algorithm for the winner
determination problem. This work addressed the problem of
adapting winner determination algorithms to the constraints of the
combined multi-agent negotiation. In these negotiations, the bids
of the agents constantly evolve. In this context, we handle the
evolution of agent’s bids by computing new optimal solutions
dynamically using the preceding graphs. The proposed algorithm
has been implemented and tested with different distributions of
bids to evaluate its performance.

REFERENCES
1. Fujishjima Y., Leyton-Brown K. and Shoham Y. Taming the
computational complexity of combinatorial auctions: Optimal and
approximate approaches. IJCAI, pp. 548-553, 1999.
2. Sandholm T. Algorithm for optimal winner determination in
combinatorial auctions. Artificial Intelligence,135:1–54,2002
3. Sandholm T. and Suri S. BOB: Improved Winner
Determination in Combinatorial Auctions and Generalizations. AI
Journal, volume 145, pp. 33-58. 2003.

2, 4, 5

3 , 7

6

1, 4, 5 1, 5 1, 2 1

2 2, 4 4 4, 5 4 2, 4 4, 5 4

2 5 5 2 2 2, 5

5

