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Abstract. Wedescribeaflexible approachto automatedreasoning,
wherenon-theoremscanbeautomaticallyalteredto produceproved
resultswhich arerelatedto theoriginal.This is achievedthroughan
interactionof the HR machinelearningsystem,the Otter theorem
prover and the Mace model generator, and usesmethodsinspired
by Lakatos’s philosophyof mathematics.We demonstratetheeffec-
tivenessof thisapproachby modifyingnon-theoremstakenfrom the
TPTPlibrary of first ordertheorems.

1 Background

Currentautomateddeductionsystemsareonly capableof threetypes
of outputwhengivena conjecture:proof that it is true,proof that it
is false,or that the conjectureis still open.We believe that greater
flexibility andability to betterhandleill-specifiedproblemswould
improve reasoningsystems.We have implementeda theoremmod-
ifier system,TM, which is ableto take in a conjecture,try to prove
it and if unsuccessful(eitherbecausethe conjectureis too hard to
prove or becauseit is false),producemodifiedversionsof thecon-
jecturewhich it can prove. For instance,giventhenon-theoremthat
all groupsareAbelian, TM statesthat it cannotprove the original
result,but it hasdiscoveredthatall self-inverse groupsareAbelian.

TM is inspiredby methodsfrom [2]. Lakatosarguedthat math-
ematicsdevelopedin a muchmoreorganicway thanits rigid text-
book presentationof definition-theorem-proofwould suggest.He
saw mathematicsasaprocessin which,viapatternsof analysiswhich
hecategorisedinto sevenmethods,conjecturesandproofsaregradu-
ally refinedbut never certain.In [2], Lakatosoutlineda heuristicap-
proachwhichholdsthatmathematicsprogressesby aseriesof primi-
tiveconjectures,proofs,counterexamples,proof-generatedconcepts,
modifiedconjecturesandmodifiedproofs.Thetwo methodswehave
drawn on for TM areLakatos’s exception-barringmethods:piece-
meal exclusion andstrategic withdrawal. Theformerworksby gen-
eralisingfrom a counterexampleto a classof counterexamplesand
then excluding this classfrom the faulty conjecture;and the latter
by consideringtheexamplessupportinga conjecture,finding a con-
ceptwhich coversa subsetof these,andlimiting thedomainof the
conjectureto thatof theconcept.Put formally, given theconjecture���������
	�������
	

, counterexamples� suchthat
��� � 	������� � 	 ,

andpositive examples� suchthat
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� ��� � � 	 , and� � � � � � 	 , thenmodifiestheconjectureto:������� � ����	��������
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In orderto automatethesemethodswe needa programwhich at-
temptsto prove a conjecture(we do not want to modify conjectures
which canbe proven automatically);onewhich generatessupport-
ing andcounterexamples,andonewhichgeneratesconceptsto cover
a set of entities.To this end TM interactswith the Otter theorem
prover [3], theMacemodelgenerator[4], andtheHR machinelearn-
ing system[1]. Otteris afirst orderresolutiontheoremprover which
hasbeenusedfor many discovery tasksin algebraicdomains,e.g.,
[5]. Mace is a model generatorwhich employs the Davis-Putnam
methodfor generatingmodelsto first ordersentences.HR takes in
objectsof interest,suchas groups,andbackgroundconceptssuch
astheoperatorof a group,andformsa theorycontainingconcepts,
conjecturesandproofs.Its conceptformationfunctionalityworksby
applying one of 15 productionrules to one (or two) old concepts
to generatea new concept.For instance,it might passthe concept
elementthrough the size productionrule to producethe function& ��'(	�)+* ,-��./�1032546*

, i.e. thesizeof a group.

2 The Theorem Modifier System

TM works by taking in a conjectureof the form 7 � � where 7
is a conjoinedset of axioms,and � the conjecturea userwishes
to prove/modify/disprove. We have so far limited TM to algebraic
domains,such as group theory, where there is a single operator
whichsatisfiestheaxiomsof associativity, identity, andinverse.

Stage 1: Given a conjecture,TM first performstwo preliminary
checksto seewhetherit is worthmodifying.Theseare:
(i) if Otter can prove in a user-specifiedperiod of time that the
conjectureis true,i.e., 7 � � , thenTM reportsthis andreturnsthe
proof;
(ii) TM negatestheconjectureandinvokesOtter to try to prove the
negation.

Stage2: If unsuccessful,thenTM performsa further checkbefore
invokingMACEandHR – whethertheconjectureis trueif andonly
if we limit the objectsin the domainto (a) the trivial algebra,i.e.
if 7 �8���9�:'
;=<���'!)><?	�	A@ � ), or (b) non-trivial algebras,i.e. if7 �B����C�'�;=<D��'FE)3<G	�	�	H@ � . This checkis a typeof modification
inspiredby Lakatos’s exception-barringmethods,where(a) theonly
supportingexampleis the trivial algebra,sowe limit thedomainto
this(atypeof strategic withdrawal), and(b) theonly counterexample
is thetrivial algebra,sowe excludeit form theconjecture(a typeof
piecemealwithdrawal). We apply thesemethodsseparatelyat this
stageasit is often thecasethata theoremis trueonly for thetrivial
algebra,in which casethe theoremis usually uninteresting.The
oppositecase,that the theoremis true for everythingbut the trivial
algebra,is rare.



Stage3: If the conjecturegetsbeyond thesechecks,thenTM has
thechanceto modify it. To do this;
(i) TM invokes MACE to generatetwo setsof algebras;the first
containingthosewhich supporttheconjecture,andthesecondthose
whichcontradictit.
(ii) Thesesetsarethenpassedto HR asobjectsof interest,aswell as
theconjecture,from which it extractsthecoreconcepts.It usesthis
input to producea theory, for a user-specifiednumberof steps.
(iii) TM then identifiesall the specialisationsof the algebra(such
as Abelian or self-inversealgebras)which HR has invented.TM
extractsthosewhich describeonly the algebraswhich supportthe
conjecture(or a subsetof them).For eachextractedspecialisation,I

, TM formsthemodifiedconjecture
� 7 � I 	H� � by adding

I
to theaxioms.
(iv) Otter is invoked to seewhich of thesemodificationscan be
proved,andany whichareprovedarepresentedto theuser.

Stage4: Finally, TM evaluateswhetherits modificationsarelikely
to beinterestingto theuser. It doesthisby testingwhether:
(i) theonly exampleto satisfyM is thetrivial algebra,in which case
TM invokesOtterto checkwhether7 �J� I @K�9�:'
;=<���'D)L<?	�	�	 ;
(ii) the conceptis a redefinition of the conjecturestatement,for
instance,

I
is the condition that a group is Abelian, when the

original conjecturewasall groups are Abelian, i.e. themodification
is that all Abelian groups are Abelian. If every supportingexample
has the property prescribedby M, then TM usesOtter to try to
prove: (a)

I @ � , (b) 7 ��� I @ � 	 , (c)
I � � . TM marks

theseasprobablyuninteresting,thoughstill reportsthemto theuser,
as it may be that the equivalenceof � and

I
is surprisingand

non-trivial, andhencethemodifiedconjectureinteresting.

Note that this processof modifying conjecturesby specialising
themis animplementationof Lakatos’sstrategic withdrawal method.
However sinceTM instructsHR to useits negateproductionrule,
for every specialisation

I
, thenegation

� I
will alsobeproduced.

Hence,if theexamplesof
I

containedall thefalsifying examplesfor
theconjecture,then

� I
would describea subsetof the supporting

examples,andhencewouldbeusedin amodificationattempt.There-
foreTM alsousespiecemealexclusionto form themodifications.

3 Testingand Evaluation

We have testedthehypothesisthatTM canfind meaningfulmodifi-
cationsto non-theoremsby usingthe TPTPlibrary [6]. From theo-
remsin thegroup(GRP),field (FLD), ring (RNG) andcombinatory
logic (COL) domainsin this library we generated89 non-theorems
by removing axioms,changing/removing quantifiers,altering vari-
ablesandconstants,andalteringbracketing.To this setwe added9
of thenon-theoremsin TPTPto make a testsetof 98 non-theorems.
In additionto testingthehypothesis,we investigatedhow we could
improve performance- whereperformancewasmeasuredby (a) the
numberof non-theoremsfor which TM was able to find an inter-
estingmodification,and(b) thenumberof interestingmodifications
producedpernon-theorem.Weconsideredamodificationto beinter-
estingif (i) TM evaulatedit asinterestingin stage4, or (ii) it showed
thattheorginal conjectureis trueonly if thealgebrais trivial, or (iii)
it comeswith thecautionthat the specialisationmay trivially make
thetheoremtrue,but is notanobviousl restatementof theconjecture.

In order to investigatehow performancecould be improved, we
alteredtheamountof time Mace,OtterandHR wereeachallowed.
Maceonly found a few moreexampleswith extra time, which did

not affect thespecialisingconceptsthatHR found.Similarly giving
Ottermoretime did not improve theperformanceof TM – giving it
extra time did not resultin it proving a difficult problem.Therefore,
we concentratedon altering the way in which we ran HR. We ran
threesessionsusingTM to attemptto modify eachof the 98 non-
theorems.OtterandMaceweregiven10seconds,with Macelooking
for examplesuptosize8,andHRwasallowed1000theoryformation
stepsin thefirst two sessions,and3000stepsin thethird session.In
thefirst session,however, theability to useequivalenceconjectures
to find specialisationswasturnedoff [1].

Session 1 2 3
Equivalentto trivial algebra 24 24 24
No valid modifications 11 10 9
Only redefinitionmodifications 8 8 8
Valid modificationswith caution 18 18 18
Valid modificationsnocaution 37 38 39
Totalvalid modifications 79 80 81
Averagenumberof modificationspernon-theorem 0.8 1.3 3.1
Averagetime to generatemodifications(s) 73 120 253

Table 1. Resultsfrom modificationattemptson98 non-theorems

TM producedinterestingmodificationsfor 79, 80 and81 out of
98 of the non-theoremsrespectively, i.e., 81%, 82% and83%. We
believe that sucha successrate is very encouraging.Thesefigures
don’t appearto provide muchevidenceof improvementby running
HR for longerandallowing it to useinformationfrom equivalence
conjectures.However, if we look at theaveragenumberof modifica-
tionsproducedin thethreesessions,weseethatusingthesetupasin
thefirst session,on averageTM found0.8provedmodificationsper
non-theorem,but usingthesetupasin thethird session,it found3.1
modificationspernon-theorem.Thedrawbackis that thetime taken
to producethesemodificationstriples.

As an illustrative example, a non-theoremfrom ring theory
(RNG031-6)statesthatthefollowing property,

�
, holdsfor all rings:�:M�;=����������M�N6MO	PN6��	PN���M�N6MQ	�	�)LRTS6	

where
RTS

is theadditive iden-
tity element.Macefound7 supportingexamplesfor this,and6 falsi-
fying examples.HR produceda singlespecialisationconceptwhich
wastrueof 3 supportingexamples:U <V;�WD��<VNV<X)LWP�H<PYZ<�E)LW?	 . Otter
thenproved that

�
holdsin rings for which HR’s inventedproperty

holds.Hence,while TM couldn’t prove the original theorem,it did
prove that,in ringsfor which

���5���[N���)L�AY:��	
, property

�
holds.

Thespecialisationherehasanappealingsymmetry.
The TM systemdemonstratesincreasedflexibility in automated

theoremproving, gained by integrating deductive, inductive and
modelbasedtechniques.Webelieve thatsuchflexibility will playan
importantpartin thenext generationof automatedreasoningsytems,
and that the combinationof areassuchas machinelearning,con-
straintsolvingandtheoremproving is inevitablefor AI to progress.
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