
Induction and Revision of Terminologies
F. Esposito, N. Fanizzi, L. Iannone, I. Palmisano and G. Semeraro1

1 INTRODUCTION

Description Logics (DLs) and derived markup languages are a stan-
dard for representing ontological knowledge bases which can be a
powerful tool for supporting other services, such as reasoning and
retrieval. Such languages are generally endowed with well-founded
semantics and reasoning services investigated in the DLs field [1].
In this context, we examine the problem of the induction and refine-
ment of definitions for the concepts and their properties forming the
T-box, on the ground of basic information (assertions) made on in-
dividuals that may be available in a knowledge base, i.e. theA-box,
representing the world state. The induction and refinement of struc-
tural knowledge is not new inMachine Learning. Recently, inIn-
ductive Logic Programming, attempts have been made to extend the
classic relational learning techniques toward hybrid representations
[5]. In order to cope with the problem complexity, former methods
are based on a heuristic search and generally implement bottom-up
algorithms, such as theleast common subsumer(lcs) [3], that tend
to induce overly specific definitions which may suffer for poor pre-
dictiveness (overfitting). Hence, in some approaches maximal gen-
eralizations are preferred [4]. Moreover, like theleast general gen-
eralizationsfor clausal representations, lcs’s sizes tend to increase
exponentially. Other approaches have shown that also a top-down
search is feasible [2], yet the refinement is less operational: it is in-
tended to show the properties of the related search space rather than
specifying how to exploit the heuristics based on the assertions in the
A-box. Intending to give operational instruments for performing the
inference and refinement of conceptual descriptions, we introduce an
algorithm based onmultilevel counterfactuals[7] for operating with
anALC representation.

2 SYNTAX AND SEMANTICS

Syntax and semantics for theALC representation [1] adopted can
be sketched as follows. In a DL language, primitiveconceptsNC =
{C, D, . . .} are interpreted as subsets of a certain domain of objects
and primitiverolesNR = {R, S, . . .} are interpreted as binary rela-
tions on such a domain. Aknowledge baseK = 〈T ,A〉 contains two
components: a T-boxT and an A-boxA. T is a set of concept defi-
nitionsC ≡ D, meaning2 CI = DI , whereC is the concept name
andD is a description given in terms of the language constructors
presented in the following table.A contains extensional assertions
on concepts and roles, e.g.C(a) andR(a, b), meaning, respectively,
thataI ∈ CI and(aI , bI) ∈ RI .

1 Dipartimento di Informatica, Università degli Studi di Bari, Campus, Via
Orabona 4, 70125 Bari, Italy email:lastname@di.uniba.it

2 For any interpretationI = (∆I , ·I) defined as in [1]

NAME SYNTAX SEMANTICS

top concept > ∆I

bottom concept ⊥ ∅
concept negation ¬C ∆I \ CI

concept conjunctionC1 u C2 CI
1 ∩ CI

2
concept disjunctionC1 t C2 CI

1 ∪ CI
2

existential restriction ∃R.C {x ∈ ∆I | ∃y (x, y) ∈ RI ∧ y ∈ CI}
universal restriction ∀R.C {x ∈ ∆I | ∀y (x, y) ∈ RI → y ∈ CI}

The notion ofsubsumptionbetween concepts can be given in terms
of the interpretations:

Definition 2.1 Given two concept descriptionsC and D in T , C
subsumesD, denoted byC w D, iff for every interpretationI of T
it holds thatCI ⊇ DI .

Many semantically equivalent (yet syntactically different) descrip-
tions can be given for the same concept. However they can be re-
duced to a canonical form by means of rewriting rules that preserve
their equivalence [1]. Preliminarily, some notation is needed to name
the different parts of anALC description:prim(C) is the set of all
the concepts at the top-level conjunction ofC; valR(C) represents
the conjunction of the concepts in universal restrictions on roleR,
whereasexR(C) represents the set of all concepts in the existential
restrictions on roleR (if R does not appear inC bothvalR(C) and
exR(C) ≡ >).

Definition 2.2 A concept descriptionD is in ALC normal formiff
D ≡ ⊥ or D ≡ > or if D = D1 t · · · tDn with

Di =
l

A∈prim(Di)

A u
l

R∈NR

∀R.valR(Di) u
l

R∈NR
E∈exR(Di)

∃R.E

where, for alli = 1, . . . , n, Di 6≡ ⊥ and, for anyR, every concept
description inexR(Di) andvalR(Di) is in normal form.

3 INDUCTION OF CONCEPT DESCRIPTIONS

The methodology for the induction and refinement of T-boxes pro-
posed in this work is based on the notion of counterfactuals built on
the ground of residual learning problems [7]. Each assertion is not
processed as such: it is supposed that preliminarily a representative
at the concept language level is derived in the form ofmost specific
concept(msc). The msc required by the algorithm is a DL concept
description that entails the given assertion. Moreover it is bound to
be among the most specific ones (or its approximations [3]). Hence,
in the algorithm the positive and negative examples will be very spe-
cific conjunctive descriptions obtained by means of therealization
[1] of the assertions concerning the target concept. For many DLs
the msc cannot be easily computed or simply it is not unique. For our
purposes it suffices to have good (upper) approximations. The algo-
rithm, reported in the next figure, relies on two interleaving routines



that perform, respectively, generalization and specialization, calling
each other up to converging toward a correct definition.

generalization(Positives, Negatives, Generalization)
input Positives, Negatives: positive and negative instances at concept level;
output Generalization: generalized concept definition
ResPositives← Positives
Generalization← ⊥
while ResPositives6= ∅ do

ParGen← selectseed(ResPositives)
CoveredPos← {Pos ∈ ResPositives| ParGen w Pos}
CoveredNeg← {Neg ∈ Negatives| ParGen w Neg}
while CoveredPos6= ResPositivesand CoveredNeg= ∅ do

ParGen← select(δ(ParGen), ResPositives)
CoveredPos← {Pos ∈ ResPositives| ParGen w Pos}
CoveredNeg← {Neg ∈ Negatives| ParGen w Neg}

if CoveredNeg6= ∅ then
K ← counterfactuals(ParGen, CoveredPos, CoveredNeg)
ParGen← ParGen u ¬K

Generalization← Generalizationt ParGen
ResPositives← ResPositives\ CoveredPos

return Generalization

counterfactuals(ParGen, CoveredPos, CoveredNeg, K)
input ParGen: inconsistent concept definition

CoveredPos, CoveredNeg: covered positive and negative descriptions
output K: counterfactual
NewPositives← ∅
NewNegatives← ∅
for eachNi ∈ CoveredNegdo

NewPi ← residual(Ni, ParGen)
NewPositives← NewPositives∪ {NewPi}

for eachPj ∈ CoveredPosdo
NewNj ← residual(Pj , ParGen)
NewNegatives← NewNegatives∪ {NewNj}

K ← generalization(NewPositives, NewNegatives)
return K

The generalization algorithm is a greedy covering one: it con-
structs a disjunctive definition of the positive examples. At each outer
iteration, a very specialized definition (the msc of an example) is se-
lected as a starting seed for a new partial generalization; then, itera-
tively, the hypothesis is generalized by means of the upward operator
δ (with a heuristic that privileges the refinements that cover the most
of positives) until all positive instances are covered or some negative
instances are explained. In the latter case, the current concept defini-
tion ParGenhas to be specialized by some counterfactuals. The co-
routine, which receives the covered examples, finds a sub-description
K that can rule out the covered negative examples (once negated).
In the routine for building counterfactuals, given a previously com-
puted hypothesisParGen, which is supposed to be complete for the
positive assertions, yet inconsistent with respect to some negative as-
sertions, the aim is finding those counterfactuals to be conjuncted
to the initial hypothesis for restoring a correct definition, that can
rule out the negative instances. The algorithm is based on the con-
struction of residual learning problems based on the sub-descriptions
that caused the subsumption of the negative examples, represented
by their msc’s. In this case, for each model a residual is derived by
considering that part of the incorrect definitionParGenthat did not
play a role in the subsumption. The residual will be successively em-
ployed as a positive instance of that part of description that should be
ruled out of the definition (through negation). Analogously the msc’s
derived from positive assertions will play the opposite role of nega-
tive instances for the residual learning problem under construction.
Finally, this problem is solved by calling the co-routine which gen-
eralizes these example descriptions and the conjoining the negation
of the returned result. For the sake of simplicity, the generalization
routine described in the method is non-deterministic: among the pos-
sible generalizations computed byδ, those that maximize the number
of covered positives should be preferred. The residual operator is es-
sentially a difference function [6]. In the caseALC, the difference
can be simply defined asC −D = C t ¬D. The correctness of the
method can be proved (proof omitted for the sake of brevity). The
algorithm may fail when a call to counterfactuals with null positive

and negative descriptions indicates that it is impossible to discrim-
inate between two identical descriptions.The counterfactuals algo-
rithm is linear except for the dependency on the generalization al-
gorithm. Then it suffices here to discuss the complexity of such an
algorithm. The generalization proposed here is a generic divide and
conquer algorithm which performs a greedy search using the refine-
ment operatorδ. Introducing a better refinement operator based on
examples, the heuristic information conveyed by the examples can
be better exploited so to have a faster convergency. The cycles are
linear on the number of instances. The only source of complexity
are the subsumption tests which are known to be PSpace-complete
in ALC [1].For many expressive DLs, msc’s are difficult to compute
(provided they exist). InALC, although lcs is simply the disjunc-
tion of the inputs, there is no algorithm for computing msc’s. Our
algorithm processes approximations of the msc’s, for it is endowed
with the specialization mechanism of the counterfactuals, whereas
the lcs can only generalize starting from very specialized definitions.
The method illustrated in this work has been implemented in a proto-
type of a refinement system (YINYANG, Yetanother INduction Yields
A New Generalization) to induce or refineALC knowledge bases
which can be maintained by means of OWL markup. This will allow
to design a learning and refinement service for the Semantic Web.
The proposed method could be extended along three directions. First,
an investigation on the properties of the refinement operators on DL
languages is required. In order to increase the efficiency of learning,
redundancy during the search for solutions is to be avoided. This can
be done by defining minimal refinement operators [2]. Secondly, the
method can be extended to other DLs by changing the residual opera-
tor and devising a proper representation for counterfactuals. Another
promising direction seems to be investigating hybrid representations,
where clausal logic descriptions are mixed with description logics
accounting for available ontological knowledge.

4 ACKNOWLEDGEMENT
This research was partially funded by the European Commission
under the IST Integrated Project VIKEF - Virtual Information and
Knowledge Environment Framework (Contract no. 507173); more
information athttp://www.vikef.net .

REFERENCES
[1] The Description Logic Handbook, eds., F. Baader, D. Calvanese,

D. McGuinness, D. Nardi, and P. Patel-Schneider, Cambridge Univer-
sity Press, 2003.

[2] L. Badea and S.-H. Nienhuys-Cheng, ‘A refinement operator for descrip-
tion logics’, inProceedings of the 10th International Conference on In-
ductive Logic Programming, eds., J. Cussens and A. Frisch, volume 1866
of LNAI, pp. 40–59. Springer, (2000).

[3] W.W. Cohen and H. Hirsh, ‘Learning the CLASSIC description logic’,
in Proceedings of the 4th International Conference on the Principles of
Knowledge Representation and Reasoning, eds., P. Torasso, J. Doyle,
and E. Sandewall, pp. 121–133. Morgan Kaufmann, (1994).

[4] J.-U. Kietz and K. Morik, ‘A polynomial approach to the constructive
induction of structural knowledge’,Machine Learning, 14(2), 193–218,
(1994).

[5] C. Rouveirol and V. Ventos, ‘Towards learning in CARIN-ALN ’, in
Proceedings of the 10th International Conference on Inductive Logic
Programming, eds., J. Cussens and A. Frisch, volume 1866 ofLNAI,
pp. 191–208. Springer, (2000).

[6] G. Teege, ‘A subtraction operation for description logics’, inProceedings
of the 4th International Conference on Principles of Knowledge Repre-
sentation and Reasoning, eds., P. Torasso, J. Doyle, and E. Sandewall,
pp. 540–550. Morgan Kaufmann, (1994).

[7] S.A. Vere, ‘Multilevel counterfactuals for generalizations of relational
concepts and productions’,Artificial Intelligence, 14, 139–164, (1980).


