
Evolution of Communication between Genetic Agents
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Abstract. We studied how communication evolves in a genetic
based Multi-Agent System using an Adapted Pittsburgh style Clas-
sifier System. This work is an extension of a Minimal Model of
Communication which consists in making two agents communicat-
ing through a medium of communication and playing a naming game
with a limited number of situations to recognize. We complexify that
model by increasing both the number of agents within the Multi-
Agent System and the number of words that can be used by agents.

1 Introduction
Distributed artificial intelligence breaks complex problems into sim-
plest ones. This decomposition into a multi-agent system involves
that each agent is able to share its knowledge with the community. In
our context, agents are classifier systems [1] that use a genetic algo-
rithms [2] for their evolution. In order to solve a complex task, ex-
changing information becomes the main difficulty to clear up. When
agents solve a problem in an heterogeneous context they need some-
times to know what the agent next to them perceives. This can be
achieved by playing a naming game that consists in guessing what
the communicating agent means by the word he emitted through a
medium of communication [3]. We propose in this paper to extend
this minimal model by increasing the number of agents communicat-
ing. The purpose here is to define how communication evolves when
multi-agent complexity grows. We also increased the size of the lex-
icon they use in order to observe how environmental complexity in-
fluences the evolution of communication.

2 The Adapted Pittsburgh-style classifier system
The original framework of Holland was to create tools having the
ability to solve problems learning potential solutions from simulation
using a payoff function. Smith proposed a fully genetic algorithm
based system: the Pittsburgh style classifier system (Pitt-CS) [4].

Such systems are filled with production rules called classifiers.
The condition part of such rules reads the environment signal and
the action part acts on the environment. Usually, the condition part
is defined upon a ternary alphabet {0, 1,#}, where #, a wildcard,
replaces 0 or 1. The action part contains only bits. A Pitt-CS works
on a population of individuals wich are composed of classifiers. In
other words, an individual is a set of classifiers also called as knowl-
edge structure. The first population is generated using four parame-
ters: a fixed number of individuals in population, a varying number
of classifiers per individual (which is fixed in our adapted version),
a fixed bit size for all classifiers, an allelic probability of having a
wildcard in the condition part. Individuals are rewarded thanks to
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a multi-objective fitness function. Thus, individuals have a strength
that globally reflects the strength of the classifiers filling it.

The use of a Genetic Algorithm is essential to a Pitt-CS: it is the
learning and the evolution mechanism. Genetic algorithm applies its
three main operators among individuals of the population using their
fitness. It first selects parents that will eventually reproduce using
crossover and mutation operators to create new offspring.

3 A minimal model of communication
3.1 Basic principles of the minimal model
To study how communication evolves, we just forced two agents to
communicate one with the other [3]. Each agent has a ”view” of the
world around it, i.e. it knows its own local environment. It is unable
to see other agent’s local environment but needs this information to
solve its part of the problem. Thus communication is the only way
for agents to know things they cannot ”see”. Figure 1 describes a step
by step example illustrating the evaluation mechanism:

1. The agent A1 chooses one classifier among available classifiers
in the individual being evaluated. Then it posts the corresponding
word (11) in the global environment. In its lexicon, 11 means that
its local environment is 01. (bits 3 and 4 of its condition part)

2. The agent A2 reads the word from the global environment and
chooses a classifier to activate within the individual being evalu-
ated. This choice is realised looking for a classifier whose two first
bits matches the global environment. If several classifiers match,
the first of the more specialised ones will be chosen.

3. The agent A2 deduces that when A1 ”says” 11, this means that its
local environment is 01. (the two last bits of the action part). Both
agents understood each other : they will be rewarded.
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Figure 1. A step by step communication example.

3.2 Measurements and experiments
The fitness of individuals is computed from the number of times that
two agents understand each other. We used results of the theory of
communication [5] to analyse the establishment of a common refer-
ent i.e. lexicon matrix, between both agents. MacLennan [6] chooses



the entropy as a measure of the dispersion of the denotation (i.e. lex-
icon) matrix:

H = −
∑

i,j

pij log2(pij) with pij =
Mij∑
k,l
Mkl

(1)

We adapted the measure so that it takes into account pairs of the
denotation matrix belonging to the same row and the same column:

pij =
Mij∑

k
Mkj +

∑
l
Mil −Mij

(2)

withMij the element of row i and column j of the denotation matrix.
To compare results, we used the communication success rate based

on HMax and HMin the maximal and minimal possible dispersions:

Comm S =
HMax −H

HMax −HMin
× 100 (3)

We experimented in different ways this minimal model including
an application with simulated robots [3].

4 Extending Model
The minimal model of communication needs to be extended in order
to study its main properties. We thus decide to study the evolution
of communication when both the number of agents and the lexicon
matrix size increase. The lexicon matrix will be kept square for this
study. Thus, the number of words and local environments is calledm
and is related to the number of bits n of each classifier part: m = 2n

Table 1 contains a brief reminder of the experimentation settings.

Parameter name Setting
Agents number from 2 to 10

Number of bits n per word/local environment from 3 to 5
Individuals number 10

Number of classifier per individual 12
Number of Trials 20

P# 0%
PCrossover 70%
PMutation 0, 1%

Elitism 20%
Selection mechanism Roulette wheel

Table 1. Multi-agent system and G.A. settings.

We average results upon 100 experimentations of 5000 genera-
tions with different random seeds.

We first made an experimentation withm = 3. Whatever the num-
ber of agents, the communication rate reaches its maximum (more
than 96%) upon generation 44. We then observe a progressive break
down. The communication rate finally stabilizes around 65% at the
end of the evolution. This rate indicates that communication occurs
even if there are confusions [7].

We made a second experimentation withm = 32. Results are pre-
sented in figure 2. The plots indicate that the highest the number of
agents is in the multi-agent system, the more communication suc-
cess is high. The two extremes are the two agents curve and the 10
agents curve. The two agents plot reaches its maximum at generation
675 with 95,91% and then slightly decreases to 88,25% at the end of
evolution. The 10 agents plot reaches its maximum at generation 406
with 99,29% and stabilize around 98,53% at the end of evolution.
Those results seems also counter-intuitive. In fact, we have reached
the cognitive limits that can handle an agent represented by a classi-
fier systems with 10 individuals containing 12 classifiers [8].
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Figure 2. Results with m=32 (n=5)

5 Conclusion
Experiments we made show that confusion occurs in communication
because there is at the same time too much and too little available
words/local environments. The number of classifiers per individual
explains the results we obtained. The biggest confusion appears with
m = 8. With 12 classifiers, more than 8 meanings/words are distin-
guished. Two lexicons formed at the same time, implying confusion
during communication even if success happens. With m = 32, the
system stabilizes its behavior by using all classifiers. Thus, agents
cannot waste time to communicate with useless words/meanings.
The order observed between multi-agent systems size can be ex-
plained by the fact that two agents have more abilities to use more
than one lexicon than 10 agents have. Thus the more you have agents
in a group, the more language unificates.

Those conclusions need to be verified thanks to a deeper lexicon
analysis. To further study the evolution of communication we need
to measure two phenomenon that may emerge in lexicon: homonymy
and synonymy. This is the second step of the extension of the minimal
model of communication.
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