
Empirical Evaluation of the Effects of Concept
Complexity on Generalization Error

Roberto Esposito 1

Abstract. In this paper we focus on the relationship between con-
cept complexity and generalization error of learned concept descrip-
tions. After introducing the concept ofcompressibility, we suggest
how it could be usefully exploited in order to estimate from the train-
ing data the (Kolmogorov) complexity of the concept to be learned.
Then, we present an empirical apparatus which allows us to study the
relationship between the estimated target concept complexity and the
generalization error of different learning algorithms. Results show a
linear relationship between the two variates: the generalization er-
ror appears to increase as the target concept becomes more complex.
While this is expected, quite interesting is the fact that the relation-
ship seems to be (only) linear. Moreover, while the degree of corre-
lation changes for different learners, the “linear” relationship seems
not to be affected by the particular learning algorithm.

1 INTRODUCTION

It is widely believed, in science, that more simple theories are bound
to be more predictive/explicative (see, for example, [3] for a discus-
sion). Even though appealing to the intuition, this idea encounters
severe difficulties in the very definition of what “simple” is.

An attractive approach to quantifying complexity is to consider
algorithmic complexity[6]. Applying this notion to a concept, a
program corresponds to a concept description, and reconstruction
amounts to correctly predicting instances.

Unfortunately, Kolmogorov’s complexity is not computable, even
though computable extensions of it do exist [7]. Nonetheless, Kol-
mogorov’s formal definition can be exploited to introduce a less el-
egant, but more practical, notion of complexity, namely, compress-
ibility.

2 ESTIMATION OF CONCEPT COMPLEXITY

Let us define a conceptC as a subset of a metric spaceX . We will
call positives examples ofC the points inC andnegatives examples
the points inX −C. In this work, we will focus on spaces containing
a finite number of points.

Let us consider a universal machineU and denote withΠ the set
of syntactically correct programs forU .

The notion of compressibility can be derived from Kolmogorov
complexity by recognizing that the algorithms inΠ can be, in gen-
eral, decomposed into two parts: an algorithmic partG that encodes
the logic of the program, and the informationD, which is manipu-
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lated byG. We can hence write Kolmogorov complexity as:

K(x) = min
π≡〈G,D〉∈Π:U(π)=x

l(π)

We say thatG is a decompression algorithm forC, and thatD is a
compressed representation ofC. We try to find a pair〈G′, D′〉 which
is “small” with respect toC, even though it is not necessarily the
smallest one. We do this by fixing the compression algorithm (and
hence, alsoG), and estimating concept complexity by measuring the
size of its compressed representation.

Unfortunately, it is not possible to compute exactly concept com-
pressibility without having the whole concept at hand. As a conse-
quence, we will make a simplifying step: we shall estimate its com-
pressibility on a learning set.

2.1 COMPRESSION ALGORITHMS

The first compression algorithm we tested is based on a greedy cov-
ering procedure. We say that a setS of spheres, defined over a finite
metric spaceX , is acoverof a conceptC if any point that belongs to
the concept belongs to one of the sphere inS and vice versa.

Let us denote byS0(C) the smallest cover ofC and byn the di-
mensionality ofX .

The estimate of concept compressibility given by the optimal cov-
ering algorithm is set to be:

γCOV =
|S0(C)|

|X |
(1)

Since the optimal covering algorithm is very computationally de-
manding and since we assume to not know the target concept in ad-
vance, we cannot use the formula given above as is. Instead, we make
use of a greedy covering algorithm and run it over the learning set.
Let us denote the learning set byL and byHGCA(L) the cover found
by the greedy covering algorithm (GCA) when run onL; the formula
used to estimate the concept compressibility is:

γGCA =
|HGCA(L)|

|L|

The second compression schema we used is a file zipping pro-
gram, one of the standard tools available on any modern operating
system. In particular, we used the freely available “gzip” program,
which has already proved to be a valuable tool for the estimation of
Kolmogorov complexity from data [1]. Let us denote withF (L) the
representation ofL on file. The compressibility of the target concept
is estimated by measuring the ratio:

γZIP =
‖ZIP(F (L))‖

‖F (L)‖



WhereZIP(F (L)) is the compressed version ofF (L), and with
the notation‖ · ‖ we denote the size, in bytes, of the enclosed file.

It is worth noticing how much the two compression algorithms
differ. In fact, even though both of them are meant to approximate
Kolmogorov complexity, they exploit very different characteristic of
the data. In order to make the difference between the two algorithms
evident, let us consider the set of even integers less than100 and
denote it withC2. C2 admits2j (1 ≤ j ≤ 49) as a very simple
description (and henceK(C2) is bound to be small), but it cannot be
compressed at all byGCA. However, it is easy to verify that the task
of compressingC2 is an easy one forZIP.

3 EXPERIMENTAL SETTING

We generated a large number of two dimensional target concepts
of varying complexity. The complexity parameter were controlled
by varying then number of different shapes included in the concept.
These concepts have been used to acquire both an estimation of one
of the compression measuresγ, and an estimation of the generaliza-
tion errorω of a number of learning algorithms. The errorω has been
computed on independent test sets.

Given a learning algorithmA, and a compression algorithmZ,
we performed 1000 experiments, each of which ended up with a
pair (γ, ω). The following learning algorithms were tested: a simpli-
fied version ofCART [2], k-nearest neighbors [4], GCA, and
AdaBoost [5] along with two different weak learners (a sphere in-
ducer and a decision stump inducer).

A useful way to think to the experiments is the following. On one
hand we have a sampling of the extension of the target concept (the
learning set), on the other hand we have a guess about its intension
(the learned hypothesis). The experiments study the relation between
the complexity of the concept extension and how good is the guess
about its intension.

4 EXPERIMENTAL RESULTS

The experiments show a linear relationship between the generaliza-
tion error of the learning algorithms and the compression estimate
provided by the two measures we described. Table 1 reports the cor-
relation coefficients of the two variates for all the experiments we
performed.For the sake of illustration, we report in Figure 1 the scat-

Table 1. Correlation coefficients for learning algorithm/compression
estimator pairs.

Algorithm γGCA γZIP

AdaBoost + GCA 0.75997 0.21943
AdaBoost + SP 0.55294 0.57153
GCA 0.75913 0.32898
CART 0.56207 0.28868
KNN 0.72997 0.31174

ter plot for the caseGCA/γGCA.
As it appears, the results concerningγZIP estimation are less en-

couraging. TheZIP algorithm, in fact, seems to be less sensible to the
variations in the complexity of the concepts underlying the training
sets. This was not totally unexpected since the choice of the compres-
sion algorithm is an important parameter and different compressors
are likely to behave differently on a fixed domain. For the domain
presented in this paper in particular,GCA is a natural complexity
estimator candidate, whileZIP is not.
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Figure 1. Generalization error of theKNN algorithm vsγGCA.

5 CONCLUSIONS

In this paper we presented an empirical apparatus which allowed us
to study the relation between the error of different learning algo-
rithms and two different compressibility definitions. The outcomes
show a linear correlation between the two variates, namely, between
compressibility and generalization error.

The experiments show that the correlation is notably stronger for
one of the two compression estimates; there is thus evidence that the
choice of the particular compression algorithm is a delicate one. Any-
way, it is interesting to observe that a positive correlation is observed
through all experiments, which tested very different learning algo-
rithms. As a consequence, the compression estimates capture some
important characteristics of the training data, which seem to be rele-
vant for the induction problem in general.

A possible explanation of this phenomenon is that the compression
measures are actually estimating the complexity of the underlying
concept. In other words, they may be exploiting the learning data in
order to guess if the concept to be learned is a difficult one.

Following this intuition, we provided a definition of compressibil-
ity in terms of Kolmogorov complexity. This definition seems to be
an interesting one. In fact, on the one hand it exposes the connection
between compressibility and complexity and, on the other, it nicely
explains the difference in behavior of the two compressibility mea-
sures we tested in practice.
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