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Abstract.
In this work, paraconsistent answer sets for extended disjunctive

logic programs are presented as a fully declarative approach. In or-
der to do so, we introduce a frame-based semantics. Frames are a
powerful and elegant tool which have been used to characterise and
study substructural logics. Unlike the original definition, no kind of
syntactic transformation is employed. Indeed, paraconsistent answer
sets are defined by minimising models satisfying some conditions.
Considering that paraconsistent answer sets embed both answer sets
and stable models, these semantics are also captured via frames.

1 INTRODUCTION

Paraconsistent answer [4] sets can be used to represent Rough
Knowledge Bases supporting reasoning with Rough Sets, namely for
medical applications. Nonetheless, as the authors define their seman-
tics by resorting to syntactic transformations, the aim of characteris-
ing logic programming semantics by following only standardlogical
definition is not totally accomplished.

In [2], Pearce characterised Stable Models and Answer Sets as
specific minimal models under Heyting’s monotonic logic ofhere-
and-there. Afterwards, Cabalar [1] resorted to a two-dimensional
version of the logic of here-and-there to capture the Well-founded Se-
mantics. For Paraconsistent Answer Sets, however, until now, there
is no fully declarative proposal.

Our general aim in the present work is to fill this gap by pro-
viding a definition of paraconsistent answer sets grounded only in
logical terms. Unlike the original one, this is attained without em-
ploying any kind of syntactic transformation. Like Pearce we also
resort to the logic here-and-there; like Cabalar, we also introduce a
two-dimensional version of this logic. However, we employ the addi-
tional dimension to capture explicit negation informationinstead of
incomplete information as Cabalar does.

Although preserving Pearce’s original motivation, we exhibit our
approach by sticking to frame-based semantics as presentedby Greg
Restall [3]. Frames are a powerful and elegant tool which have been
used to characterise and integrate substructural logics. Furthermore,
since paraconsistent answer sets embed both answer sets andstable
models, frames are also suited to capture them.

In next section we show our main contributions: the definition of
paraconsistent answer sets as a frame-based semantics, andhow we
can easily adjust it to grasp answer sets and stable models. Then, in
Section 3 we draw conclusions and mention future work.
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2 A frame-based semantics forPAS

Now we present an alternative entirely logical definition for PAS

based on frames [3] instead of requiring a syntactic operation (like
the program reduct) as in [4]. Frames are characterised by tuples con-
stituted by point sets, accessibility relations, and truthsets:

Definition 1 (Point Set) [3] A point setP = 〈Q,⊑〉 is a setQ to-
gether with a partial order⊑ onQ. The setProp(P) of propositions
onP is the set of all subsets X ofQ closed upwards, that is, ifx ∈ X

andx ⊑ x′ thenx′ ∈ X.

We shall employ accessibility relations to evaluate intensional
connectives:

Definition 2 (Accessibility Relations) [3]

• A relationC is a plump negative 2-place accessibility relationon
the point setP = 〈Q,⊑〉 if and only if for anyx, y, x′, y′ ∈ Q, in
whichxCy , x′ ⊑ x andy′ ⊑ y it follows thatx ′Cy ′.

• A relationR is aplump 3-place accessibility relationon the point
setP = 〈Q,⊑〉 if and only if for anyx, y, z, x′, y′, z′ ∈ Q, in
whichRxyz , x′ ⊑ x, y′ ⊑ y andz ⊑ z′ thenRx ′y ′z ′.

Plump negative 2-place accessibility relations will be associated
with negations, whilst plump 3-place accessibility relations with the
rule symbol “→”. Below we define truth sets, whose interpretation
makes them eligible to define the truth constantt.

Definition 3 (Truth Sets) [3] If R is a (plump) 3-place accessi-
bility relation on a point setP = 〈Q,⊑〉 then for any subset
T ∈ Prop(P), T is a right truth setfor R if and only if for each
x, y ∈ Q, x ⊑ y if and only if for somez ∈ T , Rxzy .

Now that we have defined a point set, accessibility relationsand
truth sets, the notion of frame can be introduced straightforwardly:

Definition 4 (Frame) [3] A frame is a point setP together with any
number of accessibility relations and truth sets onP .

Below we present the frame we shall use in the definition ofPAS .
We reserveF to denote the following frame:

1. The point setP = 〈Q,⊑〉 such thatQ = {hp, hn, tp, tn}, hp ⊑
hp, tp ⊑ tp, hn ⊑ hn, tn ⊑ tn, hp ⊑ tp, andtn ⊑ hn. In
Figure 1 we exhibit a graphical representation ofP in which the
relation⊑ is presented through the sense pointed by the arrow.
The elements ofQ are intended to represent different levels of
positive truth values expounded in the Table 1.
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Point Intended Truth Value

hp Necessarily true
hn Necessarily not explicitly false
tp True
tn Not explicitly false

Figure 1. Point Set forPAS Table 1. Intended Truth Values inP

2. The accessibility relations defined onP :R,R¬, Rnot , in whichR
is exhibited in Tables 2, andR¬ andRnot respectively in Figures
2, 3, such that an arrow fromx to y denotes that there is an acces-
sibility relation fromx to y. As the reader can check,R is a plump
3-place accessibility relation, whilstR¬ andRnot are plump neg-
ative 2-place accessibility relations.

R hp hp hp R tn tp tn
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Table 2. Accessibility
RelationR

Figure 2. Accessibility
RelationR¬

Figure 3. Accessibility
RelationRnot

3. The (right) truth set ofR is {hp, tp}, and corresponds to the truth
constantt (see Definition 7).

The accessibility relationsR,R¬ andRnot are obtained by adapt-
ing N-valuations used in [2] to present respectively the operators→,
¬ and not into our frame to capturePAS 2. Alternatively, explicit
negation could be treated in terms of a partial Kripke-styleseman-
tics as Pearce did. However, guided by Greg Restall’s directions,
we prefer to preserve the two-valued assessment applied to atwo-
dimensional frame. In the sequel some definitions handle theseman-
tical part.

Definition 5 By belief set, we mean(Sp, Sn), in whichSp andSn

are sets of atoms. Thus, an atom A is true inSp ( resp.Sn) iff A ∈ Sp

( resp.A ∈ Sn); otherwise, A is false inSp ( resp. A is false inSn).

The knowledge ordering≤k (see [4]) can be mimicked in a re-
lationship involving belief sets as follows: letB1 = (Sp

1 , S
n
1 ) and

B2 = (Sp
2 , S

n
2 ) be belief sets. The knowledge ordering≤k among

them is defined byB1 ≤k B2 iff Sp
1 ⊆ S

p
2 , S

n
2 ⊆ Sn

1 . The mech-
anism behind knowledge ordering between belief sets is crucial to
guarantee the expected definition ofPAS . Pursuant to this aim,
firstly we use≤k to defineHT 2−interpretations:

Definition 6 A HT 2−interpretation is the pair[Bh, Bt], in which
Bh andBt are belief sets satisfyingBh ≤k B

t.

Recalling frameF , for each atom, aHT 2−interpretation can as-
sign nine possible (truth) values corresponding isomorphically to
the values found in the nine-valued logic IX (see [4]). To expunge
any misunderstanding, we shall reserve the lettersB andS to re-
spectively denote belief sets and sets of atoms, using the notation
Bh = (Shp, Shn) andBt = (Stp, Stn). Now we are going to asso-
ciate eachSx in [Bh, Bt] to ax ∈ Q:

Definition 7 (HT 2−model) Letw ∈ {hn, hp, tn, tp} be a point of
F , M = [Bh, Bt] be aHT 2−interpretation,“A” be an atom, and

2 In [2] N-valuations are used to determine Answer Sets.

both φ and ψ be formulae. We say thatφ is satisfied byM in w,
written (M,w) 
 φ, iff

1. (M,w) 
 A iff A ∈ Swp

2. (M,w) 
 t for all w in {hp, tp}
3. (M,w) 
 φ ∧ ψ iff (M,w) 
 φ and(M,w) 
 ψ

4. (M,w) 
 φ ∨ ψ iff (M,w) 
 φ or (M,w) 
 ψ

5. (M,w) 
 ¬φ iff for eachw′ in F s.t.wR¬w
′, (M,w′) 6
 φ

6. (M,w) 
 notφ iff for eachw′ in F s.t.wRnotw
′, (M,w′) 6
 φ

7. (M,w) 
 ψ → φ iff for eachw′, w′′ in F s.t.R w w′ w′′, if
(M,w′) 
 ψ, then(M,w′′) 
 φ

M is aHT 2−model of a theoryT iff (M,hp) 
 φ for eachφ in T .

We say aHT 2−model [Bh, Bt] of a program3 P is p-minimal if
there is no belief setB′ <k B such that[B′, Bt] is aHT 2−model
of P . The main result of this paper is shown below:

Theorem 1 The p-minimalHT 2-models[Bt, Bt] of a programP
are exactly its paraconsistent answer sets.

Considering paraconsistent answer sets embed both answer sets
and stable models, our proposal is obviously eligible to deal with
them. Answer sets can be defined by addinghp ⊑ hn andtp ⊑ tn

to the point set ofF , and because of the conditions in Definition 2, we
should also add new instances toR,R¬, andRnot . Similarly, stable
models can be seen as answer sets versions free of explicit negation.
The resulting frame is isomorphic to the one presented by Pearce [2]
for answer sets (stable models). The main difference is thatPearce
resorts to partial Kripke models to characterise answer sets, whilst
we preserve the two-valued evaluation in each point (world).

3 Conclusion

We have defined a fully declarative approach for paraconsistent an-
swer sets, by resorting to a frame based semantics. This is the first
time a complete declarative characterisation is presentedfor para-
consistent answer sets, no syntactic transformation is used. Indeed
paraconsistent answer sets are obtained by minimising models satis-
fying some conditions. Our proposal not only captures paraconsistent
answer sets for extended disjunctive logic programs, but also models
for any theory composed by formulae recursively definable for all
program connectives. We have shown how one embed answer sets
and stable models via frames.

Motivated by preliminary results, a general frame-based seman-
tics to simultaneously capture both stable models and well-founded
semantics families is expected in a following work. Finally, our pro-
posal permits us to explore questions involving the role of logic pro-
gramming semantics in the context of substructural logics.
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