
Dynamical Teams of Genetic Predictors
Defoin Platel Michael

�
and Clergue Manuel

�
and Collard Philippe

�

Abstract. Genetic Programming (GP) has been shown to be a good
method of predicting functions. In this context, a solution given by
GP generally consists of a sole predictor. In contrast, Stack-based GP
systems manipulate structures containing several predictors, which
can be considered as teams of predictors. Work in Machine Learning
reports that combining predictors gives good results in terms of both
quality and robustness. In this paper, we use Stack-based GP to study
different linear cooperations between predictors. Preliminary tests
and parameter tuning are performed on a GP benchmark. A compar-
ative study with standard methods has shown limits and advantages
of teams prediction, leading to encourage the use of combinations
taking into account the response quality of each team member.

Introduction

The emergence of GP in the scientific community arose with the use
of a tree-based representation. However, there are GP systems ma-
nipulating linear structures, which have shown experimental perfor-
mances equivalent to Tree GP (TGP) [1]. In contrast to TGP, Linear
GP (LGP) programs are sequences of instructions of an imperative
language (C, machine code, . . .). There are at least two kind of LGP
implementation. In the first one [1], a finite number of registers are
used to store the partial computations and a particular register is cho-
sen to store the final result. In the other one, the stack-based im-
plementation [3], the intermediate computations are pushed into an
operand stack and the top of stack gives the final result. It is important
to note that in TGP, an individual corresponds to a sole program and
its evaluation produces a unique output. In LGP, an individual may
be composed of many independent sub-programs and its evaluation
may produce several outputs and some of them may be ignored in the
final result. In this paper, we propose to combine those sub-programs
into a team of predictors.

The goal of Machine Learning (ML) is to find a predictor trained
on set of examples that can approximate the function that generated
the examples. Over-fitting occurs when a predictor reflects random-
ness in the data rather than underlying function properties, and so
it often leads to poor generalization abilities of predictors. Several
methods have been proposed to avoid over-fitting, such as model se-
lection, to stop training or combining predictors, see [5] for a com-
plete discussion. In this study, we mainly focus on combining pre-
dictor methods, also called ensemble, or committee methods. In a
committee machine, a team of predictors is generated by means of
a learning process and the overall predictions of the committee ma-
chine is the combination of the predictions of the individual team
members. In the GP field, there has been some work on the combi-
nation of predictors, see for examples [6][2].

�
ACRI-ST, Sophia Antipolis, France�
Laboratoire I3S, UNSA-CNRS, Sophia Antipolis, France

In this paper, we take advantage of the stack-based GP implemen-
tation by evolving teams of predictors. The originality of this study is
that teams have a dynamic number of members that can be managed
by the system.

1 Teams of Genetic Predictors
In stack-based GP, numerical calculations are performed in Re-
verse Polish Notation. According to the implementation proposed
by Perkis[3], an additional type of closure constraint is imposed on
functions: they are defined to do nothing when arity is unsatisfied by
the current state of the operand stack. In Figure 1, a basic example
of program execution is presented. We can see the processing of the

1 ADD 5 2 SUB b) 1 1 ADD 5 2 SUB 1

2

e)
5

1 ADD 5 2 SUB 1d)
5

1 ADD 5 2 SUB 1f)
3

1 ADD 5 2 SUB a)

1 ADD 5 2 SUB c) 1

Figure 1. Evaluation of a program in Stack-based GP.

program “1,ADD,5,2,SUB”. Initialization phase corresponds to step
a where the stack is cleared. During steps b, d and e, numerical con-
stants 1, 5 and 2, respectively, are pushed onto the operand stack.
During step f, since the operand stack stores enough data (at least
two), the “SUB” instruction is computed and the result (�����
	��)
is pushed onto the stack. During step c the stack contains only one
value, so computation of the “ADD” instruction is impossible: the
instruction is simply skipped with no effect on the operand stack.

Let us note that after step f, the operand stack contains the values

and � . This means that there are two independent sub-programs,

“1” and “5,2,SUB”, in the sequence “1,ADD,5,2,SUB”. We propose
to make the whole set of sub-programs involved in the fitness evalua-
tion. The idea is to combine the results of each sub-programs, i.e. all
the elements of the final stack, according to the nature of the problem
addressed. Using this kind of evaluation, the evolutionary process
should be able to tune the effect of the genetic operators by chang-
ing the number and the nature of sub-programs and so modifying the
contribution of each of them to the final fitness. This approach may

be viewed as the evolution of teams of predictors corresponding to
the combination of sub-programs.

Let us consider a program with � instructions giving a team �
having �����
�� ��� predictors ��� . The team output �����! consists of a
combination of the � predictors outputs "#�$���% . Several combinations
have been tested :

& Sum of each predictor output (Sum),

�����' (�*),+�.- � "#�$�/�0
& Arithmetic mean of predictors outputs (AMean),

�����! (� �
+) +�1- � "2�$� �

& Product of each predictor output (Pi),

�����! 3�54 +�.- � "#�$�/�0
& Geometric mean of each predictor output (GMean),

�����! 3�76
8
49+�.- � "2�$� �

& Mean of each predictor output weighted by their error (EMean),

�����' (� �
) 6:1;=<#> :) +�1- �2? �0"#�$�/�0

with ? �@�BADCFEDG(H I :%J , K a positive scaling factor and LM�$�/�% the
training error of � �& Winner predictor output Takes All (WTA),

�����! (�N"2�PORQTSR�VU%W I :YX �PZ#[� X +]\ �%L^�$� � _ _
with L^�$�/�0 the training error of ���& Top of stack (Top), this is the classical way to evaluate a program
where only output of the predictor at the top of the stack are taken
into account.

�����! (�N"2�$� +
2 Experimental Results
We choose the Poly 10 problem [4], where the target function is
the 10-variate cubic polynomial ` � ` �ba `/cd`/e a `�fg`/h a ` � `�ig`/j a`/cd`/h]` �0k . In this study, the fitness is the classical Root Mean-Square
Error. The dataset contains 50 test points and is generated by ran-
domly assigning values to the variables `�� in the range �$	
��l
 � . We
perform �nm independent runs with various mutation and crossover
rates. Populations of �nm�m individuals are randomly created according
to a maximum creation size of �nm . The instructions set contains: the
four arithmetic instructions ADD, SUB, MUL, DIV, the ten variables
X � . . . X �0k and one stack-based GP specific instruction DUP which
duplicates the top of the operand stack. The evolution, with elitism,
maximum program size of �nm�m ,
po -tournament selection, and steady-
state replacement, takes place over

 m�m generations 3. We use a sta-
tistical unpaired, two-tailed q -test with rD�ts confidence to determine
if results are significantly different.

In Table 1, the best performances on the Poly 10 problem with dif-
ferent combinations of predictors are presented, using the best set-
tings of evolutionary parameters found (crossover rate varying from

c In a steady state system, the generation concept is somewhat artificial and
is used only for comparison with generational systems. Here, a generation
corresponds to a number of replacement equal to the number of individual
in the population, i.e. 500.

Table 1. Results on Poly 10.

Team Mean Std Dev Best Worst
Tree u�v �lw u u�v uTx � u�v uly w u�v zTuTx
Top u�v { w { u�v � u w u�v � x � u�v wl� u

WTA u�v zlzT{ u�v upzTy u�v {pznx u�v w z �
Sum u�v � xp{ u�v ul{ � u�v �g� u u�v �lw y

AMean u�v �g|lw u�v ul{pz u�v � ul} u�v �lw��
Pi u�v { |�� u�v u | { u�v �l� u u�v z wl|

GMean u�v �l�l� u�v u � x u�v �gw�� u�v {lu �
EMean 0.066 0.017 0.029 0.141

0 to 1.0 and mutation rate from 0 to 2.0). In the first row, results
obtained using a Tree GP implementation are reported in order to
give an absolute reference. We see that the classical Top of stack and
WTA methods work badly, which is to be expected, since in this case,
teams’ outputs correspond to single predictor outputs. The Sum and
AMean methods report good results compared to the Tree method.
In contrast, the Pi and GMean methods are not suitable for this prob-
lem, perhaps because the Poly 10 problem is easiest to decompose as
a sum. Finally, EMean undoubtedly outperforms other methods. We
note that results presented here correspond to a scaling factor K of
10.

Conclusion
In this paper, we start with a known drawback of stack-based GP
systems : they provide many outputs, that is sub-programs, instead
of only one. Taking the arithmetic mean or the sum of sub-programs
outputs gives our system better performances than a tree-based GP
system, which evolves individual predictors. The best results we ob-
tain are when the output of the program is a weighted sum of the
sub-programs, where each sub-program receives a weight depending
on its individual performance. Moreover, this supplementary degree
of freedom promotes the emergence of dynamically sized teams.

This paper represents the first step of our work and empirical re-
sults should be confirmed by experiments on other problems and the-
oretical studies. Moreover, some choices we have made are arbitrary,
such as the use of a linear combination of sub-programs. Other types
of combinations, e.g. logarithmic ones may improve performances.
Also, we need to better understand how the scaling factor K influ-
ences performance, and its effect on team composition.

REFERENCES
[1] Markus Brameier and Wolfgang Banzhaf, ‘A comparison of linear ge-

netic programming and neural networks in medical data mining’, IEEE
Transactions on Evolutionary Computation, 5(1), 17–26, (2001).

[2] Markus Brameier and Wolfgang Banzhaf, ‘Evolving teams of predictors
with linear genetic programming’, Genetic Programming and Evolvable
Machines, 2(4), 381–407, (2001).

[3] Tim Perkis, ‘Stack-based genetic programming’, in Proceedings of the
1994 IEEE World Congress on Computational Intelligence, volume 1,
pp. 148–153, Orlando, Florida, USA, (27-29 1994). IEEE Press.

[4] Riccardo Poli, ‘A simple but theoretically-motivated method to control
bloat in genetic programming’, in Genetic Programming, Proceedings of
EuroGP’2003, eds., Conor Ryan, Terence Soule, Maarten Keijzer, Ed-
ward Tsang, Riccardo Poli, and Ernesto Costa, volume 2610 of LNCS,
pp. 200–210, Essex, (14-16 April 2003). Springer-Verlag.

[5] W. Sarle. Stopped training and other remedies for overfitting, 1995.
[6] Byoung-Tak Zhang and Je-Gun Joung, ‘Time series prediction using

committee machines of evolutionary neural trees’, in Proceedings of the
Congress of Evolutionary Computation, eds., Peter J. Angeline, Zbyszek
Michalewicz, Marc Schoenauer, Xin Yao, and Ali Zalzala, volume 1, pp.
281–286. IEEE Press, (1999).

