
Compilation of LTL goal formulas into PDDL
Stephen Cresswell and Alexandra Coddington 1

Abstract. Temporally extended goals are used in planning to ex-
press safety and maintenance conditions. Linear temporal logic is
the language often used to express temporally extended goals. We
present a method for compiling LTL goal formulas into Planning
Domain Definition Language (PDDL), which is handled by many
AI planners. The compilation process first constructs a finite state
machine representing all reachable progressions of the goal formula,
then modifies the planning domain and problem definition so that the
state of the FSM is tracked.

1 INTRODUCTION

In conventional formulations of planning problems, the goal condi-
tion is required to hold after the execution of the final action in the
plan. It is also useful to be able to specify temporally extended goals,
which requires more complex conditions to be satisfied by plans.
Examples are safety conditions, e.g. the water must remain shut off
while work is done on plumbing, and intermediate goals, e.g. a pack-
age must be moved to loc2 via loc3. In [2], these conditions are ex-
pressed using linear temporal logic (LTL) and used with a forward
chaining planner. The same mechanism is also used to express con-
trol knowledge [3], resulting in a distinguished performance in the
hand-coded track of the 3rd International Planning Competition [11].

In this paper, we consider the question of whether extended goals
written in LTL may be compiled directly into the representation of
a planning domain and problem in the PDDL language [14]. This
would allow such goals to be handled by many existing planners. An
LTL formula expresses properties of an infinite sequence of future
states and can be used to talk about properties of plans. LTL includes
the temporal modalities sometimes, always and until. It is easy to en-
code simple cases of LTL goal conditions directly into PDDL, e.g. by
the use of dummy operators. However, this opportunistic approach
does not extend to LTL formulas in which the temporal modalities
are nested. A simple example from [7] is G(p ⇒ Fq), meaning
whenever p is true, q will be true at some subsequent moment. This
demonstrates the need for a more systematic approach to the transla-
tion.

In the following, we describe a method for the compilation which
proceeds in two stages. First, the LTL goal formula is used generate
a finite state machine (FSM). Then the PDDL planning domain is
modified so that planning operators make the appropriate update to
the state of the FSM alongside the change to the world state.

2 COMPILATION FROM LTL TO FSM

A full explanation of LTL is given by Emerson [7]. Here we give
only a brief description. Formulas of LTL are interpreted over

1 Department of Computer and Information Sciences, University of Strath-
clyde, Glasgow, United Kingdom. email:{sc, alex}@cis.strath.ac.uk

models of the form M = 〈w0, w1, ...〉 where M is an infinite
sequence of worlds. The temporal modalities U, G, F, X describe
properties of sequences.

Emerson Interpretation Definition
notation

P U Q P until Q Q is true in some world w (now or future),
P is true in all worlds before w.

G(P ) always P P is true in all worlds (now and future)
F (P ) eventually P P is true in some world (now or future)
X(P ) next P P is true is next world

We do not use standard conversions of LTL to Büchi automata
(e.g. [8]), as we wish to directly generate a deterministic automa-
ton, whilst filtering using available information on which actions are
reachable and which states are consistent. Our algorithm is based
on exhaustive application of the Progress algorithm of Bacchus and
Kabanza [3]. Given a world state (i.e. an assignment of truth val-
ues to propositions) and an LTL goal formula, Progress generates a
new goal formula which applies to the next world. If the number of
propositions occurring in the goal formula is small, we can system-
atically generate reachable worlds, and use those worlds to generate
all possible progressions of a goal formula.

This results in a FSM in which the states are goal formulas, and
the edges are sets of world states. We additionally annotate the edges
with the partially-instantiated planning operators which bring about
the transition. This information is needed when encoding the FSM
into PDDL.

As an example, we consider a problem which requires that first
goal at2 is achieved, then at1 is achieved and maintained.

F (at2 ∧ F (G(at1)))

We then find that our algorithm generates the set of five formulas
shown below, forming the FSM shown in Fig. 1.

false (1)
true (2)

F (at2 ∧ F (G(at1))) (3)
F (G(at1)) ∨ F (at2 ∧ F (G(at1))) (4)

G(at1) ∨ F (G(at1)) ∨ F (at2 ∧ F (G(at1))) (5)

3

~at2 

4
at2 

~at1

5
at1

~at1

Figure 1. FSM for F (at2 ∧ F (G(at1)))

At the end of the plan, we can apply the assumption that there is no
further change to world state, i.e. there follows an infinite sequence
of identical world states. We can then reduce temporal modalities to
truth values. In this example, this is the only way to reach true or
false.



3 COMPILATION FROM FSM TO PDDL

We want to modify the planning operators so that they automatically
track the current state in the FSM. The next FSM state depends on the
current FSM state and the next world state, which is the world state
after the effects of the operator have been applied. Unfortunately, an
operator cannot perform tests on the next world state, so we have to
test the combination of transition and current world state, where the
transition depends on the operator and the choice of bindings. This is
implemented by distinguishing each case by means of conditional ef-
fects. Below we consider how each feature of the FSM is represented
in the translation into PDDL.

Edges in the FSM are represented as facts which are added to the
initial state and are not changed by any operator. The edge fact
includes symbols to represent the transition (e.g. move-1-2) and
world state (e.g. world0), as well as start and end FSM states.

The Current state of FSM is represented by a dynamic fact, e.g.
(fsm_state n3). In the initial state, the fsm_state points
to the node which represents the initial goal formula. This must be
updated appropriately when operators are applied.

Accepting states of FSM. The goal condition depends on which
combinations of world state together with FSM state are reduced
to true under the assumption that all future worlds are identical. In
general, the goal condition consists of a disjunction of world state
tests together with accepting FSM states.

Updating FSM state Operators are modified by adding condi-
tional effects to update the FSM state. A conditional effect is in-
cluded for each combination of transition and relevant conditions
on world state. This allows the next FSM state to be determined
using the edge facts.

4 RELATED WORK AND DISCUSSION

The use of LTL in planning has mostly either been in a framework of
forward state-space search [3], or model checking [9], [13].

LTL is more widely used in the formal verification of programs.
The approach [10] is similar to ours, which uses an automata di-
rectly to verify temporal properties of Java programs. Nondetermin-
istic Büchi automata are derived using a variant of the algorithm de-
scribed in [8], and then converted to a form which is similar to ours.

The planners described in [3],[6] use temporal formulas as
domain-specific control rules, i.e. to aid the search for a success-
ful plan by pruning out sequences of actions which cannot be part
of an efficient plan. Together with such control rules, forward state-
space search can be strong enough for fast planning. By using only
forward search, the progressions of temporal formulas can be per-
formed on-the-fly, and the large number of reachable formulas is not
an obstruction. For this reason, control rules make unrestricted use
of quantification and of recursively-defined predicates. In [2], metric
time is also handled, by means of an extended version of LTL called
MITL.

Our approach is neutral about the architecture of the planner, but
imposes some restrictions on the formulas that can be handled. To use
our regime to control forward state space search, it would be helpful
to add extra preconditions to operators to prevent FSM transitions to
false. Some authors [1] have considered deriving extra operator pre-
conditions for control purposes, but these correspond only to fixed
forms of LTL formula. Our compilation offers a more general ap-
proach.

A desirable property for the compilation is that it should preserve
plan metrics. In most cases this is true, but the mechanism of updat-

ing the FSMs can force ordering between actions which otherwise
could have been placed in parallel. This is particularly problematic
when the next modality is used in the goal formula. In the presence of
next, we have the unwelcome behaviour that every action updates the
FSM. This means that any action can interfere with any other action,
and this leads to a totally ordered plan.

5 CONCLUSION AND FUTURE WORK

We have described a systematic method for compiling propositional
LTL goal formulas into PDDL. A full version of this paper [5] gives a
more detailed account, additionally describing how a restricted form
of quantification is handled. The compilation allows LTL formulas
to be handled by a wide range of planners.

It is not surprising that a compilation scheme is inferior to direct
modification of a planner to handle LTL. However, we believe that
our intermediate representation, the FSM, would be useful for incor-
porating an LTL capability into existing planning architectures. We
plan to integrate this representation with the Graphplan architecture
[4]. Since the fact layers of a planning graph give an explicit rep-
resentation of state, an FSM state could be associated with each fact
layer. The next modality does not cause problems in this architecture,
as the notion of a next state is compatible with the planning graph
representation. Additionally, the LPGP [12] approach to managing
temporal constraints in Graphplan would allow the planner to deal
with MITL, the version of LTL extended by Bacchus and Kabanza
to express annotations using metric time.

REFERENCES
[1] F. Bacchus and M. Ady, ‘Precondition control’. Unpublished

manuscript, 1999.
[2] F. Bacchus and F. Kabanza, ‘Planning for temporally extended goals’,

Annals of Mathematics and Artificial Intelligence, (1996).
[3] F. Bacchus and F. Kabanza, ‘Using temporal logics to express search

control knowledge for planning’, Artificial Intelligence, 116, (2000).
[4] A. Blum and M. Furst, ‘Fast planning through planning graph analysis’,

in Proc. of IJCAI-95, pp. 1636–1642. Morgan Kaufmann, (1995).
[5] S. Cresswell and A. Coddington. Planning with LTL goal

formulas via compilation into PDDL, 2004. Available from
http://planning.cis.strath.ac.uk/.

[6] P. Doherty and J. Kvarnstrom, ‘TALplanner: An empirical investigation
of a temporal logic-based forward chaining planner’, in Proc. 6th Int’l
Workshop on the Temporal Representation and Reasoning, TIME ’99,
(1999).

[7] E. Allen Emerson, ‘Temporal and modal logic’, in Handbook of The-
oretical Computer Science, Volume B: Formal Models and Semantics,
ed., J. van Leeuwen, 995–1072, North-Holland, (1990).

[8] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper, ‘Simple on-the-fly auto-
matic verification of linear temporal logic’, in Proc. 15th IFIP WG6.1
Int’l Symp. on Protocol Specification, Testing and Verification, (1996).

[9] G. De Giacomo and M. Y. Vardi, ‘Automata-theoretic approach to plan-
ning for temporally extended goals’, in ECP ’99, (1999).

[10] D. Giannakopoulou and K. Havelund, ‘Automata-based verification of
temporal properties on running programs’, in 16th IEEE International
Conference on Software Engineering, (2001).

[11] D. Long and M. Fox, ‘The 3rd international planning competition: Re-
sults and analysis’, JAIR, 20, (2003).

[12] D. Long and M. Fox, ‘Exploiting a graphplan framework in tempo-
ral planning’, in Int’l Conf. on Automated Planning and Scheduling,
ICAPS 2003, Trento, Italy, (2003).

[13] M. Cialdea Mayer, A. Orlandini, G. Balestreri, and C. Limongelli, ‘A
planner fully based on linear time logic’, in 5th Int’l Conf. on AI Plan-
ning and Scheduling (AIPS-2000), pp. 347–354, (2000).

[14] D. McDermott et al., ‘PDDL — the planning domain definition lan-
guage’, Technical Report CVC TR-98-003/DCS TR-1165, Yale Center
for Computational Vision and Control, (1998).


