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Abstract. Wedescribeaflexible approacho automatedeasoning,
wherenon-theoremsanbe automaticallyalteredto produceproved

resultswhich arerelatedto the original. This is achieved throughan

interactionof the HR machinelearningsystem,the Otter theorem
prover and the Mace model generatgrand usesmethodsinspired
by Lakatoss philosophyof mathematicsWe demonstrate¢he effec-

tivenesof this approactby modifying non-theoremsakenfrom the

TPTPlibrary of first ordertheorems.

1 Background

Currentautomatedleductiorsystemsreonly capableof threetypes
of outputwhengiven a conjectureproof thatit is true, proof thatit
is false,or that the conjectureis still open.We believe that greater
flexibility andability to betterhandleill-specified problemswould
improve reasoningsystemsWe have implementeda theoremmod-
ifier system,TM, which is ableto take in a conjecturetry to prove
it andif unsuccessfufeither becausehe conjectureis too hardto
prove or becausat is false),producemodifiedversionsof the con-
jecturewhichit can prove. For instancegiventhe non-theorenthat
all groupsare Abelian, TM statesthatit cannotprove the original
result,but it hasdiscoreredthatall self-inverse groupsareAbelian.
TM is inspiredby methodsfrom [2]. Lakatosarguedthat math-
ematicsdevelopedin a muchmore organicway thanits rigid text-
book presentatiorof definition-theorem-proofvould suggest.He
sav mathematicgasaprocessn which,via patternof analysisvhich
hecateyorisedinto serenmethodsconjecturesandproofsaregradu-
ally refinedbut never certain.In [2], Lakatosoutlineda heuristicap-
proachwhich holdsthatmathematicprogresseby a seriesof primi-
tive conjecturesproofs,countergamples proof-generatedoncepts,
modifiedconjecturesandmodifiedproofs. Thetwo methodsve have
dravn on for TM are Lakatos$ exception-barringmethods:piece-
meal exclusion andstrategic withdrawal. The formerworks by gen-
eralisingfrom a countergampleto a classof countergamplesand
then excluding this classfrom the faulty conjecture;andthe latter
by consideringhe examplessupportinga conjecturefinding a con-
ceptwhich coversa subsebf these andlimiting the domainof the
conjectureto that of the concept.Putformally, giventhe conjecture
VY z P(z) = Q(z), countergamplesn suchthat P(n) A =Q(n),
andpositive examplesp suchthat P(p) A Q(p):
e piecemeal exclusion finds a conceptC' suchthatV n C(n), and
Y p —~C(p), thenmodifiesthe conjectureo:
Vz (-C(z) A P(z)) = Q(z)
e strategic withdrawal finds a conceptC' suchthatV p C(p), and
V n ~C(n), thenmodifiesthe conjectureto:
Yz (C(z)AP(z)) = Q).
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In orderto automate¢hesemethodswve needa programwhich at-
temptsto prove a conjecture(we do not wantto modify conjectures
which can be proven automatically);one which generatesupport-
ing andcountergamplesandonewhich generatesonceptgo cover
a setof entities. To this end TM interactswith the Otter theorem
prover[3], theMacemodelgeneratof4], andthe HR machindearn-
ing systen1]. Otteris afirst orderresolutiontheoremprover which
hasbeenusedfor mary discovery tasksin algebraicdomains.e.g.,
[5]. Maceis a model generatorwhich emplagys the Davis-Putnam
methodfor generatingnodelsto first ordersentencesHR takesin
objectsof interest,suchas groups,and backgroundconceptssuch
asthe operatorof a group,andforms a theory containingconcepts,
conjecturesandproofs.Its concepformationfunctionalityworks by
applying one of 15 productionrulesto one (or two) old concepts
to generatea nev concept.For instancejt might passthe concept
elementthroughthe size productionrule to producethe function
f(a) = |{z: x € G}, i.e.thesizeof agroup.

2 The Theorem Modifier System

TM works by taking in a conjectureof theform A = C where A
is a conjoinedset of axioms,and C' the conjecturea userwishes
to prove/modify/dispree. We have so far limited TM to algebraic
domains,such as group theory where thereis a single operator
which satisfieghe axiomsof associatiity, identity, andinverse.

Stage 1: Given a conjecture,TM first performstwo preliminary
checkgo seewhetherit is worth modifying. Theseare:

(i) if Otter can prove in a userspecifiedperiod of time that the
conjecturds true,i.e., A = C, thenTM reportsthis andreturnsthe
proof;

(ii) TM negatesthe conjectureandinvokes Otterto try to prove the
negation.

Stage2: If unsuccessfuthenTM performsa further checkbefore
invoking MACE andHR —whetherthe conjectures trueif andonly
if we limit the objectsin the domainto (a) the trivial algebra,i.e.
if A= ((Va,b(a=0)) < C) or(b)non-trvial algebrasj.e. if
A= ((3 a,b (a #£b))) & C. This checkis atype of modification
inspiredby Lakatoss exception-barringnethodswhere(a) the only
supportingexampleis the trivial algebrasowe limit the domainto
this (atypeof strateic withdrawal), and(b) theonly countergample
is thetrivial algebrasowe excludeit form the conjecture(a type of
piecemealwithdraval). We apply thesemethodsseparatelyat this
stageasit is oftenthe casethata theoremis true only for thetrivial
algebra,in which casethe theoremis usually uninteresting.The
oppositecase thatthe theoremis true for everythingbut the trivial
algebrajsrare.



Stage 3: If the conjecturegetsbeyond thesechecks,thenTM has
thechanceo modify it. To dothis;

(i) TM invokes MACE to generatetwo setsof algebrasithe first
containingthosewhich supportthe conjectureandthe secondhose
which contradictit.

(if) Thesesetsarethenpassedo HR asobjectsof interestaswell as
the conjecturefrom which it extractsthe coreconceptslt usesthis
inputto produceatheory for a userspecifiedhumberof steps.

(iii) TM thenidentifiesall the specialisation®f the algebra(such
as Abelian or self-inversealgebras)which HR hasinvented. TM
extractsthosewhich describeonly the algebraswhich supportthe
conjecture(or a subsetof them). For eachextractedspecialisation,
M, TM formsthe modifiedconjecturg A A M) = C by addingM
to theaxioms.

(iv) Otter is invoked to seewhich of thesemodificationscan be
proved,andary which areprovedarepresentedo the user

Stage4: Finally, TM evaluateswhetherits modificationsarelik ely
to beinterestingo the user It doesthis by testingwhether:

(i) theonly exampleto satisfyM is thetrivial algebrajn which case
TM invokesOtterto checkwhetherd = (M < (V a,b (a = b)));

(i) the conceptis a redefinition of the conjecturestatementfor

instance,M is the condition that a group is Abelian, when the
original conjecturewasall groups are Abelian, i.e. the modification
is thatall Abelian groups are Abelian. If every supportingexample
has the property prescribedby M, then TM usesOtter to try to
prove:(@ M < C,(b)A = (M < C),(c) M = C. TM marks
theseasprobablyuninterestingthoughstill reportsthemto theuser
asit may be that the equivalenceof C and M is surprisingand
non-trivial, andhencethe modifiedconjecturenteresting.

Note that this processof modifying conjectureshy specialising
themis animplementatiorof Lakatoss stratgic withdraval method.
However since TM instructsHR to useits negate productionrule,
for every specialisationV, the negation—-M will alsobe produced.
Hencejf theexamplesof M containedall thefalsifying examplesfor
the conjecturethen—M would describea subsetf the supporting
examplesandhencewvouldbeusedin amodificationattempt.There-
fore TM alsousespiecemeakxclusionto form the modifications.

3 Testingand Evaluation

We have testedthe hypothesighat TM canfind meaningfulmodifi-
cationsto non-theoremdby usingthe TPTPlibrary [6]. From theo-
remsin the group(GRP),field (FLD), ring (RNG) andcombinatory
logic (COL) domainsin this library we generated9 non-theorems
by remaving axioms, changing/remaing quantifiers,altering vari-
ablesandconstantsandalteringbracleting. To this setwe added9
of thenon-theorem# TPTPto male atestsetof 98 non-theorems.
In additionto testingthe hypothesiswe investigatechow we could
improve performance whereperformancevasmeasuredy (a) the
numberof non-theoremdor which TM was able to find an inter
estingmodification,and (b) the numberof interestingmodifications
producedernon-theoremWe considereg modificationto beinter
estingif (i) TM evaulatedt asinterestingn stage4, or (ii) it shaved
thattheorginal conjecturds trueonly if thealgebrais trivial, or (iii)
it comeswith the cautionthatthe specialisatiormay trivially malke
thetheorentrue,but is notanobviousl restatementf theconjecture.
In orderto investigatehowv performancecould be improved, we
alteredthe amountof time Mace, OtterandHR were eachallowed.
Mace only found a few more exampleswith extra time, which did

not affect the specialisingconceptghat HR found. Similarly giving
Ottermoretime did notimprove the performancesf TM — giving it
extratime did notresultin it proving a difficult problem.Therefore,
we concentratedn altering the way in which we ran HR. We ran
threesessionsising TM to attemptto modify eachof the 98 non-
theoremsOtterandMaceweregiven 10 secondswith Macelooking
for exampleaupto size8, andHR wasallowed 1000theoryformation
stepsin thefirst two sessionsand3000stepsin thethird sessionin
thefirst sessionhowever, the ability to useequialenceconjectures
to find specialisationsvasturnedoff [1].

Session 1 2 3
Equialentto trivial algebra 24 |1 24 24
No valid modifications 11 10 9
Only redefinitionmodifications 8 8 8
Valid modificationswith caution 18 | 18 18
Valid modificationsno caution 37 | 38 39
Totalvalid modifications 79 | 80 81
Averagenumberof modificationgpernon-theorem|| 0.8 | 1.3 | 3.1
Averagetime to generatenodifications(s) 73 | 120 | 253

Table1l. Resultsfrom modificationattemptson 98 non-theorems

TM producedinterestingmodificationsfor 79, 80 and 81 out of
98 of the non-theoremsespectiely, i.e., 81%, 82% and 83%. We
believe that sucha successateis very encouragingThesefigures
don't appeatto provide muchevidenceof improvementby running
HR for longerandallowing it to useinformationfrom equivalence
conjecturesHowever, if we look atthe averagenumberof modifica-
tionsproducedn thethreesessionsye seethatusingthe setupasin
thefirst sessionpn averageTM found 0.8 proved modificationsper
non-theorembut usingthe setupasin thethird sessionit found 3.1
modificationsper non-theoremThe dravbackis thatthe time taken
to producethesemodificationsgtriples.

As an illustrative example, a non-theoremfrom ring theory
(RNGO031-6)stateghatthefollowing property P, holdsfor all rings:
Vw,z ((wxw)*x)*(wxw)) = id) whereid is theadditive iden-
tity elementMacefound 7 supportingexamplesfor this,and6 falsi-
fying examples HR produceda single specialisatiorconceptwhich
wastrueof 3 supportingexamples? b, ¢ (bxb = cAb+b # ¢). Otter
thenprovedthat P holdsin rings for which HR’s inventedproperty
holds.Hence,while TM couldnt prove the original theoremijt did
prove that,in ringsfor whichV z (z * x = = + z), propertyP holds.
Thespecialisatiorherehasanappealingsymmetry

The TM systemdemonstrateincreasedlexibility in automated
theoremproving, gained by integrating deductve, inductve and
modelbasedechniquesWe believe thatsuchflexibility will play an
importantpartin thenext generatiorof automatedeasoningytems,
and that the combinationof areassuchas machinelearning, con-
straintsolvingandtheoremproving is inevitablefor Al to progress.
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