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Abstract. Upon constructing a Bayesian network classifier from
data, the accuracy of the resulting model can often be improved upon
by selecting a subset of the available features. We show that the com-
monly used MDL function is not suited for feature selection. We in-
troduce a new MDL-based function that is better tailored to this task.
Our experimental results demonstrate that, with the new function,
classifiers are yielded that have an accuracy comparable to the ones
found with the MDL function, yet include fewer features.

1 INTRODUCTION

Real-life datasets often include more features, or attributes, of the
recorded instances of every-day problem solving than are strictly
necessary for the classification task at hand. When constructing a
Bayesian network classifier from such a dataset, these more or less
redundant features may bias the output and as a consequence result in
a relatively poor classification accuracy. By constructing the classi-
fier over just a subset of the features, a less complex model is yielded
that tends to have a better generalisation performance [1].

For constructing a Bayesian network classifier from data, gener-
ally a heuristic algorithm is employed that searches the space of pos-
sible models for classifiers of high quality. For comparing the quali-
ties of alternative classifiers, often the Minimum Description Length
(MDL) function is employed. This function weighs the complexity
of a classifier against its ability to capture the observed probabil-
ity distribution. While generally accepted as a suitable function for
comparing classifiers over a fixed set of attributes, we argue that the
MDL function is not quite suited for identifying and removing re-
dundant attributes upon feature selection. We further argue that the
poor feature-selection behaviour of the function can be attributed,
to at least some extent, by its not using the conditional probability
distribution that is of interest for the classification task.

Building upon our analysis of the feature-selection behaviour of
the MDL function, we introduce the closely related MDL-FS func-
tion. The MDL-FS function differs from the MDL function only
in that it encodes the conditional probability distribution over the
class variable instead of the joint distribution over all variables. Since
learning a conditional distribution is known to be hard, our function
uses an auxiliary Bayesian network to support this task. To compare
the feature-selection behaviour of the two functions in a practical set-
ting, we conducted various experiments using different datasets. Our
results indicate that the new MDL-FS function is indeed more suited
for the task of feature selection than the MDL function as it yields
classifiers of comparably good performance with fewer attributes.
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2 PRELIMINARIES

We consider a set A of stochastic variables Ai, called attributes,
where each Ai takes one of a finite set of values; we further consider
a designated class variable C. In addition, we consider a dataset D

with N ≥ 1 labelled instances; this dataset defines the observed joint
probability distribution P̂ (C, A) over A∪{C}. For any value assign-
ment Sk to any subset S of variables, we write N(Sk) to denote the
number of instances in D for which S = Sk.

In general, a classifier is a function that assigns a unique class
value to each unlabelled instance over the set of attributes. For rea-
sons of space, we focus in this paper on TAN classifiers only. A TAN
classifier over A∪{C} is a Bayesian network classifier that includes
for its graphical structure an acyclic digraph in which the attributes
constitute a directed tree. The classifier specifies a prior probabil-
ity distribution P (C) for its class variable and, for each attribute
Ai ∈ A, a conditional distribution P (Ai | p(Ai)), where p(Ai)
are the parents of Ai in the graphical structure; these distributions
with each other define a joint probability distribution P (C, A) =
P (C) ·

Q

Ai∈A
P (Ai | p(Ai)) over all variables involved [2].

A selective classifier includes just a subset A′ of the available at-
tributes. The attributes from A′ are deemed important for the classifi-
cation task at hand, whereas the attributes from A\A′ are considered
to be redundant [3]. We say that an attribute Ai is redundant for the
class variable C given a subset of attributes S ⊆ A \ {Ai}, if for ev-
ery value Ak

i of Ai, every value Cg of C, and every value assignment
Sj to S with N(Ak

i , Sj) > 0, we have that

N(Ak
i , Sj , Cg)

N(Ak
i , Sj)

=
N(Sj , Cg)

N(Sj)

If |S| = m, we say that Ai is redundant for C at level m. Note that,
if Ai is redundant for C given S and N(Sj , Cg) > 0, then C is
independent of Ai given S in the observed probability distribution.

3 MDL AND FEATURE SELECTION

Building upon the MDL principle, the best classifier to explain the
observed data is one that minimises the sum of the length of an en-
coding of the classifier itself and the length of an encoding of the data
given the classifier. For a classifier C, the MDL function is defined as

MDL(C | D) =
log N

2
· |C| − LL(C | D)

where the term |C| captures the length of the encoding of the classi-
fier; the associated term log N

2
·|C| is commonly known as the penalty

term of the function. The log-likelihood term LL(C | D) captures
the length of the encoding of the observed distribution P̂ (C, A) fac-
torised over the graphical structure of the classifier; the term equals



−N ·
P

Ai∈A
HP̂ (Ai | pC(Ai)) − N · HP̂ (C), where HP̂ (·) de-

notes the entropy of P̂ . The smaller the MDL value of a classifier, the
better it is. The larger the value of the log-likelihood term, the bet-
ter the classifier models the observed distribution. A fully connected
classifier has the largest log-likelihood, yet will show a poor general-
isation performance as a result of overfitting. The penalty term now
counterbalances the effect of the log-likelihood term by increasing in
value as a classifier becomes more densely connected.

The MDL function is generally accepted as a suitable function for
comparing the qualities of alternative classifiers over a fixed set of
attributes. The function is less suited, however, for feature selection.
As an example, we consider, within a TAN classifier C, an attribute
Ai that is a leaf node in the tree of attributes; we assume that Ai

has the attribute Aj for its parent in the tree. Upon comparing the
MDL value of C with that of the selective TAN classifier C− that is
obtained by deleting Ai and its incident arcs, we find that the MDL
function prefers C over C− if and only if

HP̂ (Ai | Aj , C)−HP̂ (Ai) < −
log N

2 · N
· (|C| − |C−|)

Now suppose that Ai is redundant for the class variable C at level
0 and at level 1 given {Aj}. Only if the relationship of Ai with its
parent Aj is very weak, will the MDL function prefer the selective
classifier: informally speaking, the stronger the relationship of Ai

with Aj , the closer to 0 the term HP̂ (Ai | Aj , C) will be. The above
inequality then is likely to hold, inducing the MDL function to prefer
the full classifier. In practice, the MDL function is found to eliminate
upon feature selection hardly any attributes from a TAN classifier.

4 MDL-FS AND FEATURE SELECTION

Bayesian network classifiers represent a joint probability distribution
P (C,A) over their variables, while it is the conditional probability
distribution P (C | A) that is of interest for the classification task.
In designing a new function, we build upon the assumption that the
poor feature-selection behaviour of the MDL function originates, to
at least some extent, from not using the conditional distribution. Our
new MDL-FS function captures, like the MDL function, the joint
distribution P (C,A); in addition, it captures the distribution P (A)
over the set of attributes. Where P (C, A) factorises over the struc-
ture of the classifier under study, the function uses an auxiliary net-
work S to factorise P (A). It now encodes the conditional distribution
P (C | A) by means of the difference between the log-likelihood of
the classifier that encodes the joint distribution and the log-likelihood
of the auxiliary network that encodes P (A). For a classifier C and the
auxiliary network S , the function is defined as

MDL-FS(C,S | D) =
log N

2
· |C| − CLL(C,S | D)

where |C| is as before and CLL(C,S | D) = LL(C | D)−LL(S | D).
Like the MDL function, the MDL-FS function includes a penalty
term and a log-likelihood term. We note that the penalty term cap-
tures the length of the encoding of just the classifier C: we decided
to exclude the auxiliary network from the term, because we are inter-
ested in the complexity of the resulting classifier only. The MDL-FS
function as a consequence has no control over the complexity of the
auxiliary network. Upon applying the MDL-FS function, therefore,
a suitable class of auxiliary networks is set beforehand.

The MDL-FS function is better suited for feature selection than the
MDL function. As an example, we consider a TAN classifier C and
a tree-structured Bayesian network S of maximum log-likelihood;
for ease of exposition, we assume that the graphical structure of S

Table 1. The accuracies of the constructed selective TAN classifiers.

dataset MDL MDL-FS
% sel. attr. accuracy % sel. attr. accuracy

chess 97± 1 0.93± 0.01 46± 5 0.92 ± 0.01

mushrooms 93± 2 1.00± 0 55± 0 1.00± 0

splice 74± 8 0.95± 0 14± 1 0.95 ± 0.01

spambase 95± 0 0.92± 0.01 67± 3 0.92± 0

oesoca 97± 2 0.74± 0 60± 2 0.74± 0

ext. oesoca 95± 1 0.74± 0.01 41± 1 0.74 ± 0.01

coincides with the tree of attributes of C. We consider again a leaf
attribute Ai and its parent Aj . We compare the MDL-FS value of
C with that of the selective TAN classifier C− that is obtained by
deleting Ai and its incident arcs; the selective auxiliary network S−

is obtained accordingly. We find that the MDL-FS function prefers C
over C− if and only if

HP̂ (Ai | C, Aj)−HP̂ (Ai | Aj) < −
log N

2 ·N
· (|C| − |C−|)

We suppose again that Ai is redundant for the class variable C at
level 0 and at level 1 given {Aj}. We then have that HP̂ (Ai |
C, Aj) = HP̂ (Ai | Aj), regardless of the strength of the relation-
ship between Ai and Aj . Since the above inequality does not hold,
the MDL-FS function prefers the selective classifier and removes the
attribute. Recall that the MDL function tends not to do so. In general,
the stronger the relationship of an attribute with its neighbours in the
auxiliary network and the weaker this relationship in the classifier,
the more inclined the MDL-FS function will be to remove it.

5 EXPERIMENTAL RESULTS

To study the difference in behaviour of the MDL and MDL-FS func-
tions in a practical setting, we constructed selective TAN classifiers
from various datasets using both functions. For our study, we used
four datasets from the UCI Irvine repository and two additional med-
ical datasets that were generated from a real-life Bayesian network.
Table 1 summarises the results of our experiments, showing the aver-
ages and standard deviations obtained over ten runs per dataset. We
observe that the MDL scoring function does not substantially reduce
the numbers of attributes, as expected. The MDL-FS function, with a
tree-structured auxiliary network of maximum log-likelihood, on the
other hand, does remove considerable numbers of attributes, without
reducing the classification accuracy of the resulting classifiers.

6 CONCLUSIONS

Based upon an analysis of the feature-selection behaviour of the com-
monly used MDL function, we introduced a new MDL-based func-
tion that we tailored to the task of identifying and removing redun-
dant attributes upon constructing a Bayesian network classifier from
data. We argued that the MDL-FS function is more suited to the task
of feature selection than the MDL function and supported our obser-
vations by experimental results obtained from various datasets.
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