
AB ST RACT .  Generally in multi-agent negotiations, agents are 
asked to submit various bids and counter-bids during several 
iterations of a negotiation process before reaching a compromise. 
In case of combined negotiations, agents need to solve particularly 
the winner determination problem WDP to find the best 
combination of bids in each iteration. In this paper, we tackle the 
problem of searching and updating the optimal solution of the 
WDP while moving from one iteration to another. We propose 
thereby an algorithm that searches and updates this optimal 
solution. Our algorithm is essentially based on exploring very 
simple graphs for shared and unshared items. These graphs speed 
up optimal solution searching. 
 
1 I NT RODUCT ION 
We are interested in searching the optimal solution, composed of 
one bid or a combination of bids, using a WDP algorithm in case 
of multi-items negotiations. Currently, several algorithms and even 
extensions of these algorithms [1, 2, 3] are able to compute the 
best bid or a combination of bids in order to maximize the utility 
function of an agent. In this paper we focus on the evolution of 
the optimal solution depending on the state of negotiation and 
submitted bids from one iteration to another. Our aim is to 
propose an algorithm to find this optimal solution in an 
incremental way. This work is motivated by the iterated 
negotiation processes found in current negotiation protocols: 
processes in several phases or iterations. An optimal solution is 
thus recomputed from one iteration to another and according to 
the utility reached by the agents with this solution the negotiation 
is stopped or resumed. The incremental searching requires an 
algorithm capable of updating the optimal solution with minimum 
computations in order to reduce its complexity. Such an algorithm 
will compute a new solution by taking into account only the 
changes that have appeared in prior iterations. The types of 
modification to be considered depend on the evolution of the 
bids. For instance, if a bid at stake becomes invalid –its sender 
having retracted from the negotiation-, it will imply an operation 
of deletion of this bid. If a bidder sends a new bid, it will imply an 
operation of completing the list of the bids. As WDP is a NP-
Complete problem and its complexity becomes significant in 
combined negotiations, we claim for the necessity of introducing 
incremental algorithms. For n items and a negotiation protocol 
with k phases or levels, if an operation (deletion, new, update) is 
performed at each iteration, the algorithm would require more 
than 2nk changes.  
 
2 WDP ALGORI T HM 
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The simplified algorithm that is presented in this paper applies to 
mono-unit reverse auctions in which a buyer agent intends to buy 
from suppliers who can make various bids on one or several 
items. The problem of the buyer agent is to find the combination 
of bids which makes its payoff optimal using a WDP algorithm.  
[2, 3] present several algorithms for solving the WDP. We propose 
to extend these algorithms using our graph structures and 
heuristics. The simplified WDP algorithm described in this section 
is just an example of how we could extend the existing ones with 
our structures. These graphs enable us to work on an intentional 
representation of the bids rather than an extensional 
representation. These graphs as well as their properties can be 
applied to any current WDP algorithm. Following is an example 
that depicts the main steps of the basic algorithm. 
Example: A buyer agent wishes to acquire 7 items { 1,2,3,4,5,6,7} . 
In order to include all of them in his query, the agent formulates a 
query in a conjunctive form. It receives in return bids in the form: 
{ 1,3,5, $9}  which means that the seller proposes items 1, 3 and 5 
and they cost $9.  
Let’s suppose that it receives the following bids: O1{ 1, $2} , O2{ 2, 
$1} , O3{ 4, $3} , O4{ 5, $2} , O5{ 6, $2} , O6{ 1,2, $4} , O7{ 1,5, $3} , 
O8{ 2,5, $3} , O9{ 2,4, $3} , O10{ 3,7, $4} , O11{ 4,5, $3} , O12{ 1,4,5, 
$5} , O13{ 2,3,4, $6} , O14{ 2,4,5, $5} , O15{ 2,4,5,7, $7} , O16{ 1,3,4,5, 
$7} , O17{ 1,2,4,7, $6} , O18{ 1,2,3,4,5, $9} . 
Before building the graphs, the workspace must be partitioned. 
The idea of this stage is to separate the various bids depending on 
the items they contain. This is the reason why the associated score 

of each item g is computed using the function f/ f(g) =�
=
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where n is the number of bids containing the item g and Ti is the 
length of the bid i containing g. In our example, we obtain the 
following partitions (Cf. Figure 1). The next step is the building of 
two graphs to speed up the search for solutions. 
 

Definition 2 A shared item graph is a connected directed acyclic graph 
whose first level nodes are partitions of bids, intermediate nodes contain items 
of these bids and whose terminal node is empty. In this graph a node ni is 
connected to nj if all the items in nj are included in ni. 
In the shared items graph (cf. Figure 1), the second partition p2 is 
connected to the node containing items 3 and 4. The node 
containing items 3 and 4 is connected to the one containing item 
4, the latter being a subset of the former. 
 

Definition 3 An unshared item graph is a connected directed acyclic 
graph whose first level nodes are partitions of bids, intermediate nodes contain 
unshared items and terminal nodes are empty. In this graph a node ni is 
connected to nj if all the items in nj are included in ni. 
In our example, the partition p2 is connected to the node 
containing items 1, 2 and 5; as we can observe, these items belong 
to some bids of the partition, but not to all of them. Node (1, 2, 5) 
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is thus connected to node (1, 2, 3, 4, 5). The reason is that if a 
partition is connected to (1, 2, 3, 4, 5), none of its bids contain 
these items, particularly (1, 2, 5). 
These graphs simplify the solution search using any method. Only 
n(n-1)/2 nodes are parsed instead of 2n since the algorithm makes 
the search on the nodes of items rather than on the bids. They 
considerably improve the solution search step and are built is fast. 
Only bids complying with the three following properties will be 
examined. It should be added that our optimal solution search 
algorithm builds a tree whose branches are solutions. When a bid 
is selected, none of the other bids of the partition it belongs to 
can be examined anymore. While selecting a bid, its container 
partition is marked using the reference of the branch in order to 
avoid skimming through subsequent branches.  
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Figure 1: Shared-item graph 
 

Property 1 If a partition pi shares an intermediate node with another 
partition pj, and if pj is marked in the shared item graph, our algorithm will 
not explore pi. Also, if one of the nodes preceding pi, in the shared item graph 
contains an item in the branch under construction, pi will not be explored 
anymore. 
Let’s suppose that a bid in the partition p2 in our example (cf. 
Figure 1) has been selected. This partition will then be marked. As 
p5 and p2 have the same intermediate node 4, p5 won’t be explored. 
Remember that all the bids in p2 propose items 3 and 4, and all the 
bids in p5 propose item 4. Therefore, it is useless to explore p5 as 
any bid selected in p2 has already proposed item 4. 
This property simplifies the search process. It keeps the algorithm 
from skimming through all the partitions that cannot improve the 
solution. 
 

Property 2 For a partition pj to be explored, it must be connected to a node 
ni of the unshared item graph and at least one item of this node has not been 
added yet to the branch under construction.  
 

Property 3 The union of the set of items in the branch under 
construction and that of all the partitions not already explored 
corresponds to the set of items mentioned in the query in the case 
of a conjunctive form.  
This property is intended to avoid examining branches that lack 
some items. Let’s assume a query composed of items <1, 2, 3, 4, 
5, 6, 7, 8> and a branch under construction with items <1, 3, 4, 

5>. If all the partitions not already explored contain only items 2 
and 6, there would not be any possible solution for this branch.  
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Figure 2: Unshared-item graph 
 

Once the first step has been accomplished, i.e. graph construction, 
the optimal solution search is started applying the above 
properties. Each bid of the first partition will correspond to a sub 
tree having this bid as the root. The whole process leads to the 
following solution tree. 
 

 
 
 
 
 
 
 
Figure 3: Solution tree  
 

3. CONCLUSION 
This paper has presented a simplified algorithm for the winner 
determination problem. This work addressed the problem of 
adapting winner determination algorithms to the constraints of the 
combined multi-agent negotiation. In these negotiations, the bids 
of the agents constantly evolve. In this context, we handle the 
evolution of agent’s bids by computing new optimal solutions 
dynamically using the preceding graphs. The proposed algorithm 
has been implemented and tested with different distributions of 
bids to evaluate its performance.  
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