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Abstract. In supervised machine learning, a training set of exam-
ples which are assigned to the correct target labels is a necessary pre-
requisite. However, in many applications, the task of assigning target
labels cannot be conducted in an automatic manner, but involves hu-
man decisions and is therefore time-consuming and expensive. In
the case of classification learning, the active learning framework has
been considered to address this problem. While most research on ac-
tive learning in the field of kernel machines has focused on binary
problems, less attention has been given to the problem of learning
classifiers in the case of multiple classes. We consider three common
decomposition methods to express multiclass problems in terms of
sets of binary classification problems and propose novel active learn-
ing heuristics in order to reduce the labeling effort. Various exper-
iments conducted on real-world datasets demonstrate the merits of
our approach in comparison to previous research.

1 INTRODUCTION

In machine learning research, the field of kernel machines has pro-
duced learning methods which have a strong theoretical foundation
and yield state-of-the-art results. Among the most popular methods
are support vector machines. With increasing computational power
being available today, optimized training algorithms are able to cope
with large-scale classification and regression problems involving tens
of thousands of training examples. However, advances in computa-
tional speed and more efficient training algorithms do not solve the
inherent problem that conventional supervised machine learning re-
lies on a set of examples which have to be assigned to the correct
target labels. In many applications, the task of assigning target labels
cannot be conducted in an automatic manner, but involves human
decisions and is therefore time-consuming and expensive. Hence, as-
suming the availability ofa priori given labeledtraining sets disre-
gards the labeling effort that is necessary in many cases.

More precisely, we consider the problem of learning a classifier in
the case of an arbitrary number of class labels in a supervised learn-
ing scenario. Since many learning algorithms are restricted to binary
classification problems, there exist several approaches to express
multiclass problems in terms of a set of binary classification prob-
lems. The one-versus-one approach [2] decomposes multiclass prob-
lems into binary classification problems by considering all pairwise
decisions between two class labels. Each pairwise decision problem
is treated independently as a binary classification problem and pre-
dictions are made by means of a voting procedure. In DAG multiclass
classification [5], multiclass problems are decomposed in an analo-
gous manner, however, instead of evaluating aggregated votes, bi-
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nary classifiers are considered as nodes in a decision directed acyclic
graph (DDAG). An alternative approach to the expression of multi-
class problem is the one-versus-all approach [7] which trains a sep-
arate classifier for each possible class against the rest of classes and
predicts class labels according to the maximum output2 among all
binary classifiers.

2 MULTICLASS ACTIVE LEARNING

The superordinate concept ofactive learningrefers to a collection
of approaches which aim at reducing the labeling effort in super-
vised machine learning. We consider thepool-based active learning
model3 [4]: Starting with only a small amount of labeled examples,
the learning algorithm sequentially selects new examples from a fi-
nite set of unlabeled examples and requests the corresponding class
labels. The crucial point is that by selecting only the most informa-
tive examples to be labeled, in many applications, it is possible to
learn a model by using fewer labeled examples without a significant
loss of generalization accuracy in comparison to conventional batch
learning based on the entire set of labeled examples.

In the field of kernel machines, active learning has been success-
fully applied to classification problems to reduce the labeling ef-
fort [1, 8, 6]. Both [1] and [8] are restricted to binary classifica-
tion whereas [6] additionally considers active learning of multiclass
classifiers using the one-versus-all approach. The latter approach
considers optimization of a global measure on the volume reduc-
tion in the so-called version space model as the selection criterion.
We propose a novel extension of active learning to multiclass prob-
lems (BINARY M IN strategy) which aims at maximizing the worst-
case version space volume reduction on a single binary classifier
among the set of classifiers. Considering one-versus-one decomposi-
tion, DAG multiclass classification and the one-versus-all technique,
we propose heuristic strategies to the selection of new training exam-
ples. These strategies are compared to [6] (GLOBAL strategy) in the
case of one-versus-all decomposition and a straightforward general-
ization of this approach to both pairwise decomposition techniques.
Additionally, we consider random selection (RANDOM strategy) of
new examples as a baseline strategy.

3 EXPERIMENTAL SETTING

To compare the efficiency of all the considered selection strategies,
we have conducted several experiments on multiclass datasets4 that

2 In the following, we consider real-valued classifiers which are thresholded
at zero to make binary predictions{−1, +1}.

3 We refer topool-based active learningasactive learningherein after.
4 We selected all datasets with cardinality> 500 from a recent study on

multiclass classification [3].



Table 1. This table shows the estimated final classification accuracy results and the corresponding standard error of the mean estimates. For each
decomposition technique, the best result is indicated in bold face.

Decomposition Strategy vowel vehicle segment dna satimage letter shuttle

RANDOM 0.670 0.741 0.893 0.861 0.828 0.590 0.951
±0.004 ±0.002 ±0.001 ±0.003 ±0.002 ±0.003 ±0.003

GLOBAL 0.705 0.737 0.876 0.908 0.829 0.524 0.938
One-vs-All ±0.003 ±0.003 ±0.003 ±0.002 ±0.004 ±0.011 ±0.006

BINARY M IN 0.753 0.767 0.919 0.904 0.851 0.516 0.936
±0.003 ±0.002 ±0.001 ±0.002 ±0.001 ±0.008 ±0.005

RANDOM 0.732 0.735 0.904 0.866 0.836 0.606 0.960
±0.004 ±0.003 ±0.002 ±0.002 ±0.002 ±0.006 ±0.003

GLOBAL 0.744 0.720 0.881 0.907 0.827 0.506 0.864
One-vs-One ±0.005 ±0.003 ±0.003 ±0.002 ±0.006 ±0.009 ±0.026

BINARY M IN 0.844 0.745 0.941 0.906 0.866 0.609 0.993
±0.003 ±0.003 ±0.001 ±0.002 ±0.002 ±0.006 ±0.002

RANDOM 0.739 0.734 0.900 0.870 0.834 0.610 0.961
±0.004 ±0.002 ±0.002 ±0.002 ±0.002 ±0.005 ±0.002

GLOBAL 0.738 0.718 0.880 0.904 0.827 0.474 0.881
DAG ±0.004 ±0.003 ±0.003 ±0.001 ±0.007 ±0.011 ±0.022

BINARY M IN 0.848 0.749 0.941 0.904 0.854 0.609 0.995
±0.003 ±0.003 ±0.001 ±0.002 ±0.002 ±0.004 ±0.001

are publicly available from theUCI repository of machine learning
databases and from theStatlog collection.

For all problems which include a separate test set (dna, satim-
age, letter, shuttle), the selection strategies were initialized using a
randomly drawn set of20 examples (30 for the letter dataset which
contains26 classes) from the training set with at least one example
from each class. While new training examples were selected from the
remaining training sets, the classification accuracy was estimated on
the test sets after every10 selection steps. We fixed the final number
of labeled examples to200 and averaged the results over20 runs of
random initialization. Each of the remaining datasets (without sep-
arate test sets) was randomly split100 times into a training and a
test set of equal size. Analogously, we used initial sets of cardinality
20 which were drawn from the training sets. Furthermore, we fixed
the number of labeled examples to100 for these smaller datasets and
averaged the results over all100 runs of random initialization and
separation into training and test sets.

In our experiments, we used a modified version oflibsvm [3] that
learns support vector machines without bias and L2-loss to stay con-
sistent with the theoretical motivation. We make use of RBF-kernels
with the default value ofγ = 1

# input featuresandC = 100.

4 EXPERIMENTAL RESULTS

Note that the kernel has not been optimized with respect to the given
problems and multiclass techniques. Therefore, we compare the se-
lection strategies separately for each approach and do not focus on
a quantitative comparison between different multiclass techniques.
Due to space restrictions, we refrain from a detailed exposition of
every learning curve. Instead, we focus our presentation of the ex-
perimental results on the average classification accuracy, i.e. the pro-
portion of correctly classified test examples, at the end of the experi-
ments with100 and200 labeled examples respectively, to summarize
the efficiency of a given selection strategy. Table 1 shows average
classification results and associated standard error of the mean esti-
mates. In the case of the one-versus-one and the DAG pairwise tech-
nique, the BINARY M IN strategy achieves the best result for6 out of
7 problems (with one tie for DAG and thedna problem). For the only
dataset where BINARY M IN is outperformed, its average accuracy is
very close to the winning strategy. In the case of one-versus-all clas-

sification, BINARY M IN is the winner for4 out of 7 problems, while
RANDOM and GLOBAL achieve the best result on2 and1 problem
respectively.

In our experiments, both the original GLOBAL strategy and its gen-
eralization were outperformed by the RANDOM selection strategy on
most of the problems. In contrast to this, the BINARY M IN strategy
based on all decomposition techniques clearly indicates that is possi-
ble to reduce the labeling effort in multiclass classification learning.

5 CONCLUSION

We have introduced a novel extension of pool-based active learning
to multiclass classification based on both the one-versus-all classi-
fication technique and two pairwise decomposition methods. Exper-
imental results clearly indicate that our approach to active learning
yields a significant reduction of the labeling effort in multiclass learn-
ing and outperforms previous approaches.
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