

$�6SHHFK�$UFKLWHFWXUH�IRU�3HUVRQDO�$VVLVWDQWV�LQ�D�
.QRZOHGJH�0DQDJHPHQW�&RQWH[W�

(PHUVRQ�&DEUHUD�3DUDLVR � �and�-HDQ�3DXO�$��%DUWKqV � �and�&HVDU�$��7DFOD �

$EVWUDFW� This paper describes the design of a speech and
natural language dialog interface for Personal Assistants. We
present such an architecture in a multi-agent system and apply it to
knowledge management. As a clear result of this conversational
speech interface, we expect an improvement in the quality of
assistance.

�� ,1752'8&7,21 ��� �
Conversational interfaces as defined by Kölzer [1] let users state
what they want in their own terms, just as they would do, speaking
to another person. In particular, interfacing humans to computer
systems using Personal Assistants (PA) agents is a good candidate
for a conversational approach. Indeed, PAs are agents that help
human users (often referenced as PDVWHUV) to do their daily work.
We are convinced that a speech and conversational interface would
improve the quality of assistance form a PA. We developed a
spoken dialog system infrastructure for building interfaces to be
used by PAs. We are applying our approach to a knowledge
management (KM) multi-agent system (MAS) used in the context
of research and development projects, as explained by Tacla and
Barthès in [2]. The MAS has been developed to support
cooperative projects, where each participant shares documents,
exchanges information, and contributes to building a distributed
organizational memory. To this purpose, each user is given a PA
and can use plain English to control it or to ask it to perform tasks,
like retrieving a document from a Lotus Notes® database or
looking for knowledge in the organizational memory. The user and
her PA use practical dialogs—which means that they are pursuing
specific goals or tasks cooperatively as defined by Allen et al [3].
The dialog system is task-oriented. Tasks range from simple tasks
like “locate a document” to more complex tasks that must be
decomposed into subtasks. The nature of the application allows us
to restrict the space of dialogs to those containing only Directives
Speech Acts statements (e.g., inform, request, or answer). We
describe now our intelligent speech architecture and how it works.
We also describe briefly how the system is being used for KM and
report preliminary results on the increase quality of the assistance.

�� $5&+,7(&785(�)25� $1� ,17(//,*(17�
63((&+�,17(5)$&(�

The global architecture is shown in Figure 1. It has three parts: (i)

1 Laboratoire Heudiasyc, Université de Technologie de Compiègne, BP
20529, 60.205, Compiègne, France, email: {eparaiso,barthes}@utc.fr

2 Centro Federal de Educação Tecnologica do Parana, CEP: 80.230-901,
Curitiba, PR, Brazil, email: tacla@dainf.cefetpr.br

graphical and speech user interface (GSUI) modules; (ii) linguistic
modules; and (iii) agency modules. GSUI modules produce outputs
or collect the user’s inputs, like capturing voice and handling GUI
events. Linguistic modules are responsible for lexical and
syntactical analysis and context verification. Agency modules are
directly connected to the agent kernel, that can “intelligently”
manage the dialog and the interface with the help of an ontology.

��� ���
	���
��

Interface diagram

The utterances are captured using a commercial automatic
speech recognition engine that returns the recognized result for
each word. The Utterance Capturing module concatenates all the
words forming an utterance. A process running independently
analyzes each utterance. Due to local noise interference or bad
pronunciation, the utterance may be lexically and/or syntactically
different from the words actually said. Initially, we are using the
utterance as it is, extracting a list of known disfluencies.

The process of interpreting an utterance is done in two steps: (i)
parsing and syntactic analysis; and (ii) ontology application. The
results are sent to the dialog manager continuously, or back to the
user if it is a nonsensical�utterance. Spoken sentences have many
more pronouns than written sentences. They are shorter, consisting
of fragments or phrases [4]. We designed grammar rules to handle
such specificities. Although our interface uses a list of specialized
grammars, the latter are not restrictive.

We limited the space of dialog utterances to Directives Speech
Act classes—inform, request, or answer—since they define the
type of expected utterances in a master-slave relationship. The
grammar rules were divided in order to classify an utterance into
one of the three categories. After classification, it is possible to
start the domain treatment, with the help of a domain ontology and
of WordNet. Domain knowledge is used here to further process the
user’s statements and for reasoning. According to a taxonomy
proposed by Guarino [5], they are domain and task ontologies. We
are using a set of task and domain ontologies, distinguishing
domain and task models for reasoning. As suggested by Allen, this

observation is interesting for domains in which task reasoning is
crucial.

Ontologies play two main roles in our PA: (i) they help
interpreting the context of messages sent by others agents or by the
user; and (ii) they record a computational representation of
knowledge— we are using XML files— useful at inference time.

In the context of an open conversation, the problem of
understanding is complex. However, one does not require a full
understanding of the user’ s utterances to act in the right direction
as stated by Popescu et al [6]. The approach to the semantic
interpretation presented here is based on the notion that the
meaning of utterances can be inferred by finding keywords.
Precisely, the Ontology Application module is interested in finding
the list of verbs that indicate the task to be executed. The
corresponding keywords are concepts of the ontology directly
related to a list of actions. To illustrate how this approach works,
consider the utterance: &RXOG� \RX� OLVW� DOO� SURMHFW� SDUWLFLSDQWV"�
Since it is a question and since it is related to the application
domain, the Grammar Verification module returns a matrix
containing the list of tokens and their syntactic classification. By
looking up the tokens in the ontology, it finds that the token OLVW is
an action. Note that it uses a list of synonyms from WordNet [7]
(e.g. “list,” ”enumerate,” or “name,” are synonyms in this sense). It
finds also that SURMHFW is an object and�SDUWLFLSDQW is its property.
At this point, we have a competence list with its parameters. Next,
the Dialog Manager module takes control of the dialog. The Dialog
Manager is capable of choosing a dialog model appropriate to a
beginning session. For us, a dialog model contains a list of possible
interactions to follow, for a given action. Each dialog session is
conducted as a task with sub-tasks.

�� 0$6�)25�.12:/('*(�0$1$*(0(17�
We are embedding our speech interface into a PA that is part of a
knowledge management multi-agent system. In this architecture,
agents are totally independent but belong to a cluster called a
“coterie.” There are two types of agents: 6HUYLFH� $JHQWV� that
provide a particular type of service corresponding to specific skills,
and 3$V. The assistant is in charge of all exchanges of information
among participants. The PA we are working with is a rather
complex system. The agent is built around three main blocks: the
user interface, an $VVLVWDQF\ module and a fixed body, called the
Agent Kernel. In our system all agents are cloned from a generic
agent, that contains all the basic structure that allows an agent to
exist, and is the kernel of each agent. The $VVLVWDQF\ module
contains the mechanism for controlling the dialog and for keeping
a memory of the conversation. The context of the dialog is kept by
storing the competence list coming from the user interface for each
dialog session that was started.

Our approach is bottom-up and aims at recording the user’ s
behavior automatically whenever possible, building a library of
cases. It comprises several steps: capturing and representing an
action or operation, augmenting an operation representation,
clustering operations, indexing and classifying the results. All this
is done locally (by the PA and its staff) and the results are stored
into a distributed memory. Actions or operations are mainly related
to communications (e.g. sending emails), or documents (e.g.
searching for documents). This approach presents two advantages:
(i) it is easy to implement; and (ii) the information is qualified
according to the needs of a particular specialist. Thus, in this
approach important agents are PA rather than Service Agents. The

net result is a distributed knowledge system in which the
information has been organized locally as a function of the
particular interests of a given specialist.

The need of a speech interface is clear when we study the
complexity of a user’ s action in a KM system. The central point
here is to decrease his cognitive overload. In addition, a KM
system is a very specialized piece of software and it should not
waste the user’ s time. In general, this kind of application involves
experienced and less experienced users. Since the system reasons
with user’ s actions, if the user details her actions, the system will
produce better results. Thus, the user interface should
accommodate all kinds of users, experienced or not, and provide
the same results. So, our main strategy is to simplify the interaction
between the user and her PA in order to reduce extra or specialized
work�

�� ,03529(0(176� ,1� 7+(� 48$/,7<� 2)�
$66,67$1&(�

Using a speech interface with a PA improves the quality of
assistance in some specific situations, as in the context of KM.
First of all, it makes the system operation faster and easier, since
the user does not need to be an expert in KM. We hope that
inexperienced users will easily operate the PA’ s interface
compared to the ones using traditional approaches, with only GUI
elements, menus and sub-menus.

Since the application is a PA, an essential feature of the user
interface has been respected, namely predictability. It was an
assumption we made at the beginning: to provide correct responses
and act according to the user’ s command. Impossible requests,
such as out of context, are easily handled since the system uses a
competence list described as an ontology.

Although speech interfaces and dialog systems are used in
several projects, our application to PAs and knowledge
management is original. In addition, our contribution may also
come from some design decisions. In this paper, we presented an
architecture for processing conversational speech for PA in
specialized domains. Such an architecture is suitable for PAs,
particularly in specialized domains as KM. Our main goal is to
improve the quality of the assistance. A formal evaluation process
will be conducted to evaluate the results and to guide us for future
improvements.

5()(5(1&(6�
[1] Kölzer, A. Universal dialogue specification for conversational

systems, in �������������
� ������� �! "$#&%')($(+*-,.���0/��012�435���+6)�2��798 �������!:$�$�; ��:$�����
� ���<� �!���0:��>= � ��:28�?@� :28 �>�2A��9B�C2��= ��DE� .
[2] Tacla, C.A., and Barthès, J-P. From desktop operations to lessons

learned, in �������������
� �����.� �GF1�+B$��H����2= 1< 4�2= ���0�$:2= � ���$:28�#I��� �>���0�������J���
#'B2#!, in Design, Rio de Janeiro, 2002.

[3] Allen, J. and Ferguson, G., Stent, A. An architecture for more realistic
conversational systems, in �������������
� ������� �! 4�2= ��8 8 � �����2=LK��0���I 4�2= ��� �>:������M
NNO@P �KQ �R N$O S , Santa Fe, NM.

[4] Jurafsky, D. and Martin, J. B03����>��1T:$�$�VU&:$���2A�:����W�����������0��� ���2X %I�
 4�2= ������A$�>= � ���Y= �[Z9:2= A��0:28\U&:$���2A�:����]�����������0��� ����^_#I��DQ3'A�= :2= � ���$:28
U�� ���2A2� ��= � ���':$�$�.B03����>��1 ; �>�>�>���
� = � ��� . Prentice Hall, 2000.

[5] Guarino, N. Formal ontology in information systems, in �������������
� �����
� �9`LaL 4B9b ($c , (Italy – June 1998), IOS Press, 3-15.

[6] Popescu, A.M., Etzioni, O., and Kautz, H. Towards a theory of
natural language interfaces to databases, in �������������
� �����[� �
 4�2= ��8 8 � �����2=QK��0���� 4�2= ��� �>:������ M
N$N�dJP �KQ �R N�d�S ^ ACM Press, 149-157.

[7] Fellbaum, C. ,.���0��Z9��= e'%I�V��8 �>�>= �����
� �f8 ��g�� ��:28L�$:2= :2h�:$�0� . MIT Press,
Cambridge, MA, 1998.

