
A Uniform Tableaux-Based Method for Concept
Abduction and Contraction in Description Logics

S. Colucci and T. Di Noia and E. Di Sciascio and F. M. Donini * and M. Mongiello 1

1 The Calculus

We present algorithms for Concept Abduction and Concept Contrac-
tion, two reasoning services in Description Logics (DL) recently pro-
posed to model how several supplies fit a demand (all described by
concepts), and vice versa, in e-commerce. An extended version of
the paper is in [2]. Recent papers on tableaux for description logics
use a labeling function L to map an individualx to a set of concepts
L(x) such that for every concept C, C ∈ L(x) stands for the formula
C(x), and similarly for roles R ∈ L(x, y). Here we distinguish be-
tween formulas labeled “true” and formulas labeled “false” in the
tableaux, hence we use two labeling functions T() and F(), both go-
ing from individuals to sets ofconcepts, and from pairs of individuals
to sets of roles. A (usual) tableau branch is now represented by two
functions T() and F(). Moreover, we write in the name of an individ-
ual x its history, i.e., the string identifying x is made up of integers
and role symbols, such as x = 1R3Q7, which means that individual
x is used for concepts in a quantification involving role R, and inside,
a quantification involving role Q. Integers in between roles make sure
that such strings are unique, i.e., there can be two individuals with
the same role sequence, but not with the same integer sequence [3].
Given an individual x in a tableau, an interpretation (∆I , ·I) satisfies
two tableau labels T(x) and F(x) if, for every concept C ∈ T(x) and
every concept D ∈ F(x), it is xI ∈ CI and xI �∈ DI respectively.
Similarly, (∆I , ·I) satisfies two tableau labels T(x, y) and F(x, y)
if for every role R ∈ T(x, y) and for every role Q ∈ F(x, y) it holds
(xI , yI) ∈ RI and (xI, yI) �∈ QI . We note however that for the
DL we adopt, every role Q that appears in a label F(x, y) is of the
form ¬R, hence Q ∈ F(x, y) means, in fact, (xI , yI) ∈ RI too.
An interpretation satisfies a tableau branch if it satisfies T(x), F(x),
T(x, y) and F(x, y) for every individual x, and for every pair of indi-
viduals x, y in the branch. Each rule has a precondition, and an action
modifying the tableau. When the precondition is met, the action can
be performed. In order to simplify the preconditions, we assume that,
for each different instance of the preconditions, each rule is applied
at most once. We also assume that concepts are always simplified in
Negation Normal Form (NNF, see [1, ch.2]), so that negations come
only in front of concept names. Without NNF, the number of rules
should be doubled. In what follows, given a concept C, we denote
with C the NNF of ¬C. Rules come in pairs, first the (usual) version
with a construct in the T-constraints, then the dual construct in the
F-constraints. However, in what follows we omit rules marked with
an asterisk (*), because the correspondent formulae do not appear in
our tableaux for ALN .

1. conjunctions:

1 Politecnico di Bari, Via Re David, 200, I-70125, Bari, Italy * Università
della Tuscia, via San Carlo, 32I, -01100, Viterbo, Italy

T�) if C � D ∈ T(x), then add both C and D to T(x)

F�) if C � D ∈ F(x), then add both C and D to F(x)

2. disjunctions (branching rules):

T�) *

F�) if C � D ∈ F(x), then add either C or D to F(x)

3. existential quantifications:

T∃) *

F∀) if ∀R.C ∈ F(x), then pick up a new individual y = x ◦ R ◦
m (where m is an integer such that y is unique), add ¬R to
F(x, y), and let F(y) := {C}

4. universal quantifications:

T∀) if ∀R.C ∈ T(x) and there exists an individual y such that either
R ∈ T(x, y), or ¬R ∈ F(x, y), then add C to T(y)

F∃) if ∃R.C ∈ F(x), and there exists an individual y such that
either R ∈ T(x, y), or ¬R ∈ F(x, y), then add C to F(y)

5. at-least number restrictions:

T�) if � n R ∈ T(x), with n > 0, and for every individual y neither
R ∈ T(x, y) nor ¬R ∈ F(x, y), then pick up a new individual
y = x ◦ R ◦ m (where m is an integer such that y is unique),
add R to T(x, y), and let T(y) := ∅

F�) if � n R ∈ F(x) and for every individual y neither R ∈
T(x, y) nor ¬R ∈ F(x, y), then pick up a new individual
y = x ◦ R ◦ m (where m is an integer such that y is unique),
add ¬R to F(x, y), and let F(y) := ∅

6. at-most number restrictions:

T�) if � 1 R ∈ T(x), and there are 2 individuals y1, y2 such that
for i ∈ 1, 2 it is either R ∈ T(x, yi) or ¬R ∈ F(x, yi), then
let T(y1) := T(y1) ∪ T(y2), let F(y1) := F(y1) ∪ F(y2), and
eliminate y2 in the branch

F�) if � 2 R ∈ F(x) and there are 2 individuals y1, y2 such that
for i ∈ 1, 2 it is either R ∈ T(x, yi) or ¬R ∈ F(x, yi), then
let T(y1) := T(y1) ∪ T(y2), let F(y1) := F(y1) ∪ F(y2), and
eliminate y2 in the branch

7. axioms in T :

F
) if x is an individual, and A 
 C ∈ T , then add A � C to F(x)

F .
=) if is an individual, and A

.
= C ∈ T , then add both A � C and

C � ¬A to F(x)

When more than one rule can be applied, we always give lowest
precedence to Rules T�) and F�), while other rules can be applied



in any order. We now split the definition of clash (an explicit in-
consistency) between clashes involving the same truth prefix (homo-
geneous clashes) and those involving both prefixes (heterogeneous
clashes).

Definition 1 (Clash) A branch contains a homogeneous clash if it
contains one of the following:

1. either ⊥ ∈ T(x) or � ∈ F(x), for some individual x;
2. either A,¬A ∈ T(x) or A,¬A ∈ F(x) for some individual x and

some concept name A;
3. either � n R,� mR ∈ T(x) with m < n, or � n R,� mR ∈

F(x) with m − 1 < n + 1, for some individual x, and some role
name R.

A branch contains a heterogeneous clash if it contains one of the
following:

1. T(x) ∩ F(x) contains either A or ¬A for some individual x and
some concept name A;

2. either � n R ∈ T(x) and � m R ∈ F(x) with m − 1 < n, or
� n R ∈ T(x) and � mR ∈ F(x) with n < m + 1, for some
individual x, and some role R

2 Algorithms

We now present the two algorithms for Concept Contraction and
Concept Abduction. We need to define a function, roles(x), that
given an individual x (as a sequence of integers and roles) re-
turns the sequence of roles in x (without integers). For example,
roles(1R3Q7) = RQ. Moreover, we denote the substitution of an
occurrence of a concept C with the concept �, inside a concept D as
D[C → �].

Algorithm contract
input: ALN concepts C, D, acyclic TBox T
output: concepts K (keep), G (giveup)
begin

compute a complete tableau τ for T , D ∈ T(x), C ∈ F(x)
IF τ is open THEN

RETURN G := �, K := D /* no contraction needed */
ELSE IF every branch in τ contains a homogeneous clash THEN

RETURN fail /* either C or D is unsatisfiable in T */
ELSE

choose(*) a branch β containing only heterogeneous clashes;
LET G := {〈Ci, xi〉|Ci ∈ T(xi), Ci ∈ F(xi) is a clash in β};
LET G := �〈Ci,xi〉∈G∀roles(xi).Ci

LET K := D[Ci → �]〈Ci,xi〉∈G
RETURN G, K

END

Observe that the algorithm admits a nondeterministic choice in
step (*), needed to select the contraction according to some minimal-
ity criterion, and that only branches without homogeneous clashes
need to be completely expanded, even after the first clash has been
found. Observe also that substituting an occurrence of a concept C
with � corresponds, in ALN , to eliminating the occurrence. In fact,
since � � D = D, and ∀R.� = �, once � has been inserted,
the concept simplifies eliminating it from conjunctions and univer-
sal quantifications. We preferred this notation instead of eliminating
occurrences, since it seems us to be more concise.

Theorem 1 The concepts G, K returned by the Algorithm contract
are a Contraction of D w.r.t. C and T .

Proof. First, note that K �C is satisfiable by definition of K; in fact,
the tableau for K � C is the same as the tableau for D � C, but it
has now at least one open branch β, in which all clashes have been
removed. Secondly, D = G � K by construction. �

Note that Algorithm contract proves that Concept Contraction in
ALN with bushy TBoxes is solvable in polynomial time. We now
present the algorithm for Concept Abduction. Also this algorithm
uses the tableaux rules defined in Section 1.

Algorithm abduce
input: ALN concepts C, D, acyclic TBox T
output: concept H (hypotheses)
begin

compute a complete tableau τ for T , C ∈ T(x),D ∈ F(x)
IF τ is closed THEN

RETURN H := � /* no abduction needed */
ELSE

choose(*) a set of pairs H := {〈Ci, xi〉} and
LET H := �〈Ci,xi〉∈H∀roles(xi).Ci

such that (1) every open branch in τ contains at least one
constraint Ci ∈ F(xi) from H
(2) C � H is satisfiable in T

RETURN H
END

Theorem 2 The concept H returned by the Algorithm abduce is a
solution of the CAP 〈C, D, T 〉.

Proof. First, we have T |= C � H 
 D, since the tableau starting
from C � H ∈ T(1), D ∈ F(1) is τ , plus the constraints signed T
from H . These constraints include Ci ∈ T(xi), making every open
branch in τ closed by a heterogeneous clash. Regarding the condition
C � H satisfiable in T , it is enforced by Condition (2) in the choice
of H. �

Condition (2) is necessary in abduce , since heterogeneous clashes
could be formed also by contradicting an axiom in T . In that case,
although still C � H 
 D in T , the subsumption trivially holds
since C � H = ⊥. We conclude the section by showing that our
Algorithm abduce puts an upper bound to Concept Abduction that
meets the lower bound proved in the previous section.

Theorem 3 Let P = 〈C, D, T 〉 a Concept Abduction Problem,
where C, D are concepts in ALN , and T is a bushy TBox in
ALN . Deciding whether there exists a solution of length k in
SOLCAP≤(P) is NP-complete.

The proof of the theorem is in [2].

Acknowledgements

We thank Andrea Calı̀ and Diego Calvanese for useful discussions
about DL. We also acknowledge the project PON CNOSSO and Ital-
ian MIUR under project PRIN 2002 for supporting this research.

REFERENCES
[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel Schnei-

der (eds.), The Description Logic Handbook, Cambridge University
Press, 2003.

[2] S. Colucci, T. Di Noia, E. Di Sciascio, F.M. Donini, and M. Mongiello,
‘Uniform Tableaux-Based Approach to Concept Abduction and Contrac-
tion in ALN DL’, in Proc. of the 17th Intl. Workshop on Description
Logics (DL’04), CEUR Workshop Proc., (2004). To appear.

[3] F.M. Donini and F. Massacci, ‘Exptime tableaux for ALC’, Artif. Intell.,
124, 87–138, (2000).


