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Abstract. The determination of the optimal architecture of a mul-
tilayer perceptron (MLP) to solve a specific problem is an important
and a difficult task. Several approaches based on saliency analysis,
such as the Optimal Brain Surgeon method (OBS), have been devel-
oped in this field. Nevertheless, we show in this paper that OBS does
not gives an optimal architecture. We also present the advantages of
applying OBS on the architecture obtained by a variable selection
method. New hybrid methods are proposed. A comparison of our ap-
proaches to standard techniques for architecture optimization is pre-
sented.Simulation results obtained on the Monk’s problem illustrate
the specificities of each method described in this paper.

1 Introduction

The objectives of optimization can be numerous: improving the pre-
diction performance, providing faster predictor, providing a better
understanding of the underlying process that generates data (provid-
ing variable selection, facilitating extraction of rules) and reducing
the time and the cost to collect and transform data.

In the last years several heuristic methods based on computing
the saliency for topology optimization have been proposed, e.g., Op-
timal Brain Damage (OBD) ([3]), or OBS ([2]). These methods are
known as pruning methods. The main difference between these prun-
ing methods for feature selection is the way of selecting the weight
or the variable to eliminate. We are interested in this paper in variants
based on OBS saliency calculation.

The first motivation of this work is to show that OBS gives a sub-
optimal architecture. We interested to maximise reduction of network
complexity, i.e. removal of all the unecessary variables and weights.

The second motivation is to propose a new hybrid approach which
combines variable selection method and OBS to improve the results
of optimization.

2 Feature selection techniques

The OBS method was introduced by Hassibi and Stork ([2]) as a
method to significantly reduce the number of weights in a neural
network. Stahlberger and Riedmiller ([6]) proposed to the OBS’s
users, a calculation, called Generalized Optimal Brain Surgeon
(G-OBS), to obtain in a single step the update to apply to every
weight when deleting a subset of m weights. This calculation
presents a combinatory calculation to know which weights should
be deleted. An implementation for this method is proposed in ([1])
which defines the subset of connections by the smallest saliencies.

The OBS method has inspired some methods specialized in vari-
able selection like Unit-Optimal Brain Surgeon (Unit-OBS)([6]), or
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recently Flexible-Optimal Brain Surgeon (F-OBS) and Generalized
Flexible-Optimal Brain Surgeon (GF-OBS)([1]). The Unit-OBS
was propsed by Stahlberger and Riedmiller ([6]), it is a variable
selection algorithm, which computes, using the calculation G-OBS,
which input unit will generate the smallest increase of error if it is
removed. The F-OBS has been proposed in ([1]), its particularity is
to remove connections only between the input layer and the hidden
layer. The GF-OBS is a combination of F-OBS and G-OBS ([1]).
Thus, this algorithm removes in one stage a subset of connections
only between the input layer and the hidden layer.

A comparison between these different methods was studied for
minimizing the network topology and for variable selection (see [6],
[5], [4],[1] for more details).

3 Our methods for optimization

We propose two approaches for architecture optimization :

• The first approach uses a unique method specialized to optimiza-
tion, OBS or G-OBS, applied several times consecutively until
there is no weight to eliminate.

• The second approach is a hybrid approach, it is a methodology
of eliminate variables/weights. In the first step this approach pro-
poses to use a variable selection method and OBS in the second
step. Stahlberger ([6]) suggests to combine Unit-OBS and OBS to
obtain best results as compared to OBS. We suggest using variable
selection methods, F-OBS and GF-OBS to optimize the architec-
ture. The hybrid algorithm can be summarized by the following :

1. Choose a reasonable network architecture.

2. Choose a variable selection method (F-OBS, Unit-OBS, GF-
OBS).

3. Execute the variable selection method.

4. Execute OBS or G-OBS (one or several times).

When we execute OBS, we use the new architecture obtained and
we initialise all values of the weights again before training. In this
work we interested to apply the OBS in the second step in the hybrid
approach.

4 Experiments and results

In this section, we want to compare the different strategies of the
OBS variants including the hybrid methods for minimizing the net-
work topology. We use the first Monk’s problem to evaluate the per-
formance for each method. This well-known problem (See [7]) re-
quires the learning agent to identify (true or false) friendly robots
based on six nominal attributes.



To forecast the class according to the 17 input values (one per
nominal value coded as 1 or -1 if the characteristic is true or false),
the MLP starts with 3 hidden neurons containing a hyperbolic
tangent activation function. This number of hidden neurons allows a
satisfactory representation able to solve this discrimination problem.
The total number of weights for this fully connected network (in-
cluding a bias) is 58. This value will be compared to the remaining
weights after pruning.

After MLP training, the model is accepted if the mean of square
error is ≤ 0.001 on both the training and the validation dataset, and
if the performances in classification are equal to 100% according
to the confusion matrix. This stopping criterion is also used by the
pruning methods. In this study, GF-OBS and G-OBS remove three
weights at the same time.

We select two values as measures of the performance for op-
timization: the number of preserved weights and the number of
preserved variables. For each method, 500 different initializations
were tested. Some results are presented as histograms in Table (2).

According to all obtained histograms, we notice that :

• The results of optimization are considerably improved when OBS
or G-OBS are applied two times consecutively.

• The hybrid techniques give good results compared to the simple
optimization methods OBS and G-OBS.

• There is a certain compromise between the number of variables
and the number of weights for all methods. F-OBS appears best A
to find this compromise.

Table (1) gives a classication of the different methods according
to the best solutions or performances for two points of view : the
minimal number of preserved weights and the minimal number of
preserved variables.

Table 1. Summary of the model performances (1 is assigned to the best
method, and so on.)

Methods Minimal number Minimal number
of preserved weights of preserved variables

OBS method 6 6
G-OBS method 7 7
OBS method (twice) 1 4
G-OBS method (twice) 5 5
Unit-OBS hybrid method 4 1
F-OBS Hybrid method 2 2
GF-OBS Hybrid method 3 3

5 Conclusion

We have presented in this study different techniques based on the
saliency calculation of OBS for architecture optimization. We used
statistic methods to compare empirical performances of these differ-
ent variants. We have shown that using OBS or G-OBS gives a sub-
optimal architecture optimization. We have first proposed to apply
OBS several times consecutively starting from the reduced architec-
ture and reinitializing the weights until there is no more weight to
eliminate. Then, we have presented a hybrid approach for optimiza-
tion combining variable selection methods and OBS. Finally, in order
to optimize artificial neural network architecture for rule selection,
we recommend either to apply the F-OBS hybrid technique, because
F-OBS algorithm better keeps the variables which are associated to
rules to extract.

Acknowledgment

This work was supported in part by the BRGM (Bureau de
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Table 2. Distribution of the number of preserved variables (left side) and
preserved weights (right side)
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